
Research Article
Design, Validation, and Comparative Analysis of a Private Bus
Location Tracking Information System

Feras Al-Hawari , Mohammed Al-Sammarraie, and Taha Al-Khaffaf

Computer Engineering Department, German Jordanian University, Amman 11180, Jordan

Correspondence should be addressed to Feras Al-Hawari; firas.alhawari@gju.edu.jo

Received 26 April 2020; Revised 28 October 2020; Accepted 21 November 2020; Published 28 November 2020

Academic Editor: Tomio Miwa

Copyright © 2020 Feras Al-Hawari et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

,is paper addresses various aspects related to the design, development, and validation of a web-based information system that is intended
to facilitate themanagement of a bus transportation service offered by a Jordanian university to its staff and students. Passengers can use this
system to track bus trips to find out how far a desired bus is from a specific location. Also, they can know about arrivals and departures of
buses managed using this system. Specifically, this work explores UI design, data structures, database design, system architecture, and
development methods to realize the required features (e.g., user roles, bus setup, driver assignment, bus routes, bus schedules, and trip
monitoring) in the proposed bus location tracking system. It also suggests using the free open-source API, rather than the proprietary
Google Maps API, to develop the interactive maps. ,e system also records trip information and solicits passenger feedback to allow
reviewing and analyzing that data to enhance the quality of service, reduce operation cost, and improve passenger satisfaction. ,e
conducted comparative analysis results illustrate that the open-source API is accurate, fast, and responsive similar to the proprietary API.
Furthermore, the user survey output confirms that the deployed system is easy to use, helpful, fast, responsive, and accurate.

1. Introduction

Some universities in Jordan provide a bus transportation
service to students and employees. Hence, that necessitates
having a computerized system to manage features such as
user accounts (e.g., passenger, driver, and administrator),
user subscriptions, fee payments, bus setup (e.g., model,
license plate, and capacity), driver assignment to buses, bus
stops, bus routes, bus schedules, and bus trips. Moreover, the
system should help passengers track any ongoing trips to
check the possibility of catching a bus or finding out how far
is the bus from a certain bus stop. Furthermore, it must allow
university management to generate related reports (e.g., late
trips report, punctual trips report, and unpaid fees report)
and solicit user feedback (e.g., regarding the drivers’ be-
havior and buses’ comfortability) to evaluate service quality
and passenger satisfaction. Accordingly, management can
take proper actions (e.g., renew a bus and reduce fees) to
improve the offered services as necessary.

In this context, the main aim of this paper is to tackle the
challenges pertaining to the design and development of web-
based bus management and tracking system that fulfills the
needs of the German Jordanian University (GJU) (or any other
institution with similar demands). Note that the system has
been developed in-house to keep customizing it to meet
continual university requirements such as the following:

(i) Track and record all bus trips in an efficient and
accurate manner using a free open-source API.

(ii) Provide all basic system setup functionality such as
managing drivers, buses, stops, routes, schedule,
and trips.

(iii) Assign drivers to buses and assign buses to
schedules without any conflicts (i.e., assigning two
drivers to the same bus or assigning a bus to two
overlapping schedules).

(iv) Integrate the system with the Student Information
System (SIS) [1, 2], Human Resources (HR), and

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 8895927, 18 pages
https://doi.org/10.1155/2020/8895927

mailto:firas.alhawari@gju.edu.jo
https://orcid.org/0000-0001-6948-3336
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8895927

Accounting Information System (AIS) [3, 4] to gain
direct access to passenger (i.e., students or em-
ployees) profiles and financial data needed to re-
trieve the user account information (e.g., name,
national number, and gender) and to check the
payment of bus transportation fees (e.g., for login
authorization purposes).

(v) Support single-sign-on- (SSO-) based authentica-
tion to allow users to log in to the system using the
same credentials (i.e., a single username and
password) that they use to log in to other university
portals.

(vi) Allow passengers to evaluate the provided services
(e.g., bus quality and driver behavior).

(vii) Offer reporting capabilities with flexible filtering
criteria to enable management to assess the service
quality and user satisfaction and then take suitable
actions accordingly.

,e rest of the paper is organized as follows. In Section 2,
the literature review and main contributions of this work are
presented. In Section 3, project management and software
development processes as well as system design issues (e.g.,
UI, database, and architecture design) are addressed. In
Section 4, the development details for the record trip, replay
trip, detect schedules conflict, and authenticate user features
are explained. ,e validation methods and comparative
analysis results for the bus management system are illus-
trated in Section 5. Finally, the summary and limitations of
this work as well as the planned future work are explored in
Section 6.

2. Literature Review

,e study in [5] proposed an ad hoc bus propagation model,
taking into account bus overtaking and distributed pas-
senger boarding behavior, to reduce bus bunching using
holding control strategies for schedule and headway. Ac-
cordingly, bus bunching happens when two or more buses
along the same route arrive at a designated stop simulta-
neously, and it is mainly related to the high uncertainty of
bus systems running times, bus capacity, driving maneuvers
(e.g., bus overtaking), and passenger boarding behavior.
Holding control works by delaying buses at stops to regu-
larize bus headway and reduce the overall passenger waiting
time, possibly at the expense of extending on-board waiting
time and total riding time. In the study in [6], a multiagent
deep reinforcement learning framework to develop dynamic
and flexible holding control strategies for a bus route is
introduced to efficiently incorporate global coordination
and long-term operation in bus holding.,e work in [7] also
investigated the effect of bus driver behavior on bus holding
control strategies and more specifically their effort in
catching up with a schedule in case of delay (i.e., schedule
recovery). ,e research in [8] suggested a first schedule-
following model where buses try to adhere to their schedule
in a typical schedule-based public transport system. ,e
model considers schedule following, bus bunching, and

leapfrogging and uses observed automatic bus location and
smart card data.

A flexible bus route optimization model for efficient
public transportation systems based on multitarget stations
was proposed in [9]. ,e model considers passenger de-
mands, vehicle capacities, and transportation network and
aims to find the optimal route while minimizing the vehicles’
travel time. ,e optimization problem is solved using a
heuristic algorithm based on a gravity model. ,e study in
[10] introduced a dynamic bus scheduling model to find an
optimal schedule that can adapt to the variations in pas-
senger demands and traffic conditions and hence increase
financial benefit and social satisfaction. ,e model aims to
minimize passenger waiting time and maximize bus capacity
utilization while taking into account the constraints due to
bus capacity and the number of available buses, as well as
ensuring that the service does not exceed the maximum
anticipated headway. ,e study in [11] introduced a robust
optimization model for limited-stop bus service with vehicle
overtaking and demand dynamics, with an objective to
minimize user cost and operation cost. A simulation-based
optimization framework integrating the response surface
methodology, which only needs to fit an initial input-output
dataset before solving to optimality, is used to solve the stop-
skipping optimization problem.,e work in [12] discussed a
heuristic framework to solve the bus routing and scheduling
problem with transfer. ,e framework deals with the
transportation of students from home to their school as-
suming that students may change buses on their way. ,e
results show that allowing transfers reduces total operating
costs significantly with user ride times comparable to so-
lutions without transfers.

