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With the increasing adoption of electric buses (e-buses), e-bus scheduling problem has become an essential part of transit
operation planning. As e-buses have a limited battery capacity, e-bus scheduling problem aims to assign vehicles to timetabled
service trips on the bus routes considering their charging demand. Affected by the dynamic operation environment, the travel time
and energy consumption of the e-buses often display considerable randomness, resulting in unexpected trip start delays and
battery energy shortages. In this paper, we addressed the e-bus scheduling problem under travel time uncertainty by robust
optimization approaches. We consider the cardinality constrained uncertainty set to formulate a robust multidepot EVSP model
considering trip time uncertainty and partial recharging. ,e model is developed based on the dynamic programming equations
that we formulated for trip chain robustness checking. A branch-and-price (BP) algorithm is devised to generate provably high-
quality solutions for large-scale instances. In the BP algorithm, an efficient label setting algorithm is developed to solve the robust
resource-constrained shortest path subproblem. Comprehensive numerical experiments are conducted based on the bus routes in
Shenzhen to demonstrate the effectiveness of the suggested methodology. ,e robustness of the schedules was evaluated through
Monte Carlo simulation. ,e results show that the trip start delay and battery energy shortage caused by the travel time un-
certainty can be effectively reduced at the expense of an increase in the operational cost. A trade-off should be made between the
reduction in infeasibility rate and increase in operational cost to choose a proper uncertainty budget.

1. Introduction

In recent years, an increasing number of electric buses
(e-buses) have been introduced into the public transit sys-
tems because of their environmental and social benefits such
as reducing on-road pollution, energy saving, and better
onboard experience [1]. However, as the driving range of the
e-buses per charge is limited and recharging the battery is
time-consuming, the vehicles need extra time for battery
recharging during the operation. To ensure operational
efficiency, a charging plan for the e-bus fleet is required
which specifies the optimal time, location, and amount to
charge. In the operation planning phase, the electric vehicle
scheduling problem (EVSP) aims to assign timetabled trips

to the e-buses while making optimal charging plans to
minimize the operational cost.

Two essential parameters taken as input to the EVSP are
the expected travel time and energy consumption of the bus
trips which have a great impact on the reliability of the
schedule. In real-life cases, getting accurate estimations of
the trip travel time is difficult because of the substantial
variability of traffic condition, passenger demand, and
driving conditions. Consequently, the energy consumption
of a trip can also deviate from the estimated value con-
siderably. To mitigate possible variations, on the operation
planning side, the operators usually introduce a buffer time
between consecutive trips to absorb small delays and a safe
range for the battery state of charge (SoC). However, buffer
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time is usually very short and not able to protect the schedule
against trip time variations effectively. If some trips expe-
rience longer travel time than the expected value, the delay
will propagate along the trip chain and influence the
punctuality of the consecutive trips. ,e original charging
plan can also become infeasible as the charging time and
vehicle battery SoC are also influenced by the trip travel
time.

With the aim to generate robust schedules against trip
travel time variation and reduce the delays that cannot be
absorbed by the buffer time, the stochastic vehicle sched-
uling model and dynamic rescheduling strategies are pro-
posed in the literature [2–7]. Different from the exiting
studies, we aim to tackle the travel time uncertainty in the
EVSP by robust optimization methods. ,e optimized
schedule can remain feasible regarding the trip start time
and vehicle battery SoC when trip time varies in the
budgeted uncertainty set. ,e main contribution of this
study is as follows:

(i) We consider the cardinality constrained uncertainty
set to formulate a robust multidepot EVSP (R-MD-
EVSP) model considering trip time uncertainty and
partial recharging. ,e R-MD-EVSP model is de-
veloped based on the dynamic programming (DP)
equations that we formulated for individual trip
chain robustness checking.

(ii) A branch-and-price (BP) algorithm is devised where
the pricing subproblem, a robust resource-con-
strained shortest path problem, is solved by an
efficient labeling algorithm based on the DP
equations.

(iii) Comprehensive numerical experiments are con-
ducted based on the cases in Shenzhen with hun-
dreds of trips onmultiple bus routes.,e robustness
of the robust solutions is verified through Monte
Carlo simulations.

,e remainder of the paper is organized as follows. In the
next section, a literature review on the EVSP is provided.
Section 3 proposes the DP equations for trip chain ro-
bustness checking and the robust EVSP formulation. ,e BP
algorithm is described in Section 4. ,e results of the nu-
merical experiments are presented in Section 5.We conclude
the paper in Section 6.

