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(is study proposes a methodology for the calibration of microscopic traffic flow simulation models by enabling simultaneous
selection of traffic links and associated parameters. (e analyst selects any number and combination of links and model pa-
rameters for calibration. Most calibration methods consider the entire network and use ad hoc approaches without enabling a
specific selection of location and associated parameters. In practice, only a subset of links and parameters is used for calibration
based on several factors such as expert knowledge of the system or constraints imposed by local governance. In this study, the
calibration problem for the simultaneous selection of links and parameters was formulated using a mathematical programming
approach. (e proposed methodology is capable of calibrating model parameters considering multiple time periods and per-
formance measures simultaneously. Traffic volume and speed are the performance measures used in this study, and the
methodology is developed without considering the characteristics of a specific traffic flow model. A genetic algorithm was
implemented to find a solution to the proposed mathematical program. In the experiments, two trafficmodels were calibrated: the
first set of experiments included selection of links only, while all associated parameters were considered for calibration.(e second
set of experiments considered simultaneous selection of links and parameters. (e implications of these experiments indicate that
the models were calibrated successfully subject to selection of a minimum number of links. As expected, the more links and
parameters that are used for calibration, the more time it takes to find a solution, but the overall results are better. All parameter
values were reasonable and within constraints after successful calibration.

1. Introduction

Microscopic traffic flow simulation is increasingly being
used to analyze complex scenarios for a broad range of
objectives. One of the most important and challenging as-
pects for obtaining meaningful results is calibration, which
involves adjusting the model parameters to enhance the
ability of the model to generate local traffic conditions [1–3].
Existing calibration approaches propose various optimiza-
tion algorithms and varying sets of calibration parameters.
Sequential as well as simultaneous calibration of model
parameters are proposed in the literature.

(e calibration approach provided by the Federal
Highway Administration (FHWA) in Traffic Analysis

Toolbox Volume IV suggests a sequential process of cali-
brating the capacity at key bottlenecks, traffic volumes, and
system performance [2]. Using this approach, model pa-
rameters are adjusted by modifying global parameters first,
then link parameters, and finally route choice parameters.
Ma et al. [4] used a sequential approach to calibrate global
and local parameters separately. Jha et al. [5] calibrated
driver-behavior parameters separately from other parame-
ters, such as route choice factors and origin-destination (O-
D) flows. Paz et al. [3, 6] used an iterative approach where
one group of parameters was calibrated, while others
remained fixed. Issues associated with the use of a sequential
calibration process include difficulty to achieve convergence
and stable solutions [6].
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Many mathematical programming formulations have
been proposed to characterize and solve the problem of
calibrating simulation-based traffic flow models. A simplex
algorithm was proposed to calibrate microscopic traffic flow
simulation models using intelligent transportation system
data [7]. (e proposed algorithm was very effective for
congested conditions compared to simple manual calibra-
tion techniques. However, this effectiveness decreased as
congestion decreased. (e proposed approach considers
only a single objective to minimize the difference between
observed and estimated volume. In practice, multiple ob-
jectives are likely to be required.

Various genetic algorithms (GAs) have been proposed to
calibrate microscopic simulation models [4, 5, 8–14] with
successful results and relatively faster convergence. Yang
et al. [15] proposed an orthogonal genetic algorithm (OGA)
that provided superior results when compared to a GA;
however, the number of calibrated parameters was few. In
contrast, GA was found to converge relatively quickly for
simulation models with many parameters [10]. Simulta-
neous perturbation stochastic approximation (SPSA) algo-
rithms have also been widely used to calibrate microscopic
simulation models [4, 16–19]. SPSA was found to provide a
similar level of accuracy, fewer iterations, and less com-
putation time than GAs and the trial-and-error iterative
adjustment (IA) algorithms [16]. A memetic algorithm
(MA) was found to be superior to a SPSA algorithm because
the fine-tuning process required was significantly quicker for
MA [3]. Cobos et al. [20] found that when a MA was
adapted, using Solis and Wets local search chains (MA-SW-
Chains), the results provided better and faster convergence
compared to both SPSA and MA. A multiobjective MA
based on NSGA-II and simulated annealing (NSGA-II-SA)
also offered better results for runtime and convergence
compared to a single-objective MA [21]. Considering that
the performance of the calibration process and the time
invested in finding the correct set of hyperparameters are
correlated and affected by the characteristics of each met-
aheuristic, 17 alternative algorithms including multi- and
mono-objective approaches were evaluated [22]. An adap-
tation of the global-best harmony search provided the best
results considering both stability and dominance.

