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Driving speed is one of the most critical indicators in safety evaluation and network monitoring in freight transportation. Speed
prediction model serves as the most e�cient method to obtain the data of driving speed. Current speed prediction models mostly
focus on operating speed, which is hard to reveal the overall condition of driving speed on the road section.Meanwhile, themodels
were mostly developed based on the regression method, which is inconsistent with natural driving process. Recurrent neural
network (RNN) is a distinctive type of deep learningmethod to capture the temporary dependency in behavioral research.�e aim
of this paper is to apply the deep learning method to predict the general condition of driving speed in consideration of the road
geometry and the temporal evolutions. 3Dmobile mapping was applied to obtain road geometry information with high precision,
and driving simulation experiment was then conducted with the help of the road geometry data. Driving speed was characterized
by the bimodal Gauss mixture model. RNN and its variants including long short-term memory (LSTM) and RNN and gated
recurrent units (GRUs) were utilized to predict speed distribution in a spatial-temporal dimension with KL divergence being the
loss function. �e result proved the applicability of the model in speed distribution prediction of freight vehicles, while LSTM
holds the best performance with the length of input sequence being 400m. �e result can be related to the threshold of drivers’
information processing on mountainous freeway. Multiple linear regression models were constructed to be a contrast with the
LSTM model, and the results showed that LSTM was superior to regression models in terms of the model accuracy and in-
terpretability of the driving process and the formation of vehicle speed.�is study may help to understand speed change behavior
of freight vehicles on mountainous freeways, while providing the feasible method for safety evaluation or network
e�ciency analysis.

1. Introduction

In the driving process of freight vehicles, driving speed is one
of the most important indicators in safety evaluation and
e�ciency analysis. Currently, the speed prediction model
plays an important role in obtaining the driving speed of
vehicles [1]. On mountainous freeways, the poor terrain
conditions allowed relatively unfavorable road geometry
design, and combined vertical and horizontal alignments are
not uncommon in mountainous freeways, which directly
produces many accident-prone road sections [2]. Mean-
while, freight vehicles are always the most critical elements
in the cause of accidents.�erefore, it is essential to study the
regularity of speed change behavior of freight vehicles.

On the selection of the variables in the input of the speed
prediction model, parameters are mostly related to environ-
mental conditions (e.g., road geometry, roadside vegetation,
guardrail, and delineator) [3, 4]. On mountainous freeways in
China, the unfavorable terrain condition allowed road align-
ment design with relatively lower standard. Combined vertical
and horizontal alignments are not uncommon.With a tradeo�
with acceptable cost, such alignments may force drivers to
handle high-speed gradients, which can produce higher crash
frequency [5–7]. Typical road alignment features include
horizontal and vertical curvature, curve length, guardrails,
roadside vegetation, and road delineator [8]. �e previous
studies agree that road geometry plays a dominant role af-
fecting operating speed under most circumstances.
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Considering the possible difference between two-di-
mensional road design method and three-dimensional road
scenario, speed prediction on three-dimensional freeway
alignment attracts the attention of some researchers in re-
cent years [9, 10]. In order to fully characterize the feature of
road geometry, objective characteristics of the road align-
ment and drivers’ subjective perception in a 3D real space
should both be considered [11, 12]. Driving speed serves as
the most representative variable due to a clear correlation
between drivers’ perception of the road and behavior change
[13–16]. Meanwhile, studies which adopted sight distance as
the input of the speed prediction model found that the index
is highly correlated to driver’s operating speed, as well as
driving safety [17–19].

On the selection of the output in the speed prediction
models, operating speed or other representative value of
speed was selected to be the predicted value of the model
[20–23]. In practice, drivers choose their driving speed
according to the road condition including road geometry,
roadside vegetation, guardrails, and traffic condition in the
environment. Design speed of the road does not necessarily
mean the actual driving speed. Operating speed, on the other
hand, is a statistical value of the speed dataset. *e value can
be representative under most circumstances, but the detailed
information of the whole speed dataset remains unrevealed.
Numerous studies have also supported the view that the
driving speed is subject to normal distribution or even
multimodal distributions, as regarding to road condition
and sample drivers. Some of the researchers tried to fit the
distribution of speed by multimodal Gaussian or Bayesian
distribution and reach favorable fitting performance
[24, 25].