2. Literature Review

In the operation planning stage of public transportation, the
vehicle scheduling problem (VSP) aims at allocating transit
vehicles to carry out timetabled trips with the objective to
minimize the total number of vehicles used. Single-depot
VSP is polynomial time solvable while multidepot VSP has
proven to be NP-hard by Bertossi et al. [8]. With the wide
adoption of e-buses in the transit system in recent years,
EVSP arises under different scenarios regarding the charging
technology, charging policy, and fleet composition. Li [9]
and Yang et al. [10] developed models and algorithms for the
EVSP under battery swapping modes. Considering the plug-

in charging mode, Liu and Ceder [11] proposed a model
based on the deficit function theory aimed at minimizing the
number of vehicles and chargers. Mixed fleet EVSP was
considered in [12–14]. Zhang et al. [15] addressed an EVSP
considering the degradation of battery and nonlinear
charging process. A tailored BP algorithm was devised to
solve the problem.,eir computational experiments showed
that the optimized schedule can reduce the cost considerably
which is mainly achieved by the substantial extension of
battery life. Considering nonlinear charging process and
multivehicle type, Zhang et al. [16] developed an MIP model
for the EVSP with linear approximation of the nonlinear
charging function. An ALNS heuristic was devised to solve
the problem.

,e above studies assume a full charging policy, while
allowing for partial charging increases the operational
flexibility and also the problem complexity. Considering
partial charging, Wen et al. [17] developed a multidepot
EVSP and an adaptive large neighborhood search heuristic
to solve instances with customized bus trips. van Kooten
Niekerk et al. [18] proposed two models for single-depot
scenarios with a different level of detail resembling the actual
charging processes. A column generation algorithm was
developed to solve the problem. Koháni and Kohánia [19]
proposed a linear MIP model for a single-depot EVSP
considering the location of the charging stations and the
assignment of chargers to the vehicles.,emodel was solved
by the standard solver. Li et al. [20] addressed EVSP along
with the charger deployment problem. An adaptive genetic
algorithm is designed to solve the problem. Yıldırım and
Yıldız [21] considered an optimal fleet composition and
scheduling problem. An IP-column-generation algorithm is
proposed to solve the pricing subproblem.

Charging scheduling problem aims to determine the
time, amount, and specific charger for each e-bus to get
recharged. In large-sized transit systems, due to the problem
scale and complexity, charging scheduling often assumes
that the e-bus operation schedule is given beforehand. Qin
et al. [22] conducted a simulation analysis on the daily
charging patterns and demand charges of a fleet of e-buses.
An optimal charging strategy is identified to minimize
demand charges. Wang et al. [23] developed a mixed-integer
programming (MIP) model for the e-bus recharging
scheduling based on a real-world case. ,e model aims to
assign the charging station, chargers, and charging time to
the e-buses to minimize the system operating costs, as-
suming given timetable and operation schedule. With the
goal to minimize the electricity demand charges and energy
charges, He et al. [24] proposed a modeling framework to
determine the time to charge a vehicle and the actual
charging power. Liu et al. [25] considered the e-bus charging
scheduling problem under limited charging resources in the
charging station. A column-generation-based algorithm is
developed to solve the large-scale problem instances. ,e
results show that the optimal charging plan can greatly
reduce the charging cost compared with the uncontrolled
charging.

Most of the studies take deterministic trip time as the
model input and assume that the energy discharge is
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proportional to the travel distance. To tackle the trip time
uncertainty in the real world, on the input side, some
methods were proposed to improve the accuracy of the trip
time estimation based on historical running data [26, 27].
On the planning side, dynamic rescheduling strategies and
stochastic VSP models were developed. Huisman et al. [3]
introduced a dynamic vehicle scheduling approach to solve
the VSP periodically with renewed estimation on the future
trip time. He et al. [5] formulated a stochastic dynamic VSP
and adopted an approximate dynamic programming ap-
proach where the objective function is approximated by a
feed-forward neural network. Huisman et al. [3] developed a
stochastic VSP model using typical disruption scenarios to
minimize the expected total planned costs and costs caused
by disruptions. Shen et al. [2] proposed a probabilistic
network flow model assuming certain trip time distributions
and developed a hybrid heuristic solution method. Con-
sidering the stochastic travel time, Tang et al. [6] proposed a
stochastic model and a dynamic rescheduling paradigm for a
single-depot EVSP with the full charging policy. A speed-
energy-consumption relationship was incorporated in their
models. Bie et al. [7] proposed a multiobjective stochastic
e-bus scheduling model considering the variability of travel
time and energy consumption. ,e numerical study showed
that the optimized schedule can effectively protect against
the accumulation of stochastic volatilities.

Compared with the EVSP, more studies have considered
the travel time uncertainty in the vehicle routing problem
(VRP). VRP arises in the logistics context which aims to plan
for vehicle routes to serve customers at different locations.
To tackle the uncertainty related to customer demand and
vehicle travel time, stochastic and robust models as well as
dynamic reoptimization approaches were proposed in the
literature. ,e advantage of robust optimization is that it
only requires defined bounds on the data rather than the
underlying distribution while maintaining the tractability of
the problem. Different kinds of uncertainty sets have been
considered in robust VRP (RVRP) with the typical ones
including the hypercube, budgeted uncertainty sets, and
ellipsoidal sets. ,e cardinality constrained set proposed by
Bertsimas and Sim [28] is widely used which specifies an
upper bound of the number of customer demand or the
travel links that can attain their maximum value.

