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Air transportation direct share is the ratio of direct passengers to total passengers on a directional origin and destination (O&D)
pair. Direct share is an essential factor of passenger flow distribution and shows passengers’ general preference for direct flight
services on a certain O&D. A better understanding and a more accurate forecast of direct share can benefit air transportation
planners, airlines, and airports in multiple ways. In most of the previous research and applications, it is commonly assumed that
direct share is a fixed ratio, which contradicts the air transportation practice. In the Federal Aviation Administration (FAA)
Terminal Area Forecast (TAF), the O&D direct share is forecasted as a constant based on the latest observation of direct share on
the O&D. To find factors which have significant impacts onO&D direct share and to build an accurate model for O&D direct share
forecasting, both parametric and nonparametric machine learning models are investigated in this research. We propose a novel
category-based learning method which can provide better forecasting performance compared to employing the single modeling
method for O&D direct share forecasting. Based on the comparison, the developed category-based learning model is a promising
replacement for the model used for O&D direct share forecasting by the FAA TAF.

1. Introduction

In air transpiration, each trip is a connection between the
origin and destination airports.*e directional pair of origin
and destination airports is known as the O&D pair or O&D
market. For the same O&D pair, there are usually multiple
itineraries provided by different carriers, which include both
direct and nondirect itineraries. Passengers book different
itineraries based on their own traveling preference. *e
passengers flying directly from the origin airport to the
destination airport and the passengers taking one-connect
without flight change are direct passengers. *e passengers
taking one-connect with flight change and the passengers
taking multiple connects are nondirect passengers. Air
transportation direct share (directShare) is the ratio of direct
passengers to total passengers on a certain O&D pair.

Illustrated in Figure 1 is an example of direct and
nondirect passengers’ distribution on an O&D. On the O&D
pair, Charlotte Douglas International Airport (CLT)⟶
Phoenix Sky Harbor International Airport (PHX), the
passengers flying directly from CLT to PHX (n1) and the

passengers taking one-connect at Hartsfield–Jackson
Atlanta International Airport (ATL) without flight change
(n2) are direct passengers. *e passengers taking one-con-
nect at ATL with flight change (n3) and the passengers taking
multiple connects at Chicago O’Hare International Airport
(ORD) and Denver International Airport (DEN) (n4) are
nondirect passengers. For the sake of simply and clearly
describing the definition of direct share, we assume all the
existing itineraries on CLT⟶ PHX are included in Fig-
ure 1. *e directShareCLT⟶PHX can be computed by
equation (1), in which nD is the number of the direct pas-
sengers and nT is the number of the total passengers:

directShareCLT⟶PHX �
nD

nT

�
n1 + n2

n1 + n2 + n3 + n4
. (1)

O&D direct share shows the distribution of direct
passengers and nondirect passengers on an O&D market,
which is an essential factor of air transportation passenger
distribution. O&D direct share shows passengers’ general
preference for direct flight services under a certain market
status. A better understanding and a more accurate forecast
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of direct share can benefit air traffic planners, airlines, and
airports in multiple ways.

With the increasing need for the refined forecasting of
air passenger demand, air traveler itinerary demand fore-
casting becomes a research topic which receives much at-
tention from both academia and industry [1, 2]. One of the
major problems in this research is how to model passengers’
preferences between direct and nondirect flight services.
Direct share is a numeric indicator of the passengers’ general
preference for direct flight services on an O&D market [3].
In most previous research studies and applications, it
commonly assumes the direct share as a constant percentage
[4–6]. However, in air transportation practice, the as-
sumption of constant direct share is not hold. For instance,
with the increase in the low-cost carrier’s market share, the
direct share on Austin-Bergstrom International Airport
(AUS)⟶ Baltimore/Washington International *urgood
Marshall Airport (BWI) kept increasing from 1995 to 2005
before reaching a stable state. Another example is the direct
share on Ted Stevens Anchorage International Airport
(ANC)⟶ San Francisco International Airport (SFO).
Because of seasonal tourism at Alaska, there is a strong
seasonality in that direct flight market. *e average of
quarterly directShareANC⟶SFO is around 0.5 for the third
quarter in each year and 0.1 for the other three quarters. *e
assumption of constant O&D direct share neglects the dy-
namic changes in the O&D direct share and the fact that
other factors of the O&Dmarket can impact the O&D direct
share.*is research aims to carry out a careful analysis of the
characteristics of O&D direct share and find the factors
which can have significant impacts on O&D direct share.