On the selection of speed prediction models, regression
is the most frequently used method in driving behavior
prediction [26–30]. Various regression models such as linear
regression, log-linear regression, nonparametric multivari-
ate adaptive regression splines, and parametric logistic re-
gression have all shown their adaption in different practical
problems [4–6]. However, the majority of existing studies on
speed prediction modeling treat the input as static variables,
instead of considering speed changing process in time series.
Although a few studies took the geometric features of
previous and oncoming elements into consideration
[31–33], the models were not able to match the actual
driving process when negotiating with the complexity of the
road environment. Some researchers also conducted valu-
able comparative studies based on the classification of road
geometric features and road scenarios [12, 13], commonly
with a great fitting performance, but not able to mimic actual
driving process. For instance, for a cloud model based on
fuzzy neural logic system, the input time sequence data were
regarded as isolated variables, so the problem of correlations
between input sequences remains [15]. Currently, the study
on speed prediction model targeting freight vehicles is still
insufficient.

Recently, powerful deep learning methods have been
applied to the transportation studies. Recurrent neural
networks (RNNs), such as long-short termmemory (LSTM),
were developed based on bionics to capture long-term

temporary dependency [34, 35], which made them effective
in transportation studies [36]. Connections were created
among hidden layers to transmit information. *e appli-
cation of RNN and its variants in traffic flow prediction and
trajectory prediction also proved its advantages in pro-
cessing time series data in other fields [37, 38]. In driving
behavior field, LSTM had been applied to the prediction of
vehicle trajectory based on naturalistic driving data and
reached an accuracy of 96.83% in a 10 s prediction horizon
[39]. A study on vehicle speed estimation was conducted
based on in-vehicle accelerometer and gyroscope data. *e
study compared the robustness of LSTMmodel with various
layers and the absolute error reached 1.61 km/h [40]. *ere
also exist relevant studies such as identifying behavioral
change among drivers using LSTM [41, 42]. However, the
complex structure of LSTM usually took longer training
time. As a relatively newmodel which was first introduced in
2014, gated recurrent units (GRUs) are derived from LSTMs,
with the appearance of a simpler structure and a faster
training speed, and are more convenient to solve. So far,
GRUs have not been employed for operation speed pre-
diction. *e empirical study comparing GRU and LSTM
showed mixed results [43–46].

On the study on freight transportation, travel time,
break-taking behaviors, emission, etc., are the most popular
topics [47–49]. Some studies have taken the freight trans-
portation process as a consecutive sequence, and uncertainty
factors in the transportation process were taken into con-
sideration as well [50–52]. *ese current studies mainly
focus on the macroscopic scale; there are few research
studies on the microcosmic behavior of freight vehicles such
as speeding, accelerating and decelerating, speed change, etc.
Meanwhile, the microcosmic behavior is the ultimate cause
of the macrofeatures of freight transportation. Driving speed
is one of the most critical indicators in safety evaluation and
network monitoring in freight transportation. It is essential
to conduct relevant studies to explore the mechanism of the
microcosmic features of speed change behavior of freight
vehicles.

In summary, the speed prediction model connects the
complex road environment and driving speed. Road ge-
ometry is always the representative variable in road envi-
ronment, which holds the dominant place in speed
prediction.*e output of the predictionmodel varies around
driving speed, but the most appropriate way to characterize
driving speed is in the way of statistical distribution. On the
selection of prediction model, the continuity of driving
process should be taken into consideration, which means
that the model should allow the input variables to be se-
quence data, while holding the ability to handle consecutive
information at the same time.

*erefore, the objectives of this paper are summarized as
follows:

(1) Road geometry information should be obtained with
high precision to provide input variables for the
speed distribution model

(2) Deep learning network should be applied to predict
speed changes of freight vehicles in consideration of
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the spatial dependencies and temporal evolutions of
road geometry

(3) Driving speed should be obtained and characterized
in a way of statistical distribution

*is paper is organized as follows. In Section 2, 3D
mobile mapping is introduced as a method to obtain road
geometry information, driving simulation and the Gauss
mixture model are introduced, and RNN and its variants are
presented. In Section 3, an empirical study is presented
including driving simulation experiment and model training
and testing results. In Section 4, the results are presented and
analyzed. *e last part concludes remarks and scopes of
future studies.

2. Methodology

2.1. 3DMobile Mapping. In order to provide road geometry
data as the input variables of speed prediction model, in-
formation including road alignment condition, terrain
condition, and roadside vegetation are all needed with high
precision. 3D mobile mapping then becomes an ideal
solution.