,e study in [13] investigated a statistical method for
correcting the systematic errors that occur in the estimation
of bus arrival times.,e errors are related to the cycle time to
record each bus location and arrival information, as well as
the information processing time.,emethod was verified by
applying it to the bus information system of a city in Korea.
,e work in [14] resulted in a technique to predict bus arrival
times based on the collected data from buses and the analysis
of road conditions. ,e prediction is achieved using two
algorithms that take advantage of historical data with cur-
rent data. In the work in [15], a hybrid approach for pre-
dicting bus trajectories by integrating multiple predictors is
proposed. ,e method minimizes the prediction error using
a linear regression heuristic, and it was applied to five bus
routes in different cities. In the study in [16], a methodology
to predict bus arrival time using several artificial neural
network models was developed.,emodels were built based
on real-world automatic passenger counter data such as bus
travel time and bus passenger load. ,e predicted arrival
times were compared to the actual arrival times to evaluate
the models’ accuracy. A WiFi-sensing-based real-time bus
tracking and arrival time prediction approach was discussed
in [17]. ,e work in [18] suggested a system that utilizes the
bus passengers’ surrounding environmental context to es-
timate the bus traveling routes and predict bus arrival time at
various bus stops. ,e study in [19] provided a two-step trip
purpose labeling process for alighting station estimation

2 Journal of Advanced Transportation

based on transit smart card data. ,e process considers the
station category, trip time, trip sequence, and alighting
station frequency during five weekdays.

,ework in [20] utilizedmassive historical coach trajectory
data to extract coach operation information such as station
location, station name, coach schedule, and driving route. Such
data is important as it facilitates the realization of intelligent
traffic information services.,emain goal of the work in [21] is
to test point data visualization possibilities of selected Java-
Script Mapping Libraries to measure their performance and
ability to cope with a big amount of data. Five libraries for
marker clustering and two libraries for heat map visualization
were analyzed. Loading time and the ability to visualize large
datasets were compared for each dataset and each library. ,e
study in [22] focused on the design of a bus ticketing system.
,e studies in [23, 24] discussed the design of RFID hardware
systems to monitor buses.

,e aforementioned literature review showed that the
main challenges in this field are related to findingmethods to
collect accurate bus propagation and passenger demands
information and then to use such data in the development of
intelligent bus management applications that aim to increase
bus capacity utilization, reduce bus operation cost, and
improve passenger satisfaction. Specifically, the studies in
[5–24] addressed particular issues related to bus manage-
ment applications (e.g., reducing bus bunching, finding
optimal schedules, predicting bus arrival time, collecting
coach operation information, and designing bus tracking
hardware) but did not discuss design aspects pertaining to
the software development of bus management information
systems as a whole. On the other hand, the software engi-
neering aspects to develop bus management information
systems that focus on bus trip tracking were introduced in
[25–37], but only the systems in [25–27] discussed driver,
bus, and route setup steps besides trip tracking.

Correspondingly, this work has three main contributions.
First, it proposes design and development methods to realize all
the needed features (e.g., account management, bus setup, route
schedules, driver assignment, and trip monitoring) in a bus
location tracking information system. Second, the proposed
system utilizes the free open-source Leaflet library API [38] to
present interactive maps, whereas the majority of the related
systems used the no longer free (i.e., proprietary) Google Maps
API [39, 40] for that purpose. In that regard, a comparative
analysis is also conducted to evaluate the aforementioned APIs
and illustrate that the open-source API is accurate, efficient, and
responsive like its counterpart, in addition to being more
adaptable due to its open-source nature. ,ird, unlike most
similar work, this system records the trip information and
solicits the passenger feedback to allow reviewing and analyzing
that data to enhance the provided services and hence reduce
operation cost as well as improving passenger satisfaction.

3. Project Management and Software
Design Methods

,e adopted research methodology steps are summarized in
Figure 1. ,e project management and development pro-
cesses, as well as the software analysis and design methods to

realize the bus location tracking system, are described in this
section, whereas some of the technology development
techniques and system validation measures are discussed in
Sections 4 and 5, respectively. Specifically, this section covers
four main topics. First, suitable project management and
software development processes to deliver this project are
selected. Second, the users of the system are identified and
the services offered to them are specified.,ird, the database
tables and data structures needed to implement the various
features are proposed. Finally, the software modules needed
in the adopted three-tier web-based system architecture are
discussed.

3.1. Project Management and Software Development
Processes. ,e project management process in the systems
engineering basic profile [41] was adopted to manage this
project. ,is process is applicable in this context as it ad-
dresses important project management aspects like project
planning, progress, review, versioning, and risks, whereas
the iterative and incremental software development process
is suitable to develop the various system modules. Based on
that, several repeated waterfall cycles (i.e., iterations) have
been used to implement the bus management modules (i.e.,
increments).

3.2. User Role Identification and System View Specification.
,e system needs to support three user roles: admin, driver,
and passenger. Accordingly, it must offer three views to
provide related services to each user role. ,e main features
in the admin view are summarized in the use case diagram in
Figure 2, whereas the services offered to the driver and
passenger roles are shown in the use case diagram in Fig-
ure 3. ,e services offered to each of the three user roles are
discussed next.

3.2.1. Admin View. ,e admin view supports management
features such as system setup (e.g., buses, drivers, stops,
routes, and schedules), trips monitoring (i.e., tracking and
replay), and feedback evaluation (i.e., user trip reviews). ,e
offered services in the admin view are as follows:

(1) Manage Drivers. ,is feature allows managing (i.e.,
adding, editing, deleting, and viewing): driver in-
formation (e.g., name, national number, address,
and phone number) in the system. Such data can be
used for management and reporting purposes. For
example, knowing the address of a driver helps the
admin in assigning the driver to a bus route that is
closer to his/her place of residence.

(2) Manage Buses.,is capability is needed to set up the
buses’ information (e.g., manufacturer, model,
license plate, chassis number, and capacity) in the
system.

(3) Assign Drivers to Buses. ,e system supports
assigning one driver per bus. Hence, to assign a new
driver to a bus, the original driver has to be un-
assigned first.