Forecast of O&D direct share is a serious concern of air
traffic planners, airlines, and airports. An accurate forecast
of O&D direct share is of great significance for decision-
making on airport planning and investment, airline market
competition, and airport labor work scheduling. *e Federal
Aviation Administration (FAA) Terminal Area Forecast
(TAF) is the official FAA forecast for enplanements, airport
operations, terminal radar approach control (TRACON)
facilities operations, and based aircraft [7]. *ere is a wide
range of applications of the FAA TAF, such as the air traffic
controller workforce planning, airport long-term invest-
ment analysis [8], and airport environmental study [9].
O&D direct share forecasting is an essential component in
the FAA TAF, which helps FAAmaking decisions on airport
planning and investment. However, the model used for

direct share forecasting by the FAA TAF assumes O&D
direct share as a constant for forecasting. *is research aims
to develop a promising and reliable O&D direct share
forecasting replacement for the model used by FAA TAF.

2. Literature Review

*ere are seldom investigations about O&D direct share in
previous research and practice. To the best of our knowledge,
this is the first study focusing on O&D direct share analysis
and forecasting based on data mining and machine learning
techniques. *e air transportation itinerary demand fore-
casting is the most related research, which gave us inspi-
rations on database and model development.

*e research of itinerary demand forecasting focuses on
forecasting the passenger demand on different itineraries on
a certain O&D market. *e methods can be categorized into
top-down and bottom-up methods. *e top-down methods
are based on the forecast of total passenger demand on area
or O&D level. *e itinerary demand is generated by mul-
tiplying a fixed share to the total demand. *e fixed share is
usually the current share. *e bottom-up methods forecast
the itinerary passenger demand directly on the market level
[10, 11]. *e accuracy of top-down methods depends on the
assumption that the relevant airports’ market share stays
constant. Because of this reason, the ACRP report does not
recommend this approach [11]. *e most widely used
bottom-up method for itinerary demand forecasting is the
discrete choice model, which is based on the simulation of
passengers’ itinerary choice making [12–15]. *e discrete
choice models simulate the passengers’ booking behavior
based on the socioeconomic change (e.g., GDP, population,
and income per capita), O&D characteristics (e.g., number
of airlines, airport accessibility, and airport region), and air
travel service level (e.g., travel time and distance, average
airfare, and level of service). In the discrete choice models,
two kinds of data are usually employed: the revealed pref-
erence (RP) data and the stated preference (SP) data. RP data
are from historical air travel records, and SP data are from
passenger surveys. Bias usually exists in passenger surveys
because of the design of questionnaires and information
collecting methods. Important information for the survey,
such as personal information and experience, is difficult to
be selected or quantified [16]. *e RP data is a more reliable
and proper source for getting information about the his-
torical air transpiration market competition, airlines’ op-
eration, and passengers’ booking behaviors.

If employing bottom-up methods (e.g., discrete choice
model) for direct share forecasting, the passengers’ prefer-
encemodel has to be developed firstly to calculate the ratio of
direct passengers and total passengers. However, how to
measure themodeling accuracy of the passengers’ preference
is of great difficulty, especially when there are lots of itin-
eraries on that O&D. In addition to that, the accuracy of the
forecasting of direct share will depend on the accuracy of the
foresting of multiple variables, which makes the modeling
process more complicated and unreliable. Concerning the
mentioned issues, we develop forecasting model which di-
rectly forecasts O&D direct share on the O&D level, instead
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Figure 1: Illustration of the definition of O&D direct share.
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of on the passenger level. To fit a model that relates the
labeled numeric response to the features is a typical su-
pervised learning problem, more precisely a typical re-
gression problem. Machine learning models can
automatically extract knowledge about the relation of re-
sponse and features from data and can forecast the future of
the response [17, 18]. Based on whether there is a pre-
determined form of the model and whether there is a fixed
number of parameters, the regression models can be cate-
gorized into parametric and nonparametric regression
models [19, 20].

For parametric regression models, there is a pre-
determined formulation of the model, and the number of
parameters is predetermined as well. *e most widely used
parametric regression model is the linear regression [21].
Linear regression models the relation between the response
and the features in a linear manner, which makes the model
easily interpretable [22]. Because direct share is a continuous
random variable between 0 and 1, logit and logistic trans-
formations are necessary while applying linear regression
models to guarantee the modeling boundary [23]. Beta re-
gression is a parametric regression model specially devel-
oped for ratio and proportion modeling and forecasting.
Beta regression defines a regression model for beta-dis-
tributed random variables [24], for which the logit and
logistic transformations are no longer needed. Compared to
the parametric regression models, there is no predetermined
model formulation for the nonparametric regression
models. Nonparametric models allow a more flexible re-
gressionmodeling of the response that combines the features
in a nonparametric manner [25]. Tree-based models are
based on decision trees, which are widely employed in re-
gression problems. *e wide range of applications show the
promising prediction and forecasting performance of tree-
based models [26–29].