Microscopic traffic flow simulation models use the
concept of car-following and lane-changing theories to
represent vehicle interactions and driver-behavior dynamics
[2, 23]. Typically, calibration parameters are related to driver
characteristics, such as car-following behavior and gap ac-
ceptance. Balakrishna et al. [16] proposed the calibration of
demand-and-supply parameters simultaneously. However,
the calibration was performed only with link counts and
used precalibrated values for the driver-behavior parame-
ters. Cheu et al. [8] used parameters such as free-flow speeds,
car-following distance, car-following sensitivity factors, lag-
to-accelerate/decelerate factors, and lane-changing factors.
Results showed that free-flow speeds, car-following distance,
and car-following sensitivity factors had the most effect and
are important for calibration; thus, calibration could be
performed using only these three parameters. Ma and Kim
[4, 13] considered calibration parameters that were

associated with acceleration/deceleration, car-following, and
lane-changing behaviors. (e lane-change probability and
car-following distance were found to have relatively close
calibrated and default values, suggesting that calibration
could be performed without the inclusion of these param-
eters. Performance measures after calibration showed
consistency with actual field values; however, no standard
criteria for calibration were defined. Paz et al. [3, 6] cali-
brated microscopic traffic flow models by taking into con-
sideration the entire set of model parameters
simultaneously.(e simultaneous selection of all parameters
was motivated by the need to seek convergence and stability
of the solutions. All parameters were treated equally, and a
subset of parameters that may significantly affect a traffic
model was not identified. Kim [13] used a bilevel framework
to calibrate driver-behavior parameters and O-D demand
simultaneously. (e calibration was performed only on a
congested network.

State-of-the-art methods take into consideration sets of
links and parameters for calibration without providing
flexibility for selecting or constraining the search space in
terms of where and what to use to fine-tune the traffic flow
simulation model. In practice, only a subset of links and
parameters can be used for calibration; for example, certain
links of a network may be precalibrated, and/or default or
prespecified values are required by local governance. (at is,
development and calibration may be restricted to adjust only
a subset of all the potentially available parameters in a traffic
flow model. Based on local knowledge and experience, key
parameters and specific traffic facilities are selected or
allowed for calibration [13, 24]. While a large number of
parameters increase computational complexity, identifying a
subset of important parameters mitigates this problem and
increases the ability of an algorithm to find a global optimum
[25]. When all the parameters are calibrated simultaneously,
lesser-known parameters may yield values that are unex-
plainable or inconsistent with real-world traffic behavior.

Unlike traditional approaches that either involve a se-
quential process or consider all parameters simultaneously,
this research proposes a methodology that enables the si-
multaneous selection of specific links/facilities and param-
eters for calibration. (at is, any combination of traffic
facilities and model parameters within each facility can be
selected simultaneously for calibration. Local and global
calibration parameters were taken into consideration. (e
capability of selecting where and what to calibrate was
motivated by requirements to use local knowledge and
governance in order to select parameters for calibration.(is
is of practical and theoretical importance, and these analyses
and associated insights are missing in the literature. Our
experiments illustrate the consequences of selecting only a
subset rather than all parameters.

2. Methods

(e calibration methodology used in this study was
adapted from Paz et al. [3].(is modified approach has the
capability to select links and model parameters. (e
calibration problem was formulated using a mathematical
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programming approach. (e normalized root mean
square, which was the objective function for this study,
measured the relative difference between actual and
simulated traffic volumes and speeds. Normalization
allowed multiple performance measures to be considered
simultaneously [3].

2.1. Problem Formulation

2.1.1. Notation and Terms. In this study, any number and
combination of local and global parameters could be selected
for calibration. Indicator variables δp

k and δg were used to
define which parameters were selected.(e following are the
notations and terms used in this study:

K: set of links selected for calibration
k: subscript for a link selected for calibration, k ∈K
P: set of local model parameters
p: superscript for a local model parameter, p ∈P
αp

k : local parameter p on link k selected for calibration,
∀k ∈K and p ∈P
αk: set of local parameters on link k selected for cali-
bration, ∀k ∈K
δp

k : indicator variable for local parameter p on link k
selected for calibration, ∀k ∈K, p ∈P, and
δp

k � 1⇔αp

k ∈ αk; otherwise, δ
p

k � 0
α: set of local parameters selected for calibration, α ∈P
G: set of global model parameters
g: superscript for a global model parameter, g ∈G
βg: global parameter selected for calibration g, ∀g ∈G
β: set of global parameters selected for calibration, β ∈G
δg: indicator variable for global parameter g selected
for calibration, ∀g ∈G and δg � 1⇔βg ∈ β; otherwise,
δg � 0
θ: set of all parameters selected for calibration, θ � α∪ β
L: set of links with actual field data
l: subscript for a link with actual field data, l ∈ L
T: total number of time periods
t: subscript for a time period, t ∈ T

Vl,t: actual volume for link l at time period t, ∀t ∈T and
l ∈ L
Sl,t: actual speed for link l at time period t, ∀t ∈T and
l ∈ L
Wv: weight factor for volumes
􏽢V(θ)l,t: simulated volume for link l at time period t,
∀t ∈T and l ∈ L
􏽢S(θ)l,t: simulated speed for link l at time period t, ∀t ∈T
and l ∈ L

2.1.2. Mathematical Program. (e objective function and
the calibration criteria were evaluated using links L with the
actual field data that were available.