Journal of Advanced Transportation 3

(4) Manage Stops. ,is service is used to define the bus
stops that can be used to specify the different bus
routes. Each bus stop is identified by the name of the
place where the buses stop to let passengers get on
and off.

(5) Manage Routes. ,e admin view permits managing
bus routes using the screen shown in Figure 4. A bus
route consists of two (i.e., the source and destina-
tion) or more bus stops (see Figure 5) and has a
unique code. ,e bus route can be associated with
several schedules. ,e route schedule specifies the
expected arrival time of the bus to each stop along
the route as shown in Figure 5. Each route schedule
has a unique identifier. Also, a bus must be assigned
to each schedule. Further, a route can be associated
with several identical schedules as long as they are
assigned different buses. Accordingly, the assigned
buses take trips on a daily basis on the designated
schedule times. Based on the example in Figure 5,
Bus 1, Bus 2, and Bus 3 take the trips with Id 1 and Id
2, the trip with Id 3, and the trip with Id 4, re-
spectively, on a daily basis as shown in Figure 6.

Note that the bus trips will continue daily as long as
their route schedules remain active.

(6) Manage Route Stops. ,e system allows managing
the bus stops for each route. Each stop has a dif-
ferent order than its counterparts to enable the
system to display the stops based on their defined
order.

(7) Manage Route Schedules. ,e system allows man-
aging the bus route schedules via the screen shown
in Figure 7. Note that it checks whether the arrival
time to a certain bus stop is greater than or equal to
the arrival time to the previous bus stop in a given
bus route schedule.

(8) Assign Buses to Route Schedules. A specific bus
should be assigned to each bus route schedule via
the screen shown in Figure 7. ,e same bus may be
assigned to multiple bus route schedules as long as
there are no time overlaps between those schedules.
When a bus is being assigned to a schedule, the
system automatically checks whether or not that bus
is assigned to an overlapping schedule to avoid
conflicts or proceed with the operation (see sub-
section 4.3).

(9) Monitor Trips. ,e admin can also track an ongoing
bus trip or replay a past bus trip, if needed. For that
purpose, the system displays the selected trip map
and keeps updating the marker position to point at
the current or recorded bus position (i.e., longitude
and latitude values) at a given time (see Figure 8).

(10) Generate Reports. ,e admin may generate reports
with flexible filtering criteria (see Figure 9) to
display trip details such as driver name, bus in-
formation, departure time, arrival time, route stops,
trip status, and trip reviews. Accordingly, the admin
can evaluate the bus punctuality and the passenger
satisfaction. ,en, the evaluation reports can be
shared with university management for needed
action (e.g., keep the bus transportation company,
replace a bus, or reward a driver).

3.2.2. Driver View. ,e driver view offers the following
features:

(1) View Profile. A driver can view his/her information
(e.g., picture, name, national number, and phone
number).

(2) View Schedules. ,is feature displays the bus route
schedules that are assigned to a driver as shown in
Figure 10. A driver can start an on-time trip (i.e.,
highlighted in green) or a late trip (i.e., highlighted in

Project and software
processes adoption

User roles
identification

View features
specification System design System

development
System

validation

Research methodology

Figure 1: ,e adopted research methodology steps.

Manage drivers

Admin

Manage buses

Assign drivers

Manage route
stops

Manage routes

Assign buses

Manage route
schedules

Manage stops

Generate reports

Monitor trips

Figure 2: ,e use case diagram for the main features in the admin
view.

Passenger

View profile

View schedules

Manage trips

View reports

Driver

View profile

Review trips

Track trips

Figure 3: ,e use case diagram for the main features for the driver
and passenger user roles.

4 Journal of Advanced Transportation

orange) but cannot initiate a too early trip (i.e.,
highlighted in red). Note that this page (and the
other pages in the driver view) is designed to be
responsive such that it is navigable and viewable in
screens with different sizes.

(3) Manage Trips. Once a trip is started, the driver can
see a trip map with a marker that keeps changing
place to point at the current bus location as shown in

Figure 8. In the background, the system periodically
saves the current bus location (i.e., current longitude
and latitude) for the trip in the database table shown
in Figure 11 to allow users (e.g., admin and pas-
sengers) to track or replay the trip. ,e driver must
end the trip (to stop the data recording) when the bus
arrives at its final destination. Further, a trip must be
canceled in case it was started by mistake.

Schedule
Id

Assigned
bus

Stops

GJU Al-Marj McDonald’s 7th Circle

1

2

Bus1

Bus1

8:00 AM 8:15 AM 8:45 AM 9:00 AM

11:00 AM 11:15 AM 11:45 AM 12:00 PM

3 Bus2 8:00 AM 8:15 AM 8:45 AM 9:00 AM

4 Bus3 1:00 PM 1:15 PM 1:45 PM 2:00 PM

Schedules for bus route G1

Stop 4: 7th CircleStop 1: GJU Stop 2: Al-Marj Stop 3: McDonald’s

Bus Route: G1, Start: GJU, End: 7th Circle

Figure 5: An example showing a bus route with its stops and schedules.

8:00–9:00 11:00–12:00 1:00–2:00G1 schedules

Day 1

Day 2

Bus 1 Bus 1

Bus 2

Bus 1

Bus 2

Bus 1

Bus 3

Bus 3

Figure 6: ,e different bus trips on day 1 and day 2 based on the bus route schedules in Figure 5.

Figure 4: ,e manage routes screen in the admin view.

Journal of Advanced Transportation 5

(4) View Reports. ,is feature allows displaying the
details (e.g., bus information, departure time, arrival
time, route stops, and trip status) of the trips that
were initiated by the driver.

3.2.3. Passenger View. ,e passenger view supports the
following three services:

(1) View Profile. A passenger can view his/her profile. In
case the passenger is a student, the profile would
contain information retrieved from the SIS database
such as name, student ID, degree, and major. On the
other hand, when the passenger is an employee, the
profile would contain data obtained from the HR
database such as name, employee ID, job title, and
department.

Figure 8: ,e manage trip screen in the driver view.

Figure 7: ,e manage route schedule screen in the admin view.

6 Journal of Advanced Transportation

(2) Track Trips. A passenger may track any ongoing trip
to check the possibility of catching a bus or finding
out how far is the bus from a bus stop. ,e system
displays the selected trip map and keeps updating the
marker position to point at the bus position at the
current time (see Figure 8). Noting that this page
(and the other pages in the passenger view) is
designed to be responsive such that it is navigable
and viewable in screens with different sizes.