In this research, a database comprising representative
features for direct share modeling and forecasting is de-
veloped first. Parametric regression models are developed to
find features that impact O&D direct share significantly.
Nonparametric models are investigated to forecast O&D
direct share accurately. To further improve the forecasting
performance, a novel category-based learning method is
proposed in this paper. *e remainder of this paper is or-
ganized as follows. We introduce feature engineering and
data sets in Section 3. In Section 4, model development is
discussed in detail with analysis. *e newly proposed cat-
egory-based learning method is introduced in Section 5. *e
modeling and forecasting performance of different models is
compared and analyzed in Section 6. We draw conclusions
in Section 7.

3. Feature Engineering and Data Sets

3.1. Problem Formulation. Quarterly O&D direct share is
studied in this research. Denote direct share on the O&D
pair A⟶ B at quarter t(t ∈ T) as directShareA⟶B,t. *e
model for O&D direct share can be formulated as equation
(2). *e direct share on O&D pair A⟶ B is described by

the matching feature set XA⟶B,t. *e model f(X) is a
certain parametric or nonparametric regression model:

directShareA⟶B,t � f XA⟶B,t􏼐 􏼑. (2)

3.2. Features. Based on the literature review in Section 2, we
include three categories of features in this study. Table 1 lists
the features in each category.

*e features characterize different aspects of a certain
O&D market. Some features are commonly used in air
transportation demand and itinerary demand analysis and
forecasting. For example, ODPaxLag is the yearly lag of the
quarter passengers on an O&D, which can show the air
transpiration demand on an O&D [6]. CarrierNumLag is the
quarterly lag of the number of carriers on an O&D market,
which reflects the airlines’ competition on a certain O&D.
Another example is theMidPaxLag, which is the yearly lag of
connecting passengers at the most chosen connecting air-
port on a certain O&D. It shows the popularity of the most
chosen connect airport on an O&D market with connects.
Some features are uniquely defined in this research. For
instance, RelativeFare and RelativeMile are the relative av-
erage airfare and miles flown on an O&D, which are based
on equations (3) and (4), respectively. A relatively small
RelativeFare shows strong pricing competitiveness of the
nondirect flight services on a certain O&D. A relatively small
RelativeMile shows that direct flight services have a distinct
advantage of flying distance and time compared to the
nondirect flight services:

RelativeFare �
mean Airfaredirect( 􏼁

mean Airfarenon− direct( 􏼁
, (3)

RelativeMiles �
mean Milesdirect( 􏼁

mean Milesnon− direct( 􏼁
. (4)

*e weighted personal income (WeightedIncome) is a
feature that reveals the personal income level of the connect
airports. For an O&D pair, if there are n one-connect
itineraries, Paxj is the passengers choosing connect airport j,
and Incj is the personal income of the city where the connect
airport j is located.*eWeightedIncome can be computed by
the following equation:

WeightedIncome � 􏽘

n

j�1

Paxj

􏽐
n
j�1Paxj

Incj. (5)

Air carriers can be categorized into legacy carriers and
low-cost carriers. *e operation network of legacy carriers is
commonly hub-and-spoke, while the low-cost carriers prefer
point-to-point operations. *e level of service and airfare
vary for the two categories of carriers as well. We define
LegacyShare as the ratio of the passengers carried by legacy
carriers to the passengers carried by low-cost carriers as
equation (6). LegacyShare shows whether the O&Dmarket is
dominated by legacy carriers:
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LegacyShare �
􏽐 Paxcarried by legacy airlines

​

􏽐 Paxtotal
​ . (6)

3.3.Data. To develop the database for direct share modeling
and forecasting containing the features listed in Table 1, data
mining is carried out on the Airline Origin and Destination
Survey (DB1B) database, the Air Carrier Statistics (T100)
database, and the Global Insight Economic database. For
some features (directShareYLag, directShareQLag, and
LegacyShare), one single database is needed. For some other
features (SchDep, WeightedIncome, and IncomeOrg), the
combination of information from the different database is
needed.

*e DB1B database is a 10% sample of airline tickets
reported by carriers to the Bureau of Transportation Sta-
tistics (BTS) [30]. *ere are three tables in this quarterly
database: DB1BCoupon, DB1BMarket, and DB1BTicket.
DB1BMarket is the data table on the O&D market level,
which contains rich air travel information including market
airfare, distance flown, and passenger number. *e T100
data bank contains domestic and international airline
market and segment data [31]. T100 is a database built upon
the data reported by air carriers as well. T100 Domestic
Segment Data and T100 Domestic Market data by U.S.
Carriers are explored in this research. *e economic data-
base explored in this research is the IHS Global Insight
Economic database, which comprises rich economic in-
formation of a city or area [32]. *e personal income in-
formation is used in this research to generate the features of
IncomeOrg, IncomeDest, and WeightedIncome.