(1) Objective Function. (e objective was to minimize the
normalized weighted root-mean-square (NRMS) error over
the number of time periods (T) and links (L) as follows:

minimizeNRMS �
1
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subject to

αk � αp

k |∀δp

k � 1,∀k ∈ K, p ∈ P􏽮 􏽯, (2)

α � Uk∈Kαk, (3)

β � βg
|∀δg

� 1,∀g ∈ G􏼈 􏼉, (4)

θ � α∪ β, (5)

lower bound≤ αp

k ≤ upper bound, ∀k ∈ K, p ∈ P, (6)

lower bound≤ βg ≤ upper bound, ∀g ∈ G. (7)

(is NRMS error function measures the relative dif-
ference between the estimated and the actual volume and
speed values. (e values in the squared root are the relative
differences in volume and speeds for all links selected for
calibration that contained actual field data. (e relative
differences are multiplied by Wv and 1 − Wv to consider the
reliability of volume and speed data. (is difference is also
measured for all considered time periods. (e total error is
normalized by dividing it by the squared root of the number
of links and time periods considered for calibration. (e
NRMS is based on a previous study [3], where this error
function was used successfully to calibrate traffic flow
models.

Constraints (2) and (3) ensured that the local parameters
selected for calibration were included in vector θ. Similarly,
constraint (4) ensured that the global parameters selected for
calibration were included in vector θ. Constraint (5) was a
definitional constraint for the calibration vector θ. Con-
straints (6) and (7) provided the lower and upper bounds for
each parameter selected for calibration.

2.2. Calibration Criteria. (e criterion for calibration is
based on guidelines provided by the FHWA [2]. For indi-
vidual links, in more than 85% of cases, the difference be-
tween actual and simulated counts should be

(i) Within 100 vehicles/hour for link volumes less than
700 vehicles/hour
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(ii) Within 15% of field flow for link volumes between
700 and 2700 vehicles/hour

(iii) Within 400 vehicles/hour for link volumes greater
than 2700 vehicles/hour

(e sum of all simulated link count errors should be
within 5% of all actual link counts. (e GEH statistic for
individual link flows should be less than 5 for more than 85%
of cases [1, 2]. (e GEH statistic is given by

GEH �

�������������

2 Vl − 􏽢V(θ)l􏼐 􏼑
2

Vl + 􏽢V(θ)l

􏽶
􏽴

, (8)

whereVl is the actual traffic volume for link l and 􏽢V(θ)l is the
corresponding simulated traffic volume.

2.3. Solution Algorithm. (e proposed mathematical pro-
gram, as expressed in equations (1) through (7), was solved
using a GA, which searches solutions by trying to avoid
stopping at local optima and seeking to increase the
probability of locating a global optimum [4, 5, 8–14, 26, 27].
In the context of the GA, a population is generated at
random, initially. An individual (chromosome) in a pop-
ulation is composed by a set of calibration parameter values
(genes) that represent a viable solution. Table 1 provides an
example of an individual or chromosome used in this study.
(e parameters to be calibrated are organized into an array
where specific positions are associated with certain links.(e
quality of the resulting solution is evaluated by a fitness or
objective function, as in equation (1). GA creates successive
generations of individuals, and the best individuals are
stored to create a new population. (e implemented GA
expands the one proposed by Paz et al. [3] to address
constraints (2)–(7) to enable section of links and calibration
parameters. Figure 1 provides a flowchart of the GA solution
algorithm.

Algorithmic steps are as follows:

Step 1—initialization: an initial population of θs is
randomly generated but constrained to lower and
upper bounds in order to maintain model realism.
Step 2—parents’ selection: the best 60% of θs from the
initial population are saved. (en, sets of θ are gen-
erated that represent parents in the population and are
paired using a ‘roulette wheel selection.’
Step 3—crossover: a crossover is performed at 50%.
(is process combines parent θs in order to generate
new sets of calibration parameters (i.e., offspring).
Step 4—mutation: approximately 30% of the parame-
ters of each offspring are subjected to small pertur-
bations (±1%) in order to research neighboring
solutions.
Step 5—population management strategy: the new
offspring θ replaces the worst θs when new θ provides a
better fitness than older θs.
Step 6—stopping criteria: if the stopping criterion is
met, best θ is returned, and the algorithm ends.

Otherwise, it returns to Step 2.(e stopping criterion is
met by reaching convergence or a prespecified maxi-
mum number of generations/iterations. Convergence is
researched when the calibration criteria listed above are
met.

3. Experiments and Results

(e proposed methodology and solution algorithm were
tested using CORSIM models. CORSIM includes driver-
behavior and vehicle performance parameters. Table 2 lists
various calibration parameters in CORSIM [3]. Two
CORSIM models are used in the experiments and are il-
lustrated in Figure 2. Both models included arterial roads
with signalized intersections. For signal-controlled inter-
sections, one of the important parameters was the discharge
headway of individual vehicles [2, 28]. (e Reno network
(Figure 2(a)) represents the Pyramid Highway in Reno,
Nevada, and consists of 126 arterial links. Calibration field
data were available for 45 of these links.