(3) Review Trips. A passenger can provide feedback
regarding any trip using the trip review form
shown in Figure 12. ,e feedback is related to
issues such as driver’s behavior, driver’s driving,
bus quality (e.g., comfortability and cleanliness),
trip punctuality, and general comments. ,e sys-
tem admin can evaluate the user feedback to make
sure passengers are satisfied with the provided bus
transportation service.

Figure 10: ,e schedule screen in the driver view.

Figure 11: ,e trip coordinates database table.

Figure 9: ,e trips report in the admin view.

Journal of Advanced Transportation 7

3.3. Database Design. For example, the ER diagram for the
major tables that are utilized by the bus management system
is shown in Figure 13. Accordingly, the drivers, buses, and
stops information are stored in the DRIVERS, BUSES, and
STOPS tables, respectively. ,e DRIVER_ID and BUS_ID
are saved in the BUSES_DRIVERS table when a driver is
assigned to a bus. ,e bus routes information (e.g., code,
source, and destination) are saved in the ROUTES table. A
bus route is associated with several bus stops in the
ROUTES_STOPS table. ,e bus routes’ schedules are stored
in the ROUTES_SCHEDULES table. ,e time a bus arrives
at a bus schedule stop is saved in the ROUTES_-
STOPS_SCHEDULES table. A bus is assigned to a schedule
in the BUSES_SCHEDULES table. ,e trip summary is
saved in the TRIPS table.,e latitude and longitude values of
each recorded position in a bus trip are stored in the
TRIPS_COORDINATES table (also see Figure 11).

3.4. System Architecture. ,e bus management system is a
web-based Java EE application that is separated into client,
web, and data tiers as shown in Figure 14. In the client tier,
users (i.e., clients) would access the system via web browsers
running on computers or phones. In the web tier, the system
modules are deployed and executed in a web container that
resides within the Java EE server (running on a remote host
in a data center). In the data tier, the buses, SIS, HR, and AIS
databases are managed by the Relational Database Man-
agement System (RDBMS). A software module (e.g., manage
buses, manage routes, and manage stops) consists of Java-
Server Faces (JSF) [42] pages, managed beans, and Data
Access Objects (DAOs). A JSF file includes HTML and JSF
elements to represent the UI components (e.g., tables, text
fields, checkboxes, and menus) in the related module. A
managed bean is a Java object that is automatically managed
(i.e., instantiated, executed, updated, and destroyed) by the
web container. It saves the state of the corresponding JSF

page and implements the business logic of the page. ,e JSF
framework offers more services to support data validation
and conversion, event handling, page templates, and lan-
guage translation. It also allows the use of custom UI
component libraries like PrimeFaces [43] within the JSF
pages. A DAO is used by a bean to manage the application
information in the data tier. For that purpose, it utilizes the
Java Database Connectivity (JDBC) API to interact with the
RDBMS to retrieve data from, or store data in, the desired
database tables.

4. Development Methods

,e development details for some of the main features
within the bus management system are discussed next.

4.1. Trip Tracking and Recording. ,e sequence diagram in
Figure 15 illustrates the developed methods to display and
record a bus trip map. In that regard, when a driver starts a
trip, the trip map page will be rendered every 15 seconds
until the trip is ended. Given that the latitude and longitude
values of the bus location are collected via JavaScript
functions in the client tier, therefore the inputHidden ele-
ments have been used in the map’s JSF page to allow storing
these values in a managed bean named mapBean whenever
the page is requested by the browser. ,e JSF framework
invokes the setLat and setLng methods on the mapBean
object to store the received latitude and longitude values,
respectively. It also records the captured coordinates in the
database by first invoking the saveLatLng method on the
mapBean object. In turn, the mapBean object invokes the
insertLatLng method on the related DAO, which then uses
the Java JDBC API to communicate with the RDBMS to
insert the coordinates of the current bus location in the
TRIPS_COORDINATES table. Consequently, the JSF
framework generates the HTML tags and JavaScript code for

Figure 12: ,e review trip form in the passenger view.

8 Journal of Advanced Transportation

Figure 13: ,e ER diagram for the major tables used by the bus management system.

Client tier

Data tier

Web tier

Database management system

SIS
DB

Buses
DB

Passenger DriverAdmin

JSF framework

Managed
beansJSF pages

JSF APIs
JSF
Packages
JSF files

Web container DAOs

Java EE server

AIS
DB

HR
DB

Figure 14: ,e three-tier architecture of the bus management system.

Journal of Advanced Transportation 9

the elements in the map page and then sends the page within
an HTTP response message to the browser. ,e Leaflet li-
brary API [38] is utilized by the JavaScript code that is
executed by the browser to initialize and display the in-
teractive map. Next, the Geolocation API is used by the
Leaflet locate function to capture the coordinates of the
current bus location. ,en, a marker for the current bus
coordinates is added and displayed on the map. Finally, the
latitude and longitude values of the current bus location are
saved in the values of the inputHidden elements for pro-
cessing upon submitting the form data of the map page to
the web application server.

4.2. Trip Replay. ,e sequence diagram in Figure 16 illus-
trates the developed methods to replay a saved bus trip.
When the trip page is requested by the browser, the JSF
framework invokes the getTripCoords method on the
mapBean object to retrieve the markers information of the
desired trip for replay. In turn, the mapBean object invokes
the buildTripCoordsmethod on the related DAO, which then
uses the Java JDBC API to communicate with the RDBMS to
retrieve the coordinates’ rows of the desired trip from the
TRIPS_COORDINATES table. Consequently, the JSF
framework generates JavaScript code to display the trip’s
recorded markers on the map. Next, it generates HTML tags

and JavaScript code for the rest of the elements on the page.
Finally, it encapsulates the generated page within an HTTP
response message that is sent to the browser. ,e Leaflet
library API is utilized by the JavaScript code that is executed
by the browser to initialize and display the interactive map.
Next, all the markers for the replayed trip are added and
displayed on the map.

4.3. Schedule Conflict Detection. ,e system automatically
detects schedule conflict when attempting to assign a bus to an
overlapping schedule as shown in Figure 17. ,e pseudocode
for the schedule conflict detection algorithm is shown in
Figure 18. ,e algorithm is based on the assumption that each
driver is assigned to only one bus as stated at line 1. ,e
departure time and arrival time of the route schedule (i.e.,
selSched) to which the bus is being assigned are computed at
line 2 and line 3, respectively. ,e schedules to which the
selected bus is already assigned are retrieved from the
BUSES_SCHEDULES table and then saved in the busSche-
dulesArray object at line 4 and line 5, respectively. ,e foreach
block that starts at line 6 and ends at line 21 checks each bus
schedule (i.e., busSched) in the busSchedulesArray object for
conflicts. ,e stop schedules for the current busSched are re-
trieved from the ROUTES_STOPS_SCHEDULES table and
then saved in the busStopSchedulesArray object at line 7 and

Initialize and display map

Request to refresh map page
and send hidden elements values

setLng

setLat

Show location marker on map

Set lat value in its hidden element

Set lng value in its hidden element

Browser JSF
framework mapBean Database

saveLatLng Insert row in TRIPS_COORDINATES
table

Response to refresh map page

Loop

[every 15 seconds]

Locate bus via Geolocation API

DAO

insertLatLng

Web tierClient tier Data tier

Generate HTML for
page elements

Figure 15: ,e sequence diagram for the bus trip tracking and recording code interactions.