*e developed direct share database covers 3350 O&Ds,
which connecting 223 busiest airports across the U.S. [33].

To avoid the significant changes in air transportation in-
dustry by Post-9/11, the time scope of the developed
quarterly database is from 2008 to 2017. Shown in Table 2 is a
basic analysis of the important features, which include the
minimum, average, and maximum of the features generated
from the DB1B and T100 databases.

4. Model Development

For the parametric machine learning models, there is a
predetermined formulation, which makes the parametric
machine learning models easier to be interpreted. *e
parametric machine learning models can automatically
identify the significance of the features’ impacts on the
response based on the estimation of the coefficients. With a
more flexible modeling approach, the nonparametric ma-
chine learning models are powerful in predicting and
forecasting, especially for problems based on real-world
data. To fully exploit the interpretable and forecasting ca-
pabilities of different models, both parametric and non-
parametric machine learning models are investigated
carefully in this research. *e feature analysis is carried out
based on parametric models, while the accurate forecasting
models are developed based on nonparametric models.

*e entire database is randomly split into three data
sets. *e training set contains 60% of the observations,
which is used for model fitting. 20% of the observations are
employed for feature selection and parameter tuning as the
validation set.*e other 20% of observations are used as the
testing set for forecasting performance measurement. Logit
and logistic transformations are used in linear regression
modeling, as shown in Figure 2. Equations (7) and (8) are
the formulations of the logit and logistic transformations,
respectively:

Table 1: Feature category and features.

Feature Meaning
O&D feature category
directShareQLag Quarterly lag of directShare
directShareYLag Yearly lag of directShare
ODPaxLag Yearly lag of O&D quarterly total passenger
OrgPaxLag Yearly lag of quarterly departing passengers at the origin airport
DestPaxLag Yearly lag of quarterly arrival passengers at the destination airport
MidPaxLag Yearly lag of connecting passengers at the most chosen connecting airport on the O&D
ConnectOrgLag Quarterly lag of connections from the origin airport
ConnectDestLag Quarterly lag of connections to the destination airport
ConnectMidLag Quarterly lag of one-connect itineraries using the most chosen connect airport as the connect
SchDepLag Quarterly lag of scheduled departures on the O&D
CarrierNumLag Quarterly lag of number of carriers on the O&D
LegacyShareLag Quarterly lag of the ratio of passengers carried by legacy airlines on the O&D

Air travel feature category
AverageFareLag Quarterly lag of average airfare on the O&D
AverageMileLag Quarterly lag of average miles flown on the O&D
RelativeFareLag Quarterly lag of relative airfare on the O&D
RelativeMileLag Quarterly lag of relative miles flown on the O&D

Socioeconomic feature category
IncomeOrgLag Quarterly lag of personal income of origin city
IncomeDestLag Quarterly lag of personal income of the destination city
WeightedIncomeLag Quarterly lag of weighted personal income on the O&D
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y′ � log
y

1 − y
􏼠 􏼡, (7)

y �
ey′

1 + ey′
. (8)

4.1. Parametric Models. For parametric models, there is a
predetermined model formulation and the number of pa-
rameters is fixed. *e linear regression and the beta re-
gression are investigated carefully in this research.

4.1.1. Linear Regression. Linear regressions model the re-
lation between the response and the features in a linear
manner. Multiple linear regression (MLR) is the linear re-
gression model with multiple features. Denote yi as the ith
response and xij as the jth feature for yi, and theMLRmodel
can be formulated as equation (9), in which residual sum
square (RSS) is the measurement of fitting accuracy and βj

are coefficients. MLR can be easily fitted and interpreted, and
one typical approach to estimate the coefficients is the least
squares algorithm. *e root mean square error (RMSE) is
used to measure themodeling performance for different data
sets, which is formulated as equation (10):

RSS � 􏽘
n

i�1
yi − β0 − 􏽘

p

j�1
β2jxij

⎛⎝ ⎞⎠

2

, (9)

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

. (10)

*ere are 19 features in the developed MLR model. *e
training and testing RMSE are 0.1294 and 0.1292, respec-
tively. Figure 3 shows the relative importance of the features
based on the standardized coefficient magnitudes, based on
which the directShareQLag is the most important features
for O&D direct share modeling based on multiple linear

regression. It shows that the O&D direct share is highly
related to its quarterly lag.

MLR models generally suffer from variable redundancy.
*e redundant variables can introduce unnecessary model
complexity and poorer forecasting performance in the MLR
model. Feature selection methods, such as step-wise selec-
tion, are widely used to eliminate redundant features [34].
Forward and backward feature selection methods are the
most widely used step-wise feature selection methods. For
forward feature selection, starting from an empty feature set,
the features are added into the feature set sequentially based
on a certain model performance criterion. *e validation
RMSE is used as the feature selection criterion in this re-
search to balance model prediction performance and to
avoid over-fitting issue. For backward selection, starting
with a full feature set, the features are eliminated from the
feature set sequentially based on the validation RMSE.
Shown in Figure 4 are the feature selection processes based
on forward and backward feature selections for the MLR
model.