*e proposed 3D mobile mapping system utilized in the
study was model TOPCON IP-S2, which combines 3 SICK
511 laser scanners, 1 high-precision GNSS antenna, 1 IMU
module, and a Ladybug panoramic camera. *e laser
scanners provide LiDAR point clouds and images of the road
environment with its sampling frequency being 75Hz. *e
resolution of GLONASS and GPS signal received by the
GNSS antenna provides the spatial coordinates of the point
cloud. *e IMU module guarantees the continuity of the
GNSS data. *e panoramic camera provides consecutive
panoramic picture of the road environment with its sam-
pling interval being 5m. Registration of panoramic pictures
and point clouds was made by the mainframe, giving RGB
information of the pixels to the points. *e facility and a
sample of true color point cloud are presented in Figure 1.

In order to obtain adequate information about road
geometry, road alignment 3D available sight distance was
selected as the main index. Road alignment information
includes curvature and curve length on horizontal, vertical,
and cross sections, respectively. Fitting of road alignment on
horizontal and vertical section information requires a series
of points or a multisegment line along the road for reference.
Considering that laser scanners could provide the reflection
intensity information of target points, landmarkings can be
easily distinguished from the point cloud by its higher re-
flection intensity. *erefore, landmarkings are selected to be
reference in the fitting of road alignment. Sampling step on
the landmarking was selected to be 5m to guarantee sample
density, as shown in Figure 2.

*e fitting of the horizontal and vertical alignment was
conducted in Civil 3D, as shown in Figure 3.

*e fitting result shows that the average bias with the
fitted alignment and the source multisegment line was no
more than 0.052m, which is acceptable in practice.

*e information of cross section includes cross section
width and cross slope. It is then essential to extract the points

on the road cross section in the massive point cloud. *e
point cloud consists of consecutive scanlines, which are
parallel to road cross sections. Meanwhile, the points on the
road are always the lowest points on altitude compared with
the surroundings. *erefore, traverse of the scanlines for the
consecutive lowest points on the road surface could provide
the road alignment information on the cross section. *e
extraction work was completed in Civil 3D, as shown in
Figure 4, where blue points are the points on road surface,
and the sampling interval was set to 5m.

*e width of the cross section could be measured easily
by the length of the road surface in the scanline. But the
calculation of cross slope needs the spatial attitude of the
road surface. Considering the high density of point cloud,
the points on a scanline are not strictly a line but a narrow
surface. *erefore, plane fitting was conducted by the least
square method, and the tangent vector KT

⇀
� (m, n, p) and

normal vector KN

⇀
� (A, B, C) of the plane could be cal-

culated. *e cross slope φ(0<φ< π/2) could then be cal-
culated by

sinφ �
|Am + Bn + Cp|

�����������
A2 + B2 + C2

√ �����������
m2 + n2 + p2

 . (1)

Available sight distance (ASD) refers to the longest distance
drivers can see on their normal height in their normal driving
process, which reflects the visual field supply of road geometry
condition. But the measurement of ASD is always challenging
since the value of ASD is affected by road alignment design,
roadside vegetation, terrain condition, etc. In order to measure
ASD accurately, observers and targets are needed to be set in
the real space of point cloud model. According to Chinese
Design Standard for Road Alignment, the height of target
obstacle was set to 0.1m. Considering the height of the target
four-axis freight vehicles, height of observers was set to 2.0m.
Observers and obstacle targets are placed every 5m along the
road. Spatial sight lines are then constructed between observers
and targets. *e works were completed in the Spatial Factory
software, as shown in Figure 5.

*e measurement of ASD was conducted based on the
actual road alignment. In order to detect collision between sight
lines and road infrastructure or roadside vegetation, “Rigid-
body” command in Spatial Factory was used to transform the
points in the point cloud to cubed rigid bodies with the side
length of 0.1mm so that collision can be detected. Traverse of
the sight lines was then conducted till collision. *e number of
the sight line was then recorded in Spatial Factory. *e mea-
surement of ASD could then be conducted by the “Measure-
ment” command in Spatial Factory as shown in Figure 6.

An example of 3D ASD measurement result is shown in
Figure 7. *e measuring method mentioned above was
applied to a 900m road segment in China, a horizontal curve
on a mountainous freeway.