10 Journal of Advanced Transportation

line 8, respectively. Accordingly, the departure time and arrival
time of the current busSched are computed at line 9 and line 10,
respectively. ,e arrival and departure times of the current
busSched are compared to their counterparts of the selSched to
check for any schedule conflict within the conditional if
statement block that starts at line 12 and ends at line 20. In case
a schedule conflict is detected, an informative error message
(see Figure 17) is constructed at line 18 for display, and a break
statement is issued at line 19 to exit the foreach block.

4.4. User Authentication and Authorization. GJU users (e.g.,
students and employees) log in to all university portals using
SSO credentials (i.e., with a single username and password)
that are managed and saved in the Microsoft Active

Directory (AD) [44]. Accordingly, the bus management
system uses the Java Naming and Directory Interface (JNDI)
as well as the Lightweight Directory Access Protocol (LDAP)
to communicate with, and authenticate users in, the AD.
Once a passenger is authenticated, the system also verifies
whether that user had subscribed to the bus transportation
service and paid the required fees (based on the related data
in the buses, SIS, HR, and AIS databases shown in Figure 14).
Consequently, a passenger is denied access to the system in
case authentication or authorization fails.

4.5. Application Security and Data Protection. ,e following
security measures are implemented to protect the applica-
tion and database servers from any unauthorized access: the

Initialize and display map

Request to view trip replay page

Show location markers on map

Browser JSF
framework mapBean Database

getTripCoords

Select rows from TRIPS_COORDINATES

Response to view trip replay page

Loop

[for every coord]

DAO

buildTripCoords

Web tierClient tier Data tier

Generate javascript
code to display

a marker for coord

Generate HTML for
other elements in

the page

Figure 16: ,e sequence diagram for the replay bus trip code interactions.

Figure 17: ,e conflict detection message when attempting to assign a bus to an overlapping schedule.

Journal of Advanced Transportation 11

security-centric Linux operating system (OS) is utilized to
run all servers; a strong password policy is in place to access
the required servers and applications by authorized users
only; the OS and all used software are regularly updated to
close any vulnerabilities; antivirus tools are deployed to
protect all servers frommalware; the network security access
list is defined to block any access to the admin view and
database from outside the GJU intranet; besides, the HTTPS
protocol is enabled in the application server for user au-
thentication, data confidentiality, and data integrity
purposes.

5. Validation and Results

,e system testing results, user survey outcomes, and the
feature comparison to related work are presented in this
section.

5.1. Trip Tracking Accuracy and Speed. ,ree samples from
the many trips that were tracked during the system testing
phase are shown in Figures 19–21. ,e majority of the
recorded bus locations during those trips were very accurate
as illustrated in the three figures. In Figure 19, all the
recorded points were accurate and none of them deviated
from the taken path. On the other hand, only one point in
Figure 20 was outside the taken path (i.e., an outlier point),
and hence, it has a negligible effect on the path tracking
accuracy. In Figure 21, a short gap (due to a possibly missing
marker on that part of the path) was noticed on the tracked
path, and that can be related to an encountered delay in the
Geolocation API while attempting to locate the bus location.
In some cases, the existence of some short gaps in the path is
not an issue as they can be attributed to a faster movement of
the bus in between the poll operations. As far as the value of
the poll interval, it was found that using a value of about 10
seconds is suitable to efficiently record and accurately re-
produce the taken trip paths. Noting that the longest traveled

distance in the shown figures was about 5 kilometers during
the trip shown in Figure 19.

Another experiment was conducted to compare the
speed of the Leaflet API with that of its Google Maps
counterpart. ,e results of this investigation are illustrated
in Figure 22 in which the measured elapsed times to locate
and display 70 markers using both packages are shown.
Based on that, both APIs are fast and responsive, with

Figure 19: A very accurate trip path.

1. - Given that a driver is assigned to only one bus
2. - selSchedDepartureTime ← the time of the selSched stop with the lowest order
3. - selSchedArrivalTime ← the time of the selSched stop with the highest order
4. - Retrieve the schedules for the bus to be assigned to the selSched from the BUSES_SCHEDULES table
5. - Save the retrieved schedules in the busSchedulesArray

6. foreach busSched in busSchedulesArraydo
7. - Retrieve the busSched stop schedules from the ROUTES_STOPS_SCHEDULEStable
8. - Save the retrieved stop schedules in the busStopSchedulesArray
9. - busSchedDepartureTime ← the time of the bus stop schedule with the lowest order
10. - busSchedArrivalTime ← the time of the bus stop schedule with the highest order
11.
12. if ((busSchedDepartureTime BETWEEN (selSchedDepartureTime AND selSchedArrivalTime)) OR
13. (busSchedArrivalTime BETWEEN (selSchedDepartureTime AND selSchedArrivalTime)) OR
14. (selSchedDepartureTime BETWEEN (busSchedDepartureTime AND busSchedArrivalTime)) OR
15. (selSchedArrivalTime BETWEEN (busSchedDepartureTime AND busSchedArrivalTime)))
16. then
17. - Flag the schedule conflict
18. - Construct an informative error message for display
19. - break // Exit foreach loop
20. end // if statement
21. end // foreach loop

Figure 18: ,e pseudocode for the schedule conflict detection algorithm.

12 Journal of Advanced Transportation

negligible speed differences. Specifically, the minimum,
average, and maximum measured times using Leaflet were
equal to 21ms, 52.64ms, and 152ms, respectively, whereas
the minimum, average, and maximum recorded times using
Google Maps were equal to 16ms, 57.05ms, and 192ms,
respectively.,erefore, this experiment asserts that using the
Leaflet API to develop interactive maps in this system is
advantageous because it is free and adaptable, with almost no
speed differences relative to the no longer free Google Maps
API.