Based on the selection curves shown in Figure 4, there
are eight features selected for the MLR model by forward
feature selection. By backward feature selection, there are
nine features retained in the developed MLR model. *e
MLR models developed with the two feature selection
methods provide equivalent fitting and forecasting perfor-
mance, for which the training RMSE is 0.1264 and the testing
RMSE is 0.1262.

MLR models with fewer features are shown providing
better fitting and forecasting performance compared to the
model with more features. Shown in Figure 5 are the feature
importance plots of the two MLR models developed with
forward and backward feature selections.
directShareQLag, directShareYLag, RelativeFareLag,
DestPaxLag, and OrgPaxLag are important features that
have positive impacts on O&D direct share. Meanwhile,
LegacyShareLag has a negative impact on the O&D direct
share. *e directShareQLag and directShareYLag are two
of the most important features in the developed models,
which show that the O&D direct share is highly related to the
historical status of direct share on a certain O&D. *e
positive impact of RelativeFareLag shows that the pas-
sengers prefer direct flight services if the fare difference
between direct and nondirect flight services is not signifi-
cant, which is reasonable. *e negative impact of
LegacyShareLag indicates that, for O&Dmarket dominated
by legacy carriers, the direct share tends to be lower, which
tallies with the operation characteristics of legacy carriers.

4.1.2. Beta Regression. A regression model for the beta-
distributed random variable is defined in beta regression.
Beta regression is a parametric machine learning model
specifically applicable for modeling and forecasting ratio and
proportion [24, 35]. Shown as equation (11) is the model of
beta regression, in which xti is the ith feature of the tth
observation and βi is the correlated coefficient of the ith
feature. μt is a function of yt and g(·), which is known as the

Table 2: Basic analysis of important feature.

Feature (unit) Minimum Maximum Average
directShareQLag (ratio) 0 1 0.5832
directShareYLag (ratio) 0 1 0.5743
ODPaxLag (person-time) 1 21436 1582
OrgPaxLag (person-time) 216 575652 141565
DestPaxLag (person-time) 211 574131 140844
MidPaxLag (person-time) 5 610771 230743
ConnectOrgLag (count) 11 217 200
ConnectDestLag (count) 10 217 200
ConnectMidLag (count) 4 16101 7322
SchDepLag (count) 1 3300 235
CarrierNumLag (count) 1 13 2
LegacyShareLag (ratio) 0 1 0.2327
AverageFareLag (USD) 60 13033 229
AverageMileLag (miles) 116 5219 1199
RelativeFareLag (ratio) 0 74 0.9864
RelativeMileLag (ratio) 0 2.4690 0.8180
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link function. Shown as equation (12) is the logit link
function employed in this research:

g μt( 􏼁 � 􏽘
k

i�1
xtiβi, (11)

g(μ) � log
μ

1 − μ
􏼢 􏼣. (12)

*ere is a feature selection problem for beta regression as
well. *e forward feature selection method is employed to
search for the best feature set for the beta regression model.
Shown in Figure 6(a) is the forward feature selection process
for the beta regression. Seven features are selected for the
developed beta regression model. *e training and testing
RMSE are 0.0963 and 0.0968, respectively. Compared to the
MLR models, the beta regression model can provide better
fitting and forecasting performance. Shown in Figure 6(b) is
the variable importance of the developed beta regression

model. Because the relation between the response and the
features is modeled in a nonlinear manner in the beta re-
gression, in the variable importance plot, only the level of
relative variable importance can be shown. *e important
features in the beta regression model are very similar to the
important features in the MRLmodels, which shows that the
influential factors to O&D direct share are constant even for
different modeling methods.

Based on the parametric modeling results, features have
important impacts on O&D direct share including
directShareQLag, directShareYLag, RelativeFareLag,
LegacyShareLag, OrgPaxLag, and DestPaxLag.

(i) directShareQLag and directShareYLag are unique
attributes of a certain O&D market. *ey indicate
the air travelers’ general preference for the direct
flight service under a certain market scenario. *e
significant importance of the two features, especially
the directShareQLag, reveals that the O&D direct
share is not a factor that changes randomly. Pas-
sengers’ demand for direct flight services and the
supply by the air carriers determine the state of
direct flight market together. Direct share is highly
related to the direct flight market status, especially
the recent status.

(ii) *e positive impact of RelativeFareLag on O&D
direct share is consistent with intuition. If there is
no competitive pricing advantage of the nondirect
flight services, direct flight services are more pre-
ferred by the air travelers.