(e local parameters included the mean queue discharge
headway and the mean value of start-up lost time.(e global
parameters included lane change, acceptable gap in near-
side cross-traffic for vehicles at a sign, additional time for far-
side cross-traffic in the acceptable gap for vehicles at a sign,
and the driver’s familiarity with path distributions. (e
McTrans model (Figure 2(b)), provided by McTransTM,
consisted of 20 arterial links.(is is a well-knownmodel of a
synthetic network used only for demonstration and analysis
purposes. (e default parameters in the McTrans model
were considered as calibrated conditions, and the outputs
from this model were used as field data for the experiments.
Model parameters were randomly modified to represent an
uncalibrated model. (e local parameters included mean
queue discharge headway and mean start-up lost time.
Global parameters included the driver’s familiarity with path
distributions and included the percentage of drivers who
knew only one turn movement as well as the percentage of
drivers who knew two turn movements.

3.1. Experimental Setup. (e proposed solution algorithm
was implemented using Java™, which is capable of handling
complex data structures and mathematical functions. As
noted by Paz et al. [3], the implementation used a basic
layered architecture, with each layer handling a group of
related functions. Volume and speed data were used for the
calibration. (e CORSIM models were run for a simulation
time period of 15min. (e first set of experiments incor-
porated a selection of links in the network, and the second
set of experiments incorporated the simultaneous selection
of links and parameters.

3.2. First Set of Experiments: Selection of Links in the Network.
In the first set of experiments, links were selected for cali-
bration randomly. All global and local parameters for the
selected links were considered simultaneously for
calibration.
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When 70% of links were randomly selected, both models
were calibrated successfully. Figure 3 shows how the ob-
jective function converged when 70% of the links were
selected for calibration. (e normalized root mean square
(NRMS) showed improvement over the iterations of the
calibration process. For the Reno network, the initial value of
NRMS was 0.22; after 845 iterations, the NRMS decreased to
0.08. For the McTrans model, the initial value of NRMS was
0.29; after 370 iterations, the NRMS decreased to 0.06.

Figure 4 compares vehicle counts before and after cal-
ibration. Before calibration, there was a significant difference
between the actual and the simulated counts. After cali-
bration, the gap between the actual and simulated counts
was reduced, as illustrated by their alignment along the 45°
line in Figure 4.

Figure 5 shows the vehicle speeds before and after cal-
ibration. For the Reno network, the speed data are scattered
away from the 45° line more than the volume data. (is is a
consequence of a higher weight assigned in the objective

function to volume than speed. Volume data correspond to
vehicle counts, while speed is a spot mean measure which is
not representative of the actual speed for the entire link.

Figure 6 shows the GEH statistic for the models before
and after calibration. For the Reno network, the initial GEH
value was less than 5 for 46% of the selected links. After
calibration, the GEH value was less than 5 for 93% of the
selected links. For the McTrans model, the initial GEH value
was less than 5 for 55% of the selected links. After cali-
bration, the GEH value was less than 5 for 100% of the links.

Table 3 outlines the percentage of selected links and the
corresponding calibration results when all the parameters
were selected simultaneously for calibration. Both models
were calibrated successfully when at least 60% of the links
were selected. For illustration purposes, Appendix provides
the calibration parameters used in the first set of experiments
including upper and lower bounds as well as values before
and after calibration. All calibrated values are within the
accepted range.

Table 1: Example of an individual (chromosome) for calibration of traffic flow models.

Parameter Mean queue discharge
headway (sec)

Mean start-up lost time
(sec) (rough traffic (vehicles) Left-turning traffic

(vehicles)
Values 2.1 2.1 2.4 3.8 4.2 3.6 636 836 912 837 875 642
Link 1 2 3 1 2 3 1 2 3 1 2 3

Start

End

Yes

No

Step 1: initialization
generate initial population of θs randomly.

Step 2: parent's selection
evaluate sets of θ and save best 60%. select parent θs randomly.

Step 3: crossover
combine parent θs at 50% to generate new offspring θs.

Step 4: mutation
mutate 30% of parameters of each offspring θ.

Step 5: population management strategy
evaluate new offspring θ and replace older θ.

Step 6: stopping criteria
convergence or max number

of generations reached?

Figure 1: Flowchart illustrating the proposed solution algorithm.
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3.3. SecondSet ofExperiments: Simultaneous Selectionof Links
and Parameters. In the second set of experiments, links and
associated parameters were selected simultaneously. (ese
experiments were conducted using different combinations
of parameters.

3.3.1. First Combination. (e local parameters were selected
for every link, and the global parameters were set as the
default. Table 4 shows the selected percentage of links and
the corresponding results when only the local parameters
were selected for calibration. (e Reno network was cali-
brated successfully when at least 70% of links were selected
for calibration. (e McTrans model was successfully cali-
brated when at least 50% of links were selected for
calibration.

3.3.2. Second Combination. (e mean queue discharge
headway was selected as the only local parameter for cali-
bration, and all the global parameters were considered.
Table 5 provides the results when the mean queue discharge
headway and all the global parameters were selected for
calibration. Both models were calibrated successfully when
at least 60% of the links were selected for calibration.

3.3.3. ?ird Combination. Mean queue discharge headway
and mean start-up lost time were selected as mutually ex-
clusive; meanwhile, all the global parameters were consid-
ered for calibration. Table 6 provides the results from using
various percentages of the mean queue discharge headway
and mean start-up lost time when all global parameters were
considered for calibration of the CORSIMmodels.(e Reno

Table 2: Calibration parameter in CORSIM models [3].