,e average time to add the markers on a map for a
recorded trip was also evaluated as shown in Figure 23.
Given that the travel time for most trips to/from GJU spans
from 30 minutes to 90 minutes, hence the needed number of
points to record a trip in the database ranges from 180 points
to 540 points based on a 10-second poll interval. ,erefore,
measuring the average time to display the markers for trips
with a number of points ranging from 100 points to 600
points is sufficient to evaluate the speed of the trip replay
feature. Accordingly, the measured average time values were

Figure 20: A trip path in which there is one outlier marker.

Figure 21: A trip path in which there is a short gap.

Journal of Advanced Transportation 13

reasonably fast as the maximum value did not exceed 125 ms
for a trip comprised of 600 markers.

5.2. Application Assessment and Trip Satisfaction Surveys.
,e employees and students (i.e., about 58 users) traveling in
three buses were asked to try the application and then
complete a system assessment survey and a trip satisfaction
review. A total of 45 participants completed the afore-
mentioned surveys as shown in Tables 1 and 2, respectively.
,e answers to each question in the surveys were based on a
five-point Likert scale. Hence, each question had five an-
swers as follows: strongly agree (5 points), agree (4 points),
not sure (3 points), disagree (2 points), and strongly disagree
(1 point).

Based on Table 1, 93% of the participants strongly
agreed or agreed that they have an acceptable Internet
service. Also, 98%, 87%, 80%, 87%, and 91% of the users
strongly agreed or agreed that the system is easy to use
(i.e., question 2), accurate (i.e., question 3), fast (i.e.,
question 4), responsive (i.e., question 5), and helpful (i.e.,
question 6), respectively.

,e travelers used the trip review form shown in Fig-
ure 12 to provide their feedback regarding the trip. Ac-
cordingly, 96% and 100% of the participants strongly agreed
or agreed that the drivers were friendly (i.e., question 1) and
drove safely (i.e., question 2), respectively, as shown in
Table 2. Also, 93% of them would recommend the drivers to
others (i.e., question 3). On the other hand, 87% and 89% of
the users strongly agreed or agreed that the bus was com-
fortable (i.e., question 4) and arrived on time (i.e., question
5), respectively.

5.3. Feature Comparison to Related Work. A feature com-
parison to the related systems discussed in [25–37] is shown
in Table 3. In that regard, this work is centered on designing
a complete bus management portal, and its novelty can be
summarized as follows:

(i) ,e free open-source Leaflet library has been used
to develop interactive maps in this system, while
the majority of the other systems relied on the no
longer free Google Maps API for that purpose. Not
to mention, Leaflet is similarly fast and responsive,

0
20
40
60
80

100
120
140
160
180
200

El
ap

se
d

tim
e (

m
s)

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 691
Marker number

Google
Leaflet

Figure 22: ,e elapsed times to locate and display 70 markers using Leaflet and Google Maps.

0

20

40

60

80

100

120

140

Av
er

ag
e t

im
e (

m
s)

100 200 300 400 500 600
Number of markers in trip

29.46666667

53.86666667

69.86666667

88.86666667

110.2666667

124.8666667

Figure 23: ,e average times to display the markers on a map for different recorded trips.

14 Journal of Advanced Transportation

but it is also more adaptable due to being open
source.

(ii) Unlike most papers, this paper discussed all setup
aspects related to the management of buses,
drivers, stops, routes, schedules, and trips.

(iii) Unlike the rest of the systems, this system im-
plements an algorithm to detect bus schedule
conflict that is needed to prevent the assignment of
two drivers to the same bus or the assignment of a
bus to overlapping schedules.

(iv) None of the other systems developed a trip replay
feature as in this work despite the importance of
that to review and archive previous trips.

(v) Unlike all related work, this system uses SSO for
user authentication due to its importance in

preventing users from memorizing several pass-
words and relieving administrators from assigning
credentials to every new user.

(vi) Unlike all other systems, the busmanagement system
is integrated with the SIS, HR, and AIS databases.
Accordingly, the system setup is easier as the ad-
ministrator does not have to manage students, em-
ployees, fees, or payments as all that data are directly
accessible from the aforementioned databases for
authorization or display purposes.

(vii) Only this system gave the passengers the chance to
evaluate the offered services (e.g., bus quality and
driver behavior).

(viii) ,is system is the only one that supports reporting
capabilities with flexible filtering criteria as needed

Table 1: ,e system assessment survey results.

Question
Answers

Total answers Average score
5 4 3 2 1

1 My Internet service is fast and reliable 23 19 3 0 0 45 4.444
2 ,e bus tracking system is easy to use 26 18 0 1 0 45 4.533
3 ,e reported bus locations are accurate 18 21 6 0 0 45 4.267
4 ,e map refresh rate is acceptable 17 19 7 2 0 45 4.133
5 ,e UI fits nicely within the phone screen 18 21 4 2 0 45 4.222
6 ,e provided service is helpful 16 25 3 1 0 45 4.244

Table 2: ,e trip satisfaction survey results.

Question
Answers

Total answers Average score
5 4 3 2 1

1 ,e driver was friendly and displayed good manners 25 18 2 0 0 45 4.511
2 ,e driver’s driving was safe and calm 28 17 0 0 0 45 4.622
3 I would recommend the driver to others 26 16 2 1 0 45 4.489
4 ,e bus seats were clean and comfortable 17 22 4 2 0 45 4.200
5 ,e bus departed and arrived on time 24 16 5 0 0 45 4.422

Table 3: A feature comparison to related work.

Reference
Leaflet
maps
API

SSO
Integration
with other
systems

Manage
buses

Manage
and assign
drivers

Manage stops,
routes,

schedules, and
trips

Detect
schedules
conflict

Track
trips

Replay
trips

Review
trips Reports

GJU buses
system ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

[25] ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘
[26] ✘ ✘ ✘ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✘
[27] ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✘
[28] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[29] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[30] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[31] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[32] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[33] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[34] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[35] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[36] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘
[37] ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘

Journal of Advanced Transportation 15

to enable management to assess the service quality
and user satisfaction for further improvements.

6. Summary and Future Work

A flexible, easy to use, fast, accurate, and helpful web-based
bus management and tracking system that is designed and
developed in-house and supports the following user roles
has been introduced in this paper:

(i) Admin user role is responsible for tasks such as
system setup, trip scheduling, report generation,
and service evaluation.

(ii) Driver user role takes care of starting, monitoring,
canceling, and stopping the assigned trips.

(iii) Passenger user role monitors any ongoing trip to
check the possibility of catching a bus or finding out
how far is the bus from a bus stop. In addition, this
user can provide feedback regarding the offered
services for improvement purposes.