Motivated by the travel time uncertainty in maritime
transportation, Agra et al. [29] proposed two RVSP for-
mulations. Dynamic programming recursive equations were
proposed for path feasibility checking based on which path
inequalities can be generated. ,ey showed that it suffices to
consider a subset of the extreme points of the uncertainty
polytope and developed scenario reduction solution tech-
niques. Salicru et al. [26] proposed a compact formulation for
the RVRP under demand uncertainty with dynamic pro-
gramming equations integrated. To solve the RVRP and its
variants, exact algorithmswere developed based on the branch-
price-and-cut method by reformulating the robust problem
into its deterministic counterpart [30, 31]. Local search-based
heuristic frameworks with solution robustness checking pro-
cedure embedded in were devised in [32, 33] to solve large-
sized instances. Pelletier et al. [34] considered a capacitated

electric VRP with energy consumption uncertainty. ,ey
considered different kinds of uncertainty sets and proposed an
LNS-based heuristic to solve the problem.

From the above discussion, we can see that although
many studies have focused on the EVSP, few of them have
considered the uncertainty related to the travel time and
energy consumption in the problem. To the best of our
knowledge, there has been no research to cope with the trip
time uncertainty of the EVSP using the robust optimization
method. Our study proposed a robust EVSP model and
solution method considering the travel time uncertainty
under budgeted uncertainty set.

3. Robust Multidepot EVSP

3.1. ProblemDescription. A bus route in the transit network
is defined by two end stops and a series of intermediate stops.
On a bus route, a service trip starts from one end stop at a
scheduled time and ends at the other end stop to carry
passengers. ,e timetable of the route includes all the trips
that should be carried out in one day with their scheduled
start time from the start stop and expected end time at the
end stop. On the electrified bus routes, these trips are carried
out by a fleet of e-buses. Each e-bus undertakes a sequence of
trips in a day which is called a trip chain. An operation
schedule consists of the trip chains for all the e-buses. For the
convenience of operation, bus depots are established close to
the end stops of the routes for vehicle parking, maintenance,
and charging if charging facilities are established. Based on
this setting, the R-MD-EVSP is described as follows. ,e list
of notations is provided in Table 1.

Let G � (V, A) be an acyclic direct graph, where V is the
set of nodes and A is the set of arcs. Each timetabled trip is
represented by a trip node in the graph. Denote T⊆V as the
set of trip nodes. Each trip node i ∈ T is associated with a trip
start time window [ai, bi], where ai and bi are the scheduled
start time and latest start time, respectively. ,e e-bus
serving a trip should wait until the scheduled start time ai if
it arrives earlier at the trip start depot. Each trip node i ∈ T is
associated with two uncertain parameters: the trip time τi

and trip energy consumption εi. τi is realized in the interval
[ti − ti, ti + ti] where ti is the nominal trip time; ti ≥ 0 and
ti ≥ 0 are the upper and lower deviations from ti. εi is realized
in the interval [ei − ei, ei + ei] where ei is the nominal value;
ei ≥ 0 and ei ≥ 0 are the upper and lower deviations from ei.
Since the worst case will always be achieved at the right-hand
side of the interval, we only consider the realization of τi in
[ti, ti + ti] and εi in [ei, ei + ei] correspondingly.

Denote K as the set of depots. Each depot k ∈ K is
created with two nodes in the graph: operation start node ok

and operation end node dk, indicating that the e-bus begins/
ends the operation from/at depot k, respectively. For nodes
ok and dk, k ∈ K, we assign a time window [a0, b0], where ao

is the earliest operation start time and b0 is the latest op-
eration end time. ,is means that the e-buses can begin and
end their operation at any time within time window [a0, b0].

,e arc set A includes three kinds of arcs: (i) the pull-out
arc connects a depot node ok, k ∈ K, and a trip node i ∈ T,
representing that a vehicle begins operation from depot k to
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carry out the first trip i; (ii) the pull-in arc connects a trip
node i ∈ T and an end node dk, k ∈ K, representing that a
vehicle finishes its last trip i and ends the operation,
returning to depot k; and (iii) the trip connection arc
connects two trip nodes, representing that two trips are
carried out consecutively. Each arc (i, j) ∈ A is associated
with a nonservice travel time sij and energy consumption eij.
To ensure that the trip start time window is respected, trip
nodes i and j, i, j ∈ T, are connected only if the time
compatible condition ai + ti + sij ≤ bj is satisfied. ,e cost of
an arc cij includes the empty travel cost and the vehicle usage
cost f for the pull-out arcs. Denote gij, (i, j) ∈ A, as the unit
charging cost in the time interval between the end of trip
node i and the start of trip node j; gij is calculated as the
weighted average value of the time-of-use tariff in the time
interval.