Driver behavior Vehicle performance Demand patterns
NETSIM model (surface streets)
Queue discharge headway Speed and acceleration characteristics Surface street turn

movementsStart-up lost time
Distribution of free-flow speed by driver type Fleet distribution and passenger

occupancyMean duration of parking maneuvers
Lane-change parameters
Maximum left- and right-turning speeds
Probability of joining spillback
Probability of left-turn jumpers and lagers
Gap acceptance at stop signs
Gap acceptance for left and right turns
Pedestrian delays
Driver familiarity with their path

FRESIM model (freeways)
Mean start-up delay at ramp meters Speed and acceleration characteristics Freeway turn movementsDistribution of free-flow speed by driver type
Incident rubbernecking factor Fleet distribution and passenger

occupancyCar-following sensitivity factor
Lane change gap acceptance parameters

Maximum deceleration valuesParameters that affect the number of discretionary lane
changes

(a) (b)

Figure 2: CORSIM models used in the experiments: (a) Reno network (Pyramid Highway); (b) McTrans model.
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network was calibrated successfully when the mean queue
discharge headway was selected for at least 80% of links; the
mean start-up lost time was selected for the remaining 20%
of the links. (e McTrans model was calibrated successfully
when the mean queue discharge headway was selected for at
least 90% of links, and mean start-up lost time was selected
for the remaining 10% of links.

3.4. Sensitivity Analysis. Sensitivity analyses were con-
ducted to observe the effects on NRMS on various per-
centage of links and several combinations of parameters
selected for calibration. (e results are illustrated in
Figures 7 and 8. Figure 7 shows the effects on NRMS due
to various percentages of links selected for calibration. In
Figure 8,
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Figure 4: Vehicle counts before and after calibration for the (a) Reno model and (b) McTrans model.
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Figure 5: Speeds before and after calibration for the (a) Reno network and (b) McTrans model.
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Figure 6: GEH statistic before and after calibration for the (a) Reno network and (b) McTrans model.

Table 3: Calibration results when all parameters were selected simultaneously.

Percentage of links
selected for calibration NRMS

Individual link flows Relative difference between total
actual and simulated counts

GEH statistic for
individual link flows<700 veh/hr 700 to 2700 veh/hr >2700 veh/hr

For the Reno network
100 0.0751 100 100 N/A 1.20 <5 for 100%
90 0.0966 100 100 N/A 4.50 <5 for 97%
80 0.0845 100 100 N/A 3.30 <5 for 100%
70 0.0862 100 100 N/A 4.20 <5 for 93%
60 0.0919 100 100 N/A 4.50 <5 for 100%
50 0.1068 88.90 100 N/A 6.90 <5 for 93%
40 0.1119 100 100 N/A 7.30 <5 for 88%
30 0.1285 90 88.60 N/A 10.20 <5 for 73%
20 0.1555 90 57.10 N/A 13.70 <5 for 57%

For the McTrans model
100 0.0305 100 100 N/A 0.30 <5 for 100%
90 0.0463 100 100 N/A 0.20 <5 for 100%
80 0.0317 100 100 N/A 0.40 <5 for 100%
70 0.0697 100 100 N/A 0.50 <5 for 100%
60 0.1366 89 100 N/A 2.60 <5 for 95%
50 0.1835 72 100 N/A 5.00 <5 for 85%
40 0.1980 78 100 N/A 9.60 <5 for 80%

Table 4: Calibration results when only local parameters were selected.

Percentage of links
selected for calibration NRMS

Individual link flows Relative difference between total
actual and simulated counts

GEH statistic for
individual link flows<700 veh/hr 700 to 2700 veh/hr >2700 veh/hr

For the Reno network
100 0.0884 100 100 N/A 4.00 <5 for 100%
90 0.0860 100 100 N/A 3.20 <5 for 100%
80 0.0873 100 100 N/A 3.10 <5 for 100%
70 0.0946 100 100 N/A 3.40 <5 for 95%
60 0.1369 100 71.4 N/A 11 <5 for 64%

For the McTrans model
100 0.0480 100 100 N/A 0.60 <5 for 100%
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Table 4: Continued.

Percentage of links
selected for calibration NRMS

Individual link flows Relative difference between total
actual and simulated counts

GEH statistic for
individual link flows<700 veh/hr 700 to 2700 veh/hr >2700 veh/hr

90 0.0421 100 100 N/A 0.40 <5 for 100%
80 0.1249 89 100 N/A 3.60 <5 for 100%
70 0.0924 94.40 100 N/A 1.40 <5 for 100%
60 0.0974 100 100 N/A 2.70 <5 for 100%
50 0.0959 94.40 100 N/A 3 <5 for 100%
40 0.1367 88.20 66.70 N/A 2.70 <5 for 90%

Table 5: Calibration results when all global parameters and mean queue discharge headway were selected.