2.2. Driving Simulation. Traditional methods in obtaining
driving behavior data include naturalistic driving experiment,
video surveillance, and driving simulation experiments. Nat-
uralistic driving experiment provides the opportunity to ob-
serve actual driving process. But the result is affected by the
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unexpected traffic condition, while the cost of the experiment is
higher than the other ones. Video surveillance provides large
quantity of data, but the continuity of the data sequence is
difficult to guarantee. Driving simulation experiment enables
participants to drive in a simulated environment with the help
of a driving simulator. Data of driving behavior are easy to
collect, and the variables in the road environment are easy to
control; the cost of the experiment is also relatively low. At the
same time, the simulated environment will be with high fidelity
with the help of 3D mobile mapping. *erefore, driving
simulation experiment was utilized to obtain driving behavior
data.

Firstly, the logical layer of the road environment model is
constructed in HintCAD with the road alignment infor-
mation extracted from 3D mobile mapping, as shown in
Figure 8.

*en, the model layer was built by 3ds Max and Google
Sketchup, and road infrastructures were imported together
into the driving simulation software OKTAL SCANER, as
shown in Figure 9.

Finally, scripting of data acquisition andmodel control was
completed in SCANER software. *e steering performance of
the vehicle was calibrated by the participants of the experiments
so as to ensure the driving experience to be consistent with the

(a) (b)

Figure 2: Extraction of landmarkings from point cloud.

(a) (b)

Figure 3: Fitting of horizontal and vertical alignment.
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Figure 1: 3D mobile mapping facility and true color point cloud.
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actual environment. In order to guarantee the driving behavior
data to be as continuous as possible, the sampling frequency
was set to 10Hz. Traffic flow was adjusted to 0 in the script to
guarantee the influence of road conditions on driving behavior
to be observed without disturbance.

2.3. SpeedDistributionModel. Numerous studies have found
that the distribution of driving speed is approximately

subject to normal distribution or lognormal distribution.
But it will be difficult for a single normal distribution to
describe the speed distribution with the existence of large
speed difference on a road section, while the speed difference
will be more significant in freight vehicles since the per-
formance of the vehicles varies from type to type. *e actual
distribution of driving speed might be bimodal or even
multimodal. *e Gaussian mixture model applies multiple
Gaussian probability density functions to quantify any
distribution with precision. *e probability density function
of GMM is described in the following formula:

f(x) � 
K

k�1
λk ∗

1
���
2π

√
σk

e
− x− μk( )

2/2σ2
k

( 
, (2)

Figure 5: Measurement of 3D ASD in point cloud.

(a) (b) (c)

Figure 4: Extraction of cross sections from point cloud.

Figure 6: Measurement of 3D ASD in point cloud.
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Figure 7: Measurement result of 3D ASD on a horizontal curve.

Figure 8: Logical layer of road environment.
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where K is the number of Gaussian distribution in GMM and
λk, μk, σk are the weight, mean value, and standard deviation
of the Kth distribution, respectively. *eoretically, when K
approaches infinite, the Gaussianmixture model can perfectly
describe any kind of statistical distribution. In order to de-
scribe the distribution of freight vehicle speed with precision,
avoiding the possibility of underfitting by any isolate distri-
bution form, the Gaussian mixture model (GMM) is utilized
to characterize the speed distribution of freight vehicles.

In practice, GMM with three or more normal distri-
bution may include one or more distributions with very
small weights, which may cause massive unnecessary cal-
culation in the fitting process. Generally, a bimodal GMM
can be qualified in the fitting of speed distribution with
considerable accuracy and limited variables to be deter-
mined. *e function of bimodal GMM can be written as

f(x) � λ1 ∗
1

���
2π

√
σ1

e
− x− μ1( )

2/2σ21( 

+ λ2
1

���
2π

√
σ2
∗ e

− x− μ2( )
2/2σ22( 

.

(3)

Considering that there are two distributions in bimodal
GMM, it is difficult to determine the ascription of the sample
points in the training dataset. Maximum likelihood estimation
will be no longer suitable to estimate the parameters in the
model.*erefore, EM (expectation-maximization) algorithm is
applied to fit the bimodal GMM.*e algorithmfirstly estimates
the ascription of sample points (E-step), and then iteration is
conducted based on the maximum of likelihood function (M-
step). *e conduction of E-step is shown in formula (4), where
k is set to 0 in the first step, μ1, μ2, σ1, σ2, and λ1 are initiated to
be random values, λ2 is a dependent variable in which
λ2 � 1 − λ1,N is the number of samples in the dataset, andm is
the number of distributions in GMM. In the fitting of bimodal
GMM, the value of m was set to 2.