(iii) LegacyShareLag shows the market share of the
legacy carriers, which has a negative impact on the
O&D direct share. Since the legacy carriers prefer
the hub-to-spoke operation network, there is a
higher possibility of flight services with connects,
which can bring the O&D direct share to a lower
level.

(iv) OrgPaxLag and DestPaxLag are a pair of features
that show the passenger demand at the origin and
destination airport. In general, airlines prefer to
offer direct flight services on large hubs, which can
make the carriers competitive on those O&D
markets with large passenger demand.

Logit transformation

Modeling

Fitted/predicted/forecasted
transformed datasetLogistic transformation

Fitted/predicted/forecasted
dataset

Training/prediction/forecast
performance measurement

–∞ < directShare′A B,t < +∞0 < directShareA B,t < 1

Training/validation/testing
dataset Transformed dataset

0 < directShareA B,t < 1 –∞ < directShare′A B,t < +∞

Figure 2: Direct share modeling process with logit and logistic transformations.

directShareQLag
directShareYLag
RelativeMileLag
AverageMileLag

AverageFareLag
DestPaxLag
OrgPaxLag

ConnectMidLag

CarrierNumLag
MidPaxLag
ODPaxLag

IncomeDestLag
IncomeOrgLag

RelativeFareLag

LegacyShareLag

SchDepLag
WeightedIncomeLag

ConnectOrgLag
ConnectDestLag

Positive
Negative

0.5 1.0 1.5 2.00.0
Standardized coefficient magnitudes

Figure 3: Variable importance of the MLR model.
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4.2. Nonparametric Models. *ere is no predetermined form
of the underlying model for the nonparametric models.
Comparing to the parametric models, the nonparametric
models are more difficult to be interpreted, which is not
appliable for feature analysis. Nonparametric models can
provide better fitting and forecasting performance compared to
the parametric models, which is shown in various applications.
To develop an accurate model for direct share forecasting, tree-
based models are investigated in this research.

Tree-based models are a category of nonparametric
models based on decision trees. Decision trees involve
stratifying or segmenting the feature space into a number of
simple regions [36]. Tree-based models combine multiple
trees to yield a single consensus prediction, which can result
in significant improvement in prediction accuracy [18]. *e
tree-based models explored in this research are Random
Forest and Gradient Boosting Machine. For the nonpara-
metric models, the architecture of the model is determined

by the hyperparameters. For example, Ntrees is the hyper-
parameter that decides how many decision trees should be
grown in a tree-based model. For different nonparametric
models, the hyperparameters are different. Even for the same
nonparametric model, the optimal combination of hyper-
parameters may vary significantly for different data. *e
approach searching for the best combination of the
hyperparameters is hyperparameter tuning. In this research,
the Bayesian optimization method is introduced for
hyperparameter tuning.

4.2.1. Hyperparameter Tuning. *e most classic and
straightforward hyperparameter tuning method is the grid
searching method. All the hyperparameter combinations are
tried exhaustively, and the hyperparameters are selected
based on modeling performance metrics. With the increase
in the number of hyperparameters and the size of the tuning
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Figure 4: Forward and backward feature selection process.
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Figure 5: Variable importance of MLR models developed with forward and backward feature selections.
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grid, this exhaustive searching method suffers from com-
putational efficiency. An alternative method is random
searching, by which the combinations of hyperparameters
are selected randomly [37]. *e accuracy and efficiency of
random searching highly depend on the random sampling
strategy. *e foreknowledge about the impacts of hyper-
parameters on the modeling performance is necessary to
build an efficient random sampling strategy, which is dif-
ficult to obtain for most of the practical problems. *e same
issue exists for other optimization methods, such as gradient
descent searching.

*e Bayesian optimization (BO) is a more reliable and
practical alternative for hyperparameter tuning compared to
the other methods mentioned previously. *e most notable
advantage of BO lies in its capability of hyperparameter
optimizing for black-box functions [38]. *e model per-
formance is modeled as samples from a Gaussian process in
BO, which induces tractable posterior distribution. *e
information obtained at the current step enables optimal
choices of hyperparameters to try for the next step [39]. BO
is applied for hyperparameter tuning for the tree-based
models in this research. *e validation RMSE is used as the
tuning criterion.

4.2.2. Random Forecast. Random Forest is a tree-based
model combining multiple trees to yield a single consensus
prediction. When growing a decision tree in the Random
Forest model,m randomly picked features from the database
will be used at each split. Mtry is the hyperparameter in-
dicating the number of randomly picked features. Other two
hyperparameters are MaxDepth and Ntrees. MaxDepth
determines how deep each tree can grow. Ntrees is the
hyperparameter which indicates how many trees are grown
in a Random Forest model. If there are n trees grown in a
Random Forest model, the average of the n predictions will
be the prediction of the Random Forest model [40, 41]. To
develop the Random Forest model which can provide the
best performance, the three hyperparameters are tuned
together based on BO. Shown in Table 3 are the hyper-
parameter tuning result and the modeling performance of
the developed Random Forest model.