Percentage of links
selected for calibration NRMS

Individual link flows Relative difference between total
actual and simulated counts

GEH statistic for
individual link flows<700 veh/hr 700 to 2700 veh/hr >2700 veh/hr

For the Reno network
100 0.0872 100 100 N/A 2.7 <5 for 100%
90 0.0970 100 100 N/A 5.2 <5 for 93%
80 0.0976 100 100 N/A 4 <5 for 97%
70 0.0897 100 100 N/A 3.9 <5 for 100%
60 0.0916 100 100 N/A 5 <5 for 100%
50 0.1037 100 100 N/A 5.9 <5 for 93%

For the McTrans model
100 0.0860 94.1 100 N/A 1.3 <5 for 95%
90 0.0588 100 100 N/A 0.6 <5 for 100%
80 0.0980 94.4 100 N/A 0.9 <5 for 95%
70 0.1279 88.9 100 N/A 2.2 <5 for 95%
60 0.1257 94.1 100 N/A 2.7 <5 for 95%
50 0.1737 77.8 100 N/A 5.5 <5 for 80%

Table 6: Calibration results when selection of the mean queue discharge headway and mean start-up lost time was mutually exclusive.

Percentage of links
selected with mean
queue discharge
headway

Percentage of links
selected with mean
start-up lost time

NRMS

Individual link flows Relative difference
between total actual
and simulated counts

(%)

GEH statistic for
individual link

flows
<700 veh/
hr (%)

700 to
2700 veh/hr

(%)

>2700 veh/
hr

For the Reno network
90 10 0.0909 100 100 N/A 4.2 <5 for 97%
80 20 0.0930 100 100 N/A 4.7 <5 for 100%
70 30 0.0947 100 100 N/A 5.4 <5 for 97%

For the McTrans network
90 10 0.0679 94.1 100.00 N/A 0.7 <5 for 100%
80 20 0.1827 72.2 100.00 N/A 8.2 <5 for 80%
70 30 0.1746 82.4 66.7 N/A 6.2 <5 for 80%
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Figure 7: Effect on NRMS of various percentages of link selection for calibration. (a) Reno network. (b) McTrans network.
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Figure 8: Effect on NRMS of various sets of parameters for calibration. (a) Reno network. (b) McTrans network.

Table 7: Calibration parameters in the first experiment using the Reno network.

SN Model Parameter Lower
bound

Upper
bound Units Links

Value
before

calibration

Value after
calibration

1 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1–26 38 41
2 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 1-41 36 42
3 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-38 40 42
4 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-27 38 38
5 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-33 36 48
6 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-35 38 85
7 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-42 38 30
8 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-48 38 75
9 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-19 38 48
10 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-21 40 81
11 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-25 36 38
12 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 10-31 40 56
13 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-39 36 89
14 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-40 38 34
15 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-43 36 40
16 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-44 40 42
17 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-47 40 48
18 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-49 26 48
19 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-51 28 61
20 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-45 28 26
21 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-10 28 48
22 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-3 26 36
23 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 11-12 30 44
24 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-11 30 32
25 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 5-6 26 50
26 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 12-13 23 21
27 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-12 30 22
28 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 6-5 30 30
29 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 13-14 30 38
30 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 14-15 48 90
31 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 15-14 48 18
32 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 3-4 45 15
33 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 51-16 38 28
34 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-1 34 38
35 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-2 34 38
36 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 43-14 30 34
37 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 21-8 38 28
38 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 22-1 34 24
39 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 23-8 34 19
40 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 44-14 38 90
41 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 24-9 30 34
42 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 52-5 38 38
43 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 26-1 30 57
44 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-9 30 67
45 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 30-10 28 70
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Table 7: Continued.

SN Model Parameter Lower
bound

Upper
bound Units Links

Value
before

calibration

Value after
calibration

46 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 33-4 26 20
47 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-15 30 74
48 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 35-4 30 26
49 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-16 28 30
50 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 49-16 28 32
51 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-7 26 26
52 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 40-13 20 14
53 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 41-1 28 14
54 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 55-8 30 22
55 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 27-3 36 38
56 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 4-52 36 38
57 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 31-10 38 74
58 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 17-20 38 32
59 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 2-20 36 96
60 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 34-11 38 89
61 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 28-54 40 87
62 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 16-54 36 22
63 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 7-55 40 48
64 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 38-2 36 24
65 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-55 36 59
66 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 25-9 50 50
67 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8018-18 40 42
68 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8021-21 50 46
69 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8023-23 44 40
70 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8024-24 48 50
71 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8027-27 46 36
72 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8031-31 48 45
73 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8033-33 44 50
74 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8035-35 50 87
75 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8038-38 48 23
76 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8039-39 49 51
77 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8040-40 40 92
78 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8041-41 50 21
79 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8043-43 48 46
80 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8045-45 18 14
81 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8046-46 26 34
82 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8048-48 26 76
83 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8050-50 26 93
84 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8051-51 40 38
85 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 20-17 40 24
86 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 54-28 48 52
87 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 9-8 48 18
88 NETSIM Mean queue discharge headway 14 99 Tenths of seconds 8-9 40 32
89 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-26 40 46
90 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 1-41 42 20
91 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-38 40 26
92 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-27 42 40
93 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-33 42 93
94 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-35 42 40
95 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-42 42 26
96 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-48 38 20
97 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-19 40 52
98 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-21 40 42
99 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-25 38 40
100 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 10-31 38 37
101 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-39 42 50
102 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-40 40 92
103 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-43 20 81
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Table 7: Continued.