P m xn

 , θk
  �

λm/σk
m( e − (1/2) xn− μk

m( )/σk
m( )

2( 


M
m�1 λm/σk

m( e − (1/2) xn− μk
m/σk

m( )( )
2( 

,

n � 1, 2, . . . , N,

m � 1, 2.

⎧⎪⎨

⎪⎩

(4)

*en, the conduction ofM-step is shown in the following
formulas:

λk+1
m �

1
N



N

n�1
P m xn

 , θk
 , (5)

μk+1
m �


N
n�1xnP m xn

 , θk
 

Nλk+1
m

, (6)

σk+1
m �


N
n�1P m xn

 , θk
  xn − μk+1

m



2

Nλk+1
m

⎛⎝ ⎞⎠

1/2

. (7)

*e iteration ends when the inequality in Formula (8)
holds. In order to avoid local optimum solutions, the so-
lution should also hold the inequality in formulas (8) and
(9). ελ, εμ, εσ , and εp are allowable error ranges of weight,
mean value, standard deviation, and maximum likelihood
function, and kmax is the maximum iteration number.
Generally, the error benchmark could be set to 1%, and
reasonable value of kmax could be 100.

λk+1
m − λk

m

�����

�����≤ ελ

μk+1
m − μk

m

�����

�����≤ εμ

σk+1
m − σk

m

�����

�����≤ εσ

or k> kmax,

(8)

logP(x | θ) � 
N

n�1
log 

M

m�1

λm���
2π

√
σm

e
− (1/2) xn− μm/σm( )( )

2( ⎡⎣ ⎤⎦≤ εp.

(9)

2.4. Deep Learning Methods. With the discussion of the
weakness of traditional regression model, RNN (recurrent
neural network) and its variants are ideal candidates with
their great capability in handling sequence input data. *e
basic structure of RNN is shown in Figure 10. *e output of
the former time step is set to be the input of the latter one,

Figure 9: Model layer of road environment.
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and information is transmitted between hidden layers in
time domain. Memory units were constructed based on the
transmission functions as shown in in formulas (10) and
(11).

ht � tanh Wxhxt + Whhht− 1 + bh( , (10)

tanh(x) �
ex − e− x

ex + e− x
. (11)

However, with the increase of the data scale, gradient
vanishing or explosion will become a common problem in
RNN and information may get lost. As a special variant of
RNN, long short-term memory (LSTM) improves RNN by
joining “input gate,” “output gate,” and “forget gate” into the
memory unit to promise the information transmission with
accuracy among the hidden layers. *e structure of the
memory cell is shown in Figure 11. *e transmission
functions among the gates are shown in formulas (12)–(18).

ft � sigmoid Wxfxt + Whfht− 1 + Wcfct− 1 + bf , (12)

it � sigmoid Wxixt + Whiht− 1 + Wcict− 1 + bi( , (13)

ct � tanh Wxixt + Whiht− 1 + bc( , (14)

ct � ft ⊗ ct− 1 + it ⊗ct, (15)

ot � sigmoid Wxoxt + Whoht− 1 + Wcoct + bo( , (16)

ht � ot ⊗ tanh ct( , (17)

sigmoid(x) �
1

1 + e− x
, (18)

where it is the status of input gate, which controls the in-
formation to update from the former memory unit, ft is the
status of forget gate, which controls the information to forget

from the former memory unit, and ot is the status of output
gate, which controls the information to transmit to the next
status.

*e delicate designed structure of LSTM could handle
the problem of gradient vanishing or explosion. But the
complex structure may also increase the burden of training.
And it will be easier for LSTM to be overfitting.

Another variant of RNN is GRU (gated recurrent unit).
*is kind of variant developed the structure of memory unit
by coupling the input gate and forget gate in LSTM into an
update gate. *e reset gate served as the output gate to
control the recurrent connections, as shown in Figure 12.
*e transmission functions among the gates are shown in
formulas (19)–(22).

rt � sigmoid Wxrxt + Whrht− 1 + br( , (19)

zt � sigmoid Wxzxt + Whzht− 1 + bz( , (20)

ht � tanh Wxhxt + rt ⊗Whhht− 1 + bh( , (21)

ht � zt ⊗ ht + 1 − zt( ⊗ ht− 1, (22)

where rt is the status of reset gate, which decides the in-
formation to update from the former memory unit, and zt is
the status of update gate, which controls the information to
transmit to the next status.