Figure 1 gives an example of the graph for an instance
with two depots and four trips. Each depot is created with a
start node ok and an end node dk, k � 1, 2. Each trip is
represented by a trip node vi associated with a departure
time window and a scheduled trip time, i � 1, 2, 3, 4.

We assume that the e-buses begin the operation with a
fully charged battery and get recharged at the destination
depot after finishing a trip if needed.,e charging amount is
proportional to the charging time with a rate of rs (kWh/
min). Denote ts as the unit charging time and tp as the

charging preparation time. ,e e-buses should charge in-
teger times of ts.

,e historical running data of 150 bus routes in five
months in Shenzhen were used to analyze the relationship
between the trip time and trip energy consumption. Most of
them display similar relationship. Figure 2 shows the

Table 1: Definitions of the sets and parameters for the R-MD-EVSP model.

Sets
K Set of depots with index k

Vt Set of trip nodes
V Set of nodes
A Set of arcs
Parameters
a0 Earliest operation start time
b0 Latest operation end time
ai Scheduled departure time of trip node i

bi Latest departure time of trip node i

τi Trip time of trip node i, an uncertain parameter
ti Nominal trip time of trip node i
ti Upper trip time deviation from ti
ti Lower trip time deviation from ti

δt
i Trip time deviation of trip node i, δt

i ∈ [0,ti]

εi Trip energy consumption of trip node i, an uncertain parameter
ei Nominal energy consumption of trip node i

ei Upper energy consumption deviation from ei

ei Lower energy consumption deviation from ei

δe
i Energy consumption deviation of trip node i, δe

i ∈ [0, ei]

sij Empty travel time from node i to node j

eij Energy consumption of the empty travel from node i to node j

cij Cost of arc (i, j) ∈ A

c d Departure delay cost per minute
ce Unit charging cost
tp Charging preparation time
rs Energy charging rate
ru Energy consumption rate
Γt Uncertainty budget, maximum number of trips that can take their upper bound trip time, indexed by c

umax Upper bound of the vehicle battery SoC
umin Lower bound of the vehicle battery SoC
umin

ic Lower bound of variable Yic, c≤ Γt

o1

o2

d1

v1

v2

v3

v4

d2

7:00-8:45
[7:00, 7:05]

9:20-10:50
[9:20, 9:25]

7:30-9:10
[7:30, 7:35]

10:00-11:40
[10:00, 10:05]

Trip connection

Pull-out

Pull-in

Start, o/End, d

Trip

[a, b] Trip departure time window

Figure 1: An illustrative example of the graph for the robust
multidepot EVSP.
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relationship between the average trip time and energy
consumption of the selected four bus routes. ,e solid lines
are the linear regression results of the sample average data
with the R-square values given next to it. ,e R-square
values are both above 0.9, meaning that the trip energy
consumption can be described as a linear function of the trip
time, although the data of Route 3 and Route 4 display some
nonlinear trends.,e trip time and trip energy consumption
may display different relationships in different cities and
routes. Based on the cases of Shenzhen, we assume that for a
trip i, the energy consumption deviation δe

i ∈ [0, ei] is
proportional to the trip time deviation δt

i ∈ [0,ti], i.e., δ
e
i �

αδt
i ru where α≥ 1 is an augment constant and ru is the

energy consumption rate (kWh/min). Note that the robust
EVSP model developed in this study does not depend on the
assumption of a linear relationship between trip time and
trip energy consumption. We assume that the energy
consumption of a trip i varies within interval [ei, ei + ei]; as
such, we only need to give the values of ei and ei as the model

inputs. ,erefore, any empirical method that can give es-
timation on the values of ei and ei works.

We adopt a cardinality constrained uncertainty set U as
discussed in [24] to control the level of trip time uncertainty.
U is defined as U � τ ∈ R|T||τi � ti + θi

ti, 0≤ θi ≤ 1, ∀i ∈ T,

i∈Tθi ≤ Γt} where the cumulative uncertainty of the random
variable θi is bounded by the budget Γt. We choose this
uncertainty set because it is commonly used in the RVRP,
the solution structure of which is similar to our problem: the
trip chain assigned to an e-bus is equivalent to the customer
route assigned to a vehicle in the VRP, where a bus trip can
be regarded as a customer.

Based on the above settings, the problem looks for the
minimum cost schedule that satisfies the following constraints:
(i) each trip is carried out exactly once; (ii) the departure time
window of each trip is respected when the trip time varies
within the budgeted