SN Model Parameter Lower
bound

Upper
bound Units Links

Value
before

calibration

Value after
calibration

104 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-44 20 60
105 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-47 21 15
106 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-49 20 43
107 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-51 20 71
108 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 22-45 20 20
109 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-10 21 34
110 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-3 21 20
111 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 11-12 22 13
112 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-11 21 72
113 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 5-6 28 38
114 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 12-13 35 27
115 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-12 30 39
116 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 6-5 30 27
117 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 13-14 30 29
118 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 14-15 32 33
119 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 15-14 28 70
120 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 3-4 35 33
121 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 51-16 30 63
122 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 17-1 42 47
123 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-2 45 50
124 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 43-14 42 44
125 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 21-8 40 25
126 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 22-1 42 49
127 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 23-8 46 36
128 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 44-14 40 1
129 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 24-9 40 81
130 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 52-5 38 2
131 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 26-1 40 31
132 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 30-9 42 13
133 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 30-10 42 76
134 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 33-4 46 52
135 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-15 18 6
136 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 35-4 20 16
137 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 54-16 20 14
138 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 49-16 18 4
139 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 55-7 20 23
140 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 40-13 25 19
141 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 41-1 30 89
142 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 55-8 32 24
143 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 27-3 32 26
144 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 4-52 30 34
145 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 31-10 30 47
146 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 17-20 30 90
147 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 2-20 30 34
148 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 34-11 30 34
149 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 28-54 40 50
150 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 16-54 42 44
151 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 7-55 48 29
152 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 38-2 42 30
153 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-55 42 0
154 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 25-9 42 44
155 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8018-18 40 38
156 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8021-21 40 42
157 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8023-23 42 99
158 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8024-24 42 38
159 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8027-27 40 40
160 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8031-31 40 70
161 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8033-33 46 40

Journal of Advanced Transportation 13



Table 7: Continued.

SN Model Parameter Lower
bound

Upper
bound Units Links

Value
before

calibration

Value after
calibration

162 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8035-35 40 45
163 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8038-38 40 74
164 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8039-39 47 92
165 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8040-40 43 51
166 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8041-41 41 33
167 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8043-43 41 64
168 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8045-45 42 42
169 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8046-46 40 10
170 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8048-48 42 23
171 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8050-50 40 48
172 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8051-51 40 50
173 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 20-17 42 61
174 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 54-28 38 24
175 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 9-8 38 38
176 NETSIM Mean value of start-up lost time 0 99 Tenths of seconds 8-9 32 28
177 NETSIM Duration of a lane-change maneuver 1 8 Seconds 2 3

178 NETSIM Mean time for a driver to react to a sudden
deceleration of the lead vehicle 1 30 Tenths of seconds 5 7

179 NETSIM Minimum deceleration for lane-changing 1 10 Feet per second
square 3 3

180 NETSIM
Difference in the maximum and minimum
acceptable deceleration for a mandatory lane

change
5 15 Feet per second

square 7 15

181 NETSIM
Difference in the maximum and minimum
acceptable deceleration for a discretionary

lane change
5 15 Feet per second

square 5 5

182 NETSIM Deceleration rate of the lead vehicle 10 15 Feet per second
square 10 10

183 NETSIM Deceleration rate of the follower vehicle 10 15 Feet per second
square 10 11

184 NETSIM Driver-type factor used to compute driver
aggressiveness 15 50 N/A 20 39

185 NETSIM Urgency threshold 0 5 Tenths of a second
squared per foot 1 3

186 NETSIM Safety factor x 10 6 10 Tenths of units 6 8

187 NETSIM Percentage of drivers who cooperate with a
lane changer 10 100 Percentage 30 60

188 NETSIM Headway below which all drivers will attempt
to change lanes 1 30 Tenths of seconds 15 3

189 NETSIM Headway above which no drivers will
attempt to change lanes 30 100 Tenths of seconds 40 40

190 NETSIM Mean longitudinal distance over which
drivers decide to perform one lane change 50 2500 Feet 240 387

191 NETSIM Acceptable gap for driver type 1 15 75 Tenths of seconds 45 42
192 NETSIM Acceptable gap for driver type 2 15 75 Tenths of seconds 40 67
193 NETSIM Acceptable gap for driver type 3 15 75 Tenths of seconds 37 39
194 NETSIM Acceptable gap for driver type 4 15 75 Tenths of seconds 34 32
195 NETSIM Acceptable gap for driver type 5 15 75 Tenths of seconds 31 17
196 NETSIM Acceptable gap for driver type 6 15 75 Tenths of seconds 30 31
197 NETSIM Acceptable gap for driver type 7 15 75 Tenths of seconds 27 25
198 NETSIM Acceptable gap for driver type 8 15 75 Tenths of seconds 24 42
199 NETSIM Acceptable gap for driver type 9 15 75 Tenths of seconds 21 19
200 NETSIM Acceptable gap for driver type 10 15 75 Tenths of seconds 16 16
201 NETSIM Additional gap time for crossing 1 lane 10 75 Tenths of seconds 10 41
202 NETSIM Additional gap time for crossing 2 lanes 10 75 Tenths of seconds 19 19
203 NETSIM Additional gap time for crossing 3 lanes 10 75 Tenths of seconds 23 25
204 NETSIM Additional gap time for crossing 4 lanes 10 75 Tenths of seconds 28 31
205 NETSIM Additional gap time for crossing 5 lanes 10 75 Tenths of seconds 31 24
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Table 7: Continued.