3. Empirical Analysis

3.1. Experimental Settings. Experiment was conducted on a
section of G15 freeway from Xinchang to Baihe in Zhejiang
Province, China. *e 30 km length test segment is 2-lane
mountainous freeway with a speed limit of 100 km/h, as
shown in Figure 13.

Firstly, 3D mobile mapping was applied on the road
section to obtain information of road geometry and 3DASD.

ht–1

ht–1

xt–1

ht–1

xt–1

ht–1

xt–1

tanh

xt

ht

htyt

Figure 10: Structure of RNN and the memory unit.
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Figure 12: Structure of the memory unit in GRU.

Figure 13: *e test road section.
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Figure 11: Structure of the memory unit in LSTM.
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Secondly, independent repeated driving simulation ex-
periments were designed to reflect the characteristic of the
driver group. In order to obtain enough sufficient training
data for the fitting of speed distribution on any road sections,
totally 40 freight vehicle drivers were recruited to take the
experiment. *e information of the participants is shown in
Table 1. Considering that there exist a certain number of
female drivers of freight vehicles in China, the sample group
contained 7 female participants to represent the real con-
dition of the driver group of freight vehicles. *e road
environmentmodel was built in SCANER based on the point
cloud model. *e vehicle type was set to be four-axis freight
vehicles.

Each participant was asked to drive through the road
section once (total of 40 independent repeated experiments).
*e participants were required to drive at a safe, reasonable,
and comfortable speed according to the road environment
on the SILAB driving simulator of Tongji University. Totally,
3000 groups of data were collected with 40 sample points of
driving speed in a group.

*irdly, bimodal GMM fitting was conducted in each
group of data. An example of bimodal GMM fitting of speed
distribution is shown in Figure 14.

As shown in Figure 14, the histogram represents the
statistical quantity of the observed driving speed. *e
probability density curve in solid line represents the fitted
bimodal GMM, while the two-dotted line represents the two
component distributions in the GMM.*e parameters of the
fitted bimodal GMM are shown in Table 2.

3.2. Construction and Training of Deep Learning Models.
Considering the stochastic characteristic of neural networks,
optimized structure does not necessarily mean better per-
formance. Tests are needed to verify the applicability of the
three mentioned models in the prediction of driving speed.
*e three models were constructed with the same structure
in Python, and the performance was then compared with the
same set of training dataset.

For the basic structure of the model, full-connected
model was selected to improve potential performance of the
model while avoiding limitations of artificial intervention.

For the input variables of the models, totally 7 variables
are selected to form the input vector, including road
alignment features and 3D ASD, as shown in Table 3.

For the output variables of the model, considering that
driving speed was described in term of bimodal GMM, the
output variables are set to be the parameters in the GMM, as
shown in Table 4.

Since λ2 � 1 − λ1, there is no need for λ2 to take an
additional spot in the output vector.

For the selection of numbers of nodes in the hidden
layer, there has not been universal method in determining
the certain number of nodes in NN. Generally, the number
of samples in the training dataset should be 2–10 times more
than the number of connection weights in the hidden layers.
Considering the number of nodes in the input layer and
output layers, it is appropriate to select the number of nodes
in the hidden layer to be 25.

For the selection of numbers of hidden layers, it has been
proved that more hidden layers could improve the accuracy
of the model, but the generalization ability would decrease at
the same time. Generally, the profit from increasing number
of nodes is larger than the profit from increasing number of
hidden layers. *erefore, the number of hidden layers is set
to 1 in this study.

For the selection of loss function, mean relative error
(MRE), mean square error (MSE), and mean absolute error
(MAE) are the representative ones to measure the accuracy
of NN models. However, the aim of the models applied in
this study is to predict an accurate distribution of speed.
Prediction accuracy of any isolated parameters in the GMM
will be less significant to reveal the performance of the
model. It will be more appropriate to measure the precision
of the predicted distribution by measuring its divergence
with the actual distribution. *erefore, Kullback–Leibler
divergence (KL divergence) was selected to be the loss
function considering its physical significance in distribution
comparison.*e loss function is shown in formulas (23) and
(24). *e value of the function represents the difference
between distribution P(x) and Q(x).