Unlike many existing systems, this system incorporates
all the user interfaces and data structures needed to manage
buses, drivers, stops, routes, schedules, and trips. Also, it
utilizes an algorithm to detect bus schedule conflict to
prevent assigning several drivers to the same bus or
assigning a bus to overlapping schedules. Moreover, it
supports SSO user authentication and it is integrated with
other systems (e.g., SIS, AIS, and HR) to directly access data
related to students, employees, fees, and payments without
the need for extra setup steps. In addition, it provides
reporting capabilities with flexible filtering criteria to allow
management to evaluate the service quality and user satis-
faction for further action.

,e sequence diagram for the code methods (in the
system’s client, web, and data tiers) used to display and
record a bus trip has been discussed. Moreover, the sequence
diagram that represents the code interactions to replay a
previous bus trip has been explained.

One of the advantages of this system is that it uses the
free open-source Leaflet package to develop interactive maps
and track the bus trips. ,e comparative analysis between
the open-source API and the proprietary Google API when
tracking several bus trips illustrated that the benefits of using
the Leaflet API are justified as they come without any effects
on accuracy, performance, or responsiveness when com-
pared to the no longer free Google Maps API. Further, the
Leaflet API is more adaptable than its counterpart due to its
open-source nature.

One of the limitations of this work is that it does not
predict the bus arrival time to enhance customer satisfaction,
but it only displays and records the actual locations of a
traveling bus during a specific trip. Note that the saved
historical trip data can be used to predict bus arrival times
when needed. Also, this work does not attempt to avoid bus
bunching and it does not regulate bus headway; however,
such issues are not much of a concern in the case of the
private GJU bus transportation system.Moreover, as of now,
the introduced system does not collect the bus capacity

during a trip for the possible use of such data in the de-
velopment of scheduling algorithms to reduce, for example,
bus operation cost.

As far as future work, the current plan is to enhance the
system to support features such as bus seat reservation, bus
capacity collection, and bus pass scanning (e.g., via a QR
code reader). Such data can be utilized, for example, to
reduce bus operation cost. Furthermore, the possibility to
integrate accurate methods to predict bus arrival time to
improve passenger satisfaction is under consideration.

Data Availability

,e data used in the study will be available upon request.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

References

[1] F. Al-Hawari, “Mygju student view and its online and pre-
ventive registration flow,” International Journal of Applied
Engineering Research, vol. 12, no. 1, pp. 119–133, 2017.

[2] F. Al-Hawari, A. Alufeishat, M. Alshawabkeh, H. Barham, and
M. Habahbeh, “,e software engineering of a three-tier web-
based student information system (MyGJU),” Computer
Applications in Engineering Education, vol. 25, no. 2,
pp. 242–263, 2017.

[3] F. Al-Hawari, “Analysis and design of an accounting infor-
mation system,” International Research Journal of Electronics
and Computer Engineering, vol. 3, no. 2, pp. 16–21, 2017.

[4] F. H. Al-Hawari and M. S. Habahbeh, “Secure and robust web
services for e-payment of tuition fees,” International Journal
of Engineering Research and Technology, vol. 13, no. 7,
pp. 1795–1801, 2020.

[5] W. Wu, R. Liu, and W. Jin, “Modelling bus bunching and
holding control with vehicle overtaking and distributed
passenger boarding behaviour,” Transportation Research Part
B: Methodological, vol. 104, pp. 175–197, 2017.

[6] J. Wang and L. Sun, “Dynamic holding control to avoid bus
bunching: a multi-agent deep reinforcement learning
framework,” Transportation Research Part C: Emerging
Technologies, vol. 116, Article ID 102661, 2020.

[7] W. Wu, R. Liu, and W. Jin, “Integrating bus holding control
strategies and schedule recovery: simulation-based compar-
ison and recommendation,” Journal of Advanced Trans-
portation, vol. 2018, Article ID 9407801, 13 pages, 2018.

[8] L.-M. Kieu, D. Ngoduy, N. Malleson, and E. Chung, “A
stochastic schedule-following simulation model of bus
routes,” Transportmetrica B: Transport Dynamics, vol. 7, no. 1,
pp. 1588–1610, 2019.

[9] S. Ji-Yang, H. Jian-Ling, C. Yan-Yan, W. Pan-Yi, and J. Jian-
Lin, “Flexible bus route optimization for multitarget stations,”
Mathematical Problems in Engineering, vol. 2020, Article ID
7183465, 8 pages, 2020.

[10] B. A. Kumar, G. H. Prasath, and L. Vanajakshi, “Dynamic bus
scheduling based on real-time demand and travel time,”
International Journal of Civil Engineering, vol. 17, no. 9,
pp. 1481–1489, 2019.

[11] W. Wu, R. Liu, W. Jin, and C. Ma, “Simulation-based robust
optimization of limited-stop bus service with vehicle over-
taking and dynamics: a response surface methodology,”

16 Journal of Advanced Transportation

Transportation Research Part E: Logistics and Transportation
Review, vol. 130, pp. 61–81, 2019.

[12] M. Bögl, K. F. Doerner, and S. N. Parragh, “,e school bus
routing and scheduling problem with transfers,” Networks,
vol. 65, no. 2, pp. 180–203, 2015.

[13] S. Kim, C. Lee, Y. Kim, S. Lee, and D. Park, “Error correction
of arrival time prediction in real time bus information sys-
tem,” Journal of Advanced Transportation, vol. 44, no. 1,
pp. 42–51, 2010.

[14] I. Ashour, M. Zorkany, and M. Shiple, “Design and imple-
mentation of transportation management system,” in Pro-
ceedings of the International Conference on Vehicle Technology
and Intelligent Transport Systems, pp. 11–18, Lisbon, Portugal,
2015.

[15] M. Fadaei, O. Cats, and A. Bhaskar, “A hybrid scheme for real
time prediction of bus trajectories,” Journal of Advanced
Transportation, vol. 50, no. 8, pp. 2130–2149, 2016.

[16] M. Chen, J. Yaw, S. I. Chien, and X. Liu, “Using automatic
passenger counter data in bus arrival time prediction,” Journal
of Advanced Transportation, vol. 41, no. 3, pp. 267–283, 2007.

[17] W. Liu, “Wilocator: wifi-sensing based real-time bus tracking
and arrival time prediction in urban environments,” in
Proceedings of the 36th International Conference on Distrib-
uted Computing Systems (ICDCS), pp. 529–538, IEEE, Nara,
Japan, 2016.

[18] P. Zhou, Y. Zheng, and M. Li, “How long to wait? predicting
bus arrival time with mobile phone based participatory
sensing,” in Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services, pp. 379–392,
Windermere, UK, 2012.