4.2.3. Gradient Boosting Machine. Gradient Boosting Ma-
chine (GBM) is another tree-based model explored in this
research. Instead of growing multiple trees and taking the
average of the prediction result, the GBM model takes ad-
vantage of the boosting method. Boosting is an ensemble
method, which generates the predictors sequentially instead of
independent. *e GBM model takes information about the
previously grown tree (mistakes or errors from previous
predictor) to grow a new tree [36]. *ere are three important
hyperparameters in a GBM model, which are LearningRate,
MaxDepth, and Ntrees.MaxDepth and Ntrees play the roles in
determining the architecture of a GBM model same as in the
Random Forest model. Hyperparameter LearningRate is a
value between 0 and 1, which indicates howmuch information
should be learned from the previous tree. LearningRate is
usually less than or equal to 0.1 [42]. *e hyperparameter
tuning result by BO and the modeling performance of the
developed GBM model are shown in Table 4.

*e nonparametric models can provide much better
fitting and forecasting performance compared to the para-
metric models, which makes them promising models for
O&D direct share forecasting.

5. Category-Based Learning

*e modeling work in Section 4 focuses on developing one
single direct share forecasting model which was based on the
data of all the O&D pairs, which was based on the as-
sumption that the direct share of different O&Ds is from the
same population. What if the direct share from different
O&D pairs are under different distributions?Will the overall
forecasting performance be improved if we employ different
models for different groups of data? To answer these
questions and further improve forecasting performance, a
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Figure 6: (a) Feature selection and (b) variable importance.

Table 3: Random Forest hyperparameter tuning and modeling
performance.

Hyperparameter tuning Training RMSE Testing RMSE
MaxDepth � 20

0.0378 0.0783Mtry � 4
Ntress � 400

8 Journal of Advanced Transportation



novel category-based (C-based) learning method is proposed
in this research.

*e essential idea is to split the database into different
categories and develop models for each category of data
individually. How to split the data efficiently into different
categories is the most important problem for category-based
learning. *e ideal categorization can categorize the data
generated from the similar underlying processes into the
same category andmake the difference between categories as
distinct as possible. Based on previous analysis,
directShareQLag and directShareYLag are the features that
have significant impacts on O&D direct share. However, for
different O&Ds, the influence may be different. For seasonal
and nonseasonal O&Ds, the impacts of directShareYLag

and directShareYLag on direct share are different. Based on
this fact, the data are categorized into two categories based
on the seasonality of the O&D.

*e learning process of the C-basedmodel is as shown in
Figure 7. Based on the seasonality of the O&D pair, the
training, validation, and testing data sets are split into six
subsets. *e training, validation, and testing subsets for each
category (seasonal and nonseasonal) are employed to de-
velop parametric and nonparametric models individually.
Based on the validation RMSE, the best model is selected for
each category. Instead of a single model, the result ofC-based
learning is a model set comprising the selected models for
each category. *e overall prediction performance, testing
RMSE, is measured on the testing subsets.

Based on the seasonality of the direct share time series on
each O&D, the 3350 O&Ds are split into seasonal O&Ds
(834) and nonseasonal O&Ds (2516). To make fair com-
parison with models developed in Section 4, the training,
validation, and testing data sets are kept the same. Because
the training, validation, and testing data sets were generated
randomly, after the categorization, the data proportion of
the three data sets is still 3 :1 : 1. *e details of the models
selected in the final model set are shown in Table 5.

*e two model selected for the two categories are both
GBM models. For the two developed GBM models, the
hyperparameters are slightly different. Figure 8 shows the
importance of directShareQLag and driectShareYLag in
the two selected GBM models. *e scaled relative influence
is computed by the improvement in squared error by the
selected feature [43]. Even though the architecture and
forecasting performance (testing RMSE) of the two models
are similar, there are significant distinctions of the two
models. For the seasonal O&D category, the
driectShareYLag plays a much more important role in the
developed GBM model compared to its counterpart in the
nonseasonal O&D category. In addition to it, the overall
forecasting performance is improved comparing to the
developed single GBM model. *e improvement is not that

significant because only a small proportion (24.90%) of
O&Ds are categorized apart from the original data sets.