KL(P ‖ Q) �  P(x)log
P(x)

Q(x)
� EP(x)log

P(x)

Q(x)
, (23)

KL(P ‖ Q)� 0, P(x) � Q(x),

KL(P ‖ Q)> 0, P(x)≠Q(x).
 (24)

Since KL(P ‖ Q)≠KL(Q ‖ P), P(x) was set to be the
actual speed distribution and Q(x) was the predicted speed
distribution.

For the selection of length of input sequence, freight
vehicle drivers’ perception and memorization should be
taken into consideration. A short length of input sequence
may not be able to cover all the necessary information, while
longer length of input sequence may cause redundancy. It
has been proved that short time memory lasts for no longer
than 20 s. Assuming the driving speed to be 90 km/h on
mountainous freeway, drivers will remember the informa-
tion of former 500m road condition. In order to find out an
appropriate length of the input sequence, five different
lengths of input sequence including 100m, 200m, 300m,
400m, and 500m will be tested, respectively.

*e bias vectors and weight matrixes are initiated randomly
between (− 1, 1), and the optimization of the weight matrixes is
completed by backpropagation through time (BPTT).

According to the convention of the training of neural
networks, the proportions of the training set could be
60–90% considering the scale of the dataset [53]. Consid-
ering that there are totally 3000 groups of data in the dataset,
2700 groups of data were used for the training and estab-
lishment of the model, and the remaining 300 groups were
used to test the performance and validate the model.

4. Results

*e comparison of the three models with different lengths of
input sequence is shown in Table 5; the values in the table
refer to the average KL divergence between the predicted
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distribution and the actual distribution. An example of the
predicted distribution of LSTM with the length of input
sequence being 400m and the actual distribution is shown in
Figure 15. *e parameters of the actual distribution and the
predicted distribution are shown in Table 6.

It can be found that either type of network shows its
applicability in fitting the speed prediction model with the
minimum value of the loss function being no more than
0.32. *e best performance belongs to LSTM with the input
sequence of 400m with its KL divergence reaching 0.11. It is
also worth noticing that LSTM and GRU always out-
performed RNN in accuracy with the same length of input
sequence. It can be inferred that the additional gates in RNN
could partly solve the problem of time dependency. Among
those, LSTM holds the best performance all the time. *e
simplified structure of GRU resulted in its poorer
performance.

Besides, suppose that the driving speed to be 90 km/h, a
length of 400m means a memorization span of 16 s, which
means that drivers are able to remember the information of
road geometry for about 16 s on mountainous freeway. *e
result is highly correlated with the terrain condition on
mountainous freeways. *e character of road geometry is
likely to change in 400 in mountainous freeway, which is a
relatively large burden for the freight vehicle drivers to
take. So, it can be explained that drivers are likely to get
used to the oncoming road condition and forget the
previous information if there is a significant difference
between the adjacent sections. *e length of input se-
quence and the time span may change in different road
conditions.

In order to validate the proposed LSTMmodel, the study
applied multiple linear regression to make a comparative
study. Since there are five parameters in the bimodal GMM,

Table 2: Parameters in the bimodal GMM fitting example.

Distribution λ μ σ
1 0.73 89.97 5.60
2 0.27 101.62 4.20

Table 3: Classification and explanation of input variables.

Variables Explanation
Kh Horizontal curvature
Sh Horizontal curve length
Kv Vertical curvature
Sv Vertical curve length
Kc Cross slope
Sc Cross-section width
ASD 3D available sight distance

Table 4: Classification and explanation of output variables.

Variables Explanation
λ1 Weight of the 1st Gauss distribution
μ1 Mean value of the 1st Gauss distribution
μ2 Mean value of the 2nd Gauss distribution
σ1 Standard deviation of the 1st Gauss distribution
σ2 Standard deviation of the2nd Gauss distribution
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Figure 14: Example of bimodal GMM fitting result.

Table 1: Information of participants.

Gender Age Driving experience

Male: 33
Female: 7

Mean value: 34.4 Mean value: 7.3
SD: 2.9 SD: 2.2

Range: 31–47 Range: 4–11

Table 5: KL divergence of the deep learning models with different
lengths of input sequence.