[19] K. Lu, A. Khani, and B. Han, “A trip purpose-based data-
driven alighting station choice model using transit smart card
data,” Complexity, vol. 2018, Article ID 3412070, 14 pages,
2018.

[20] J. Li, Q. Li, Y. Zhu, Y. Ma, Y. Xu, and C. Xie, “An automatic
extraction method of coach operation information from
historical trajectory data,” Journal of Advanced Trans-
portation, vol. 2019, Article ID 3634942, 15 pages, 2019.

[21] R. Netek, J. Brus, and O. Tomecka, “Performance testing on
marker clustering and heatmap visualization techniques: a
comparative study on javascript mapping libraries,” ISPRS
International Journal of Geo-Information, vol. 8, no. 8, p. 348,
2019.

[22] A. Shingare, A. Pendole, N. Chaudhari, P. Deshpande, and
S. Sonavane, “GPS supported city bus tracking & smart
ticketing system,” in Proceedings of the International Con-
ference on Green Computing and Internet of >ings (ICG-
CIoT), pp. 93–98, IEEE, Delhi, India, 2015.

[23] K. Aggrawal, “RFID based intelligent bus management and
monitoring system,” International Journal of Engineering
Research & Technology, vol. 3, no. 7, pp. 6–13, 2014.

[24] M. Malleswari, M. K. Rao, K. Supriya, K. P. Krishna, and
B. R. Teja, “RFID based college bus management system,”
International Research Journal of Engineering and Technology,
vol. 5, no. 5, p. 3, 2018.

[25] A. Ahmed, E. Nada, and W. Al-Mutiri, “University buses
routing and tracking system,” International Journal of
Computer Science and Information Technology, vol. 9, no. 1,
pp. 95–104, 2017.

[26] G. Jemilda, R. B. Krishnan, B. Johnson, and G. L. Sangeeth,
“Mobile application for college bus tracking,” International
Journal of Computer Science Mobile Computing, vol. 4, no. 3,
pp. 500–507, 2015.

[27] S. Eken and A. Sayar, “A smart bus tracking system based on
location-aware services and QR codes,” in Proceedings of the
International Symposium on Innovations in Intelligent Systems
and Applications, pp. 299–303, IEEE, Alberobello, Italy, 2014.

[28] D. B. M. Vidyavathi, A. Ahamed, H. Sultana, Y. Madhumathi,
and F. Begum, “College bus tracking system (traveline),”
International Journal of Advanced Research in Computer
Science, vol. 9, no. 3, pp. 90–93, 2018.

[29] M. Kamisan, A. Aziz, W. Ahmad, and N. Khairudin, “UiTM
campus bus tracking system using arduino based and
smartphone application,” in Proceedings of the 15th Student
Conference on Research and Development, pp. 137–141, IEEE,
Putrajaya, Malaysia, 2017.

[30] R. K. Megalingam, N. Raj, A. L. Soman, L. Prakash,
N. Satheesh, and D. Vijay, “Smart, public buses information
system,” in Proceedings of the International Conference on
Communication and Signal Processing, pp. 1343–1347, IEEE,
Bangkok, ,ailand, 2014.

[31] M. Sneha, C. N. Urs, S. Chatterji, M. Srivatsa, K. Pareekshith,
and H. A. Kashyap, “Darideepa: a mobile application for bus
notification system,” in Proceedings of the International
Conference on Contemporary Computing and Informatics,
pp. 724–727, IEEE, Mysuru, India, 2014.

[32] R. Jisha, A. Jyothindranath, and L. S. Kumary, “Iot based
school bus tracking and arrival time prediction,” in Pro-
ceedings of the International Conference on Advances in
Computing, Communications and Informatics, pp. 509–514,
IEEE, Udupi, India, 2017.

[33] K. Sujatha, P. N. Rao, K. Sruthi, and A. A. Rao, “Design and
development of androidmobile based bus tracking system,” in
Proceedings of the First International Conference on Networks
& Soft Computing, pp. 231–235, IEEE, Guntur, India, 2014.

[34] P. Kaulage, A. Pingale, P. Bhoite, V. Mankar, and P. Yadav,
“Bus tracking and bus arrival time, location prediction sys-
tem,” International Research Journal of Engineering and
Technology, vol. 4, no. 5, pp. 806–811, 2017.

[35] S. Dhende, V. Kaotekwar, V. Kokane, and V. Karambelkar,
“Intelligent bus system using rfid, zigbee and gprs,” Inter-
national Research Journal of Engineering Technology, vol. 4,
no. 4, 2017.

[36] S. Sankarananrayanan and P. Hamilton, “Mobile enabled bus
tracking and ticketing system,” in Proceedings of the 2nd
International Conference on Information and Communication
Technology, pp. 475–480, IEEE, Bandung, Indonesia, 2014.

[37] A. A. Surve, R. P. Nahar, G. K. Somavanshi, and K. Dive,
“Enhancing the functionality of bus monitoring and tracking
system,” International Journal of Technology Enhancements
and Emerging Engineering Research, vol. 3, no. 4, pp. 93–97,
2015.

[38] V. Agafonkin, “Leaflet: an open-source javascript library for
mobile-friendly interactive maps,” 2019, https://leafletjs.com/.

[39] J. P. Ventoso, “Switching from google maps to leaflet,” 2019,
https://www.endpoint.com/blog/2019/03/23/switching-
google-maps-leaflet.

[40] Google, “Google maps platform,” 2020, https://cloud.google.
com/maps-platform/maps.

[41] C. Y. Laporte, R. V. O’Connor, and L. H. G. Paucar, “,e
implementation of ISO/IEC 29110 software engineering
standards and guides in very small entities,” in Proceedings of
the International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, pp. 162–179, Barcelona,
Spain, 2015.

Journal of Advanced Transportation 17

https://leafletjs.com/
https://www.endpoint.com/blog/2019/03/23/switching-google-maps-leaflet
https://www.endpoint.com/blog/2019/03/23/switching-google-maps-leaflet
https://cloud.google.com/maps-platform/maps
https://cloud.google.com/maps-platform/maps

[42] E. Burns and C. Schalk, JavaServer Faces 2.0: >e Complete
Referencep. 722, First edition, McGraw Hill, New York, NY,
USA, 2010.

[43] PrimeTek, “Primefacses: leading provider of open source UI
component libraries,” 2020, https://www.primefaces.org/
showcase/.

[44] D. Iseminger, Active Directory Services for Microsoft Windows
2000, Microsoft Press, Redmond, WA, USA, 1999.

18 Journal of Advanced Transportation

https://www.primefaces.org/showcase/
https://www.primefaces.org/showcase/