SN Model Parameter Lower
bound

Upper
bound Units Links

Value
before

calibration

Value after
calibration

206 NETSIM Additional gap time for crossing 6 lanes 10 75 Tenths of seconds 35 69
207 NETSIM Additional gap time for crossing 7 lanes 10 75 Tenths of seconds 38 52
208 NETSIM Additional gap time for crossing 8 lanes 10 75 Tenths of seconds 41 61
209 NETSIM Additional gap time for crossing 9 lanes 10 75 Tenths of seconds 44 46
210 NETSIM Additional gap time for crossing 10 lanes 10 75 Tenths of seconds 46 47

211 NETSIM Percentage of drivers that know only one
turn movement 0 100 Percentages 5 22

212 NETSIM Percentage of drivers that know two turn
movements 0 100 Percentages 95 78

Table 8: Calibration parameters in the first experiment using the McTrans model.

SN Model Parameter Lower
bound

Upper
bound Units Links Value before

calibration Value after calibration

1 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 8001-9 58 37

2 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 1-9 58 68

3 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 1-4 58 99

4 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 4-1 58 14

5 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 3-1 58 73

6 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 1-2 58 80

7 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 2-1 58 38

8 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 7-2 68 45

9 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 8004-7 68 69

10 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 6-2 68 26

11 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 2-6 68 46

12 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 2-5 68 89

13 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 5-2 68 14

14 NETSIM Mean queue discharge headway 14 99 Tenths of
seconds 8006-5 68 72

15 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 8001-9 40 59

16 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 1-9 40 42

17 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 1-4 40 86

18 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 4-1 40 17

19 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 3-1 40 65

20 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 1-2 50 43

21 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 2-1 50 35

22 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 7-2 50 80
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(i) Set 1 includes all global and local parameters that
were selected simultaneously for 70% of the links

(ii) Set 2 includes global parameters set as default and all
local parameters selected for 70% of the links

(iii) Set 3 includes all global parameters and mean queue
discharge headway selected for 70% of the links

(iv) Set 4 includes all global parameters and mutually
exclusive mean queue discharge headway and mean
start-up lost time selected at 70% and 30% of the
links, respectively

As expected, the results show that most of the time, the
NRMS decreased with an increased percentage of selected
links for calibration. (e NRMS value changed for various
sets of parameters for the same percentage of links selected
for calibration. In both cases, similar values of NRMS be-
tween a calibrated and an uncalibrated condition did not
suggest that all calibration criteria were met.

4. Conclusion

(is study proposed a methodology that enables the se-
lection of any combination of facilities as well as local and
global parameters for the calibration of microsimulation
traffic flow models. A mathematical program and solution
algorithm were proposed to implement the methodology.
Results using two network models and various sensitivity
analyses showed that the proposed methodology was ef-
fective. (e models were calibrated successfully for volumes
and speeds, subject to the selection of a minimum number of
links for calibration. (e percentage of links selected for
calibration varied from a minimum percentage to 100%.
Similarly, various local parameters were selected for the
corresponding links. Multiple experiments were performed
by varying the selection of global and local calibration pa-
rameters. Unselected parameters were assigned default
values.

(e experiments were tested using CORSIM models.
However, the methodology was developed without taking

into consideration the characteristics of a specific traffic flow
simulation model. (at is, no information regarding the
methods used in CORSIM to propagate flow was used.
Future work could involve testing the proposed method-
ology using other traffic flow simulation models. Similarly,
the proposedmethodology might be able to provide superior
results by means of a multiobjective optimization approach
in contrast to the single-objective function used in this study
[20].

Appendix

Calibration Parameters

Tables 7 and 8 show the calibration parameters used in the
first set of experiments using CORSIM models.

Data Availability

(e McTrans model is available at https://mctrans.ce.ufl.
edu/mct/index.php/hcs/hcs-downloads/. (e Reno network
and corresponding data are proprietary and cannot be
provided by the authors. (e Nevada Department of
Transportation can provide access to the model and data.
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Table 8: Continued.

SN Model Parameter Lower
bound

Upper
bound Units Links Value before

calibration Value after calibration

23 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 8004-7 50 47

24 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 6-2 50 57

25 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 2-6 50 89

26 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 2-5 50 66

27 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 5-2 50 8

28 NETSIM Mean value of start-up lost time 0 99 Tenths of
seconds 8006-5 50 99

29 NETSIM Percentage of drivers that know
only one turn movement 0 100 Percentages 5 79

30 NETSIM Percentage of drivers that know
two turn movements 0 100 Percentages 95 21
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