Type of model
Length of the input sequence

100m 200m 300m 400m 500m
RNN 0.44 0.35 0.32 0.32 0.32
LSTM 0.25 0.18 0.12 0.11 0.11
GRU 0.34 0.27 0.25 0.25 0.25
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five multiple linear regression models were constructed to
predict the parameters, respectively. *e adjusted R2 values
of themodels are shown in Table 7. It can be easily concluded
that multiple linear regression is weaker in model accuracy
and interpretability than the LSTMmodel since the adjusted
R2 values of the models are all smaller than 0.3, which means
that it is difficult for themodel to predict the parameters with
precision. Meanwhile, the structure of the model is inferior
than LSTM in interpreting the driving process since the
isolated input variables fail to reflect the sequence charac-
teristics of the driving process.

However, the multiple linear regression could help to
understand the mechanism of the road environment af-
fecting vehicle speed. Taking the multiple linear regression
model predicting μ1 as an example, as shown in Table 8,
under the confidence level of 0.05, horizontal curvature,
horizontal curve length, and 3D available sight distance have
significant influence on one of the mean values of the GMM.
*e coefficient of the three variables can be interpreted as
follows: the increase of horizontal curvature, horizontal
curve length, and 3D available sight distance will lead to
higher speed, while horizontal curvature has a most sig-
nificant impact among the three variables.

5. Conclusion

Targeting the weakness of traditional speed prediction
models, this study applies several types of deep learning
methods based on RNN to predict speed distribution on
mountainous freeways. RNN, LSTM, and GRU were trained
and tested, respectively, based on a driving simulation
dataset. *e results suggest that

(1) It is reasonable to apply bimodal GMM to charac-
terize the distribution of speed of freight vehicle,
which improved the traditional method by using
single normal distribution or lognormal distribution.

(2) RNN, LSTM, and GRU all show their applicability in
speed prediction of freight vehicles in consideration
of road geometry. LSTM outperforms RNN and
GRU on most tasks, and GRU shows its slight ad-
vantage over RNN on this specific issue.

(3) *e length of input sequence has a significant impact
on training results of the models, which demon-
strates the necessity of the application of RNN and its
variants. Drivers of freight vehicles are proved to get
affected by the consecutive road condition in their
driving process. On mountainous freeway, drivers
are likely to update their memorization of road
condition with the threshold of 16 s, which is 400 in
driving distance. *e change of road geometry may
be themain reason for the time span.*e value of the

Predicted distribution and actual distribution
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Figure 15: An example of the predicted distribution and actual distribution.

Table 6: Parameters in the predicted distribution and the actual
distribution.

Variable
Parameters in the bimodal GMM

λ1 μ1 σ1 λ2 μ2 σ2
Actual 0.77 77.74 5.22 0.23 89.11 4.80
Predicted 0.75 78.03 5.19 0.25 88.54 4.69
KL divergence 0.12

Table 7: Adjusted R2 of the multiple linear regression models.

Predicted parameter Adjusted R2

λ1 0.182
μ1 0.272
μ2 0.153
σ1 0.208
σ2 0.135

Table 8: Coefficient table of the multiple linear regression model
predicting μ1.

Variables Standardized coefficients Sig.
Kh 0.375 0.011
Sh 0.158 0.009
Kv − 0.242 0.088
Sv 0.272 0.059
Kc − 0.249 0.093
Sc 0.110 0.686
ASD 0.144 0.020
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time span may change in different road conditions.
*is could also explain that mountainous freeway
always has accident-prone road sections with heavy
information load for freight vehicle drivers to take.

(4) *e accurate road geometry information provided by
3D mobile mapping may help to improve the reli-
ability of driving simulation study and the results of
the speed prediction model.

(5) LSTM is obviously superior to regression models in
terms of the model accuracy and interpretability of
the driving process and the formation of vehicle
speed. Further research on regression models could
be conducted targeting the mechanism of road en-
vironment affecting vehicle speed.

*e findings contribute to a better understand on freight
vehicle drivers’ driving behavior on mountainous freeways.
*e study also provided important insights into the road
geometry design and development of transportation safety
strategies.

In the future work, more elements in road environment
and driving behavior could be included into the model.
Effort could be put into freight vehicle drivers’ memorizing
mechanism of road environment, and analysis of the in-
formation load for drivers could also be made.
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