6. Modeling Performance Comparison
and Forecasting

Both parametric and nonparametric models are explored in
this research for O&D direct share forecasting. To further
improve the overall forecasting performance, we proposed a
novel C-based learning model in this research. One of the
major objectives of this research is to develop a more ac-
curate and reliable direct share forecasting model which can
replace the model used by FAA TAF. We denote the model
employed for direct share forecasting by FAA TAF as
ModelTAF. *e O&D direct share is assumed as a constant
same as the most current observation in the ModelTAF.
Shown in Table 6 is the forecasting comparison of different
models based on the same testing data set.

Based on comparison in Table 6, even though the
parametric models can provide knowledge about the im-
portant features to O&D direct share from the historical
data, it failed to provide accurate forecasting of direct share
which can outperform the ModelTAF. *e nonparametric
models can provide the forecast of O&D direct share with
great accuracy improvement compared to the ModelTAF.
*e newly proposed C-based learning method can further
improve forecasting performance. *e improvement results
from categorizing the data into proper categories and de-
veloping the model independently for each category.

To validate the forecasting performance of each model
for application scenarios, the direct share forecasting for
2018 Q1 is generated by different models. Shown in Table 7 is
the performance comparison for forecasting 2018 Q1.

Based on the comparison in Table 7, when employing
different models to forecast direct share on the O&D level,
the nonparametric models and C-based models can out-
perform the ModelTAF model, which shows that the C-based
is a more reliable replacement of ModelTAF.

7. Conclusions

Air transportation direct share is the ratio of direct pas-
sengers to total passengers on a directional O&D pair. It is an
significant factor of air passenger distribution and indicates
the passengers’ general preference for direct flight services
under a certain direct flight services demand and supply
market status. A better understanding and a more accurate
forecast of O&D direct share can benefit air transportation
planners, airlines, and airports in multiple ways.

To find the factors which have significant impacts on
O&D direct share, parametric regression models are in-
vestigated with feature selection methods. Based on the
modeling results, O&D direct share is a predictable factor
that is highly related to direct flight services market status,
especially the recent status. How competitive the pricing
advantage of the nondirect flight services can have impacts
on O&D direct share. *e O&D markets dominated by low-
cost carriers tend to have relatively higher direct share. In

Table 4: GBM hyperparameter tuning and modeling performance.

Hyperparameter tuning Training RMSE Testing RMSE
MaxDepth � 10

0.0376 0.0780LearningRate � 0.03
Ntress � 600
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addition, the O&Ds connecting busy hubs tend to have a
higher share of direct flight services.

To develop an accurate model for direct share fore-
casting, nonparametric machine learning models are ex-
plored. *e Bayesian optimization method is employed for
hyperparameter tuning. Both the Random Forest model and
the GBM model can provide better forecasting performance
compared to the model used for direct share forecasting by
FAA TAF. When a single model developed, the GBMmodel
can outperform the Random Forecast model in this research.
To further improve forecasting performance, a novel cate-
gory-based learning method is proposed in this research.
Category-based learning method can provide better fore-
casting performance because of the efficient categorization
and the variety in the result model set. *e category-based

learning method is shown as a promising replacement of the
model used for O&D direct share forecasting by FAA TAF.

Data Availability

*e DB1B and T100 databases used to support the findings
of this study are available at Bureau of Transportation
Statistics. *e relevant database websites are cited in this
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Policy and Plans, Federal Aviation Administration under
license, and so cannot be made freely available.
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Figure 7: Category-based learning process.

Table 5: Category-based model performance.

Category Selected model Training RMSE Testing RMSE

Seasonal O&D category

GBM

0.0541 0.0781Maxdepth � 5
LearningRate � 0.07

Ntrees � 600

Nonseasonal O&D category

GBM

0.0423 0.0770Maxdepth � 10
Mtry � 0.06
Ntrees � 400

Over all 0.0772

directShareQLag
directShareYLag

0.5 1.0 1.50.0
Scaled relative influence

(a)

directShareQLag
directShareYLag

1.0 1.50.0 0.5
Scaled relative influence

(b)

Figure 8: Importance of directShareQLag and driectShareYLag in the two selected models: (a) variable importance of directShareQLag

and driectShareYLag in the GBMmodel for seasonal O&D category; (b) variable importance of directShareQLag and driectShareYLag in
the GBM model for nonseasonal O&D category.

Table 6: Model forecasting performance comparison.

Model category Model name Testing RMSE
Model used by FAA
TAF ModelTAF 0.0942

Parametric models
MLR (with feature

selection) 0.1262

Beta regression 0.0968

Nonparametric models Random Forest 0.0783
GBM 0.0780

C-based learning C-based 0.0772

Table 7: Model performance comparison for forecasting of 2018
Q1.

Model category Model name Testing RMSE
Model used by FAA TAF ModelTAF 0.0988

Nonparametric models Random forest 0.0865
GBM 0.0865

C-based learning C-based 0.0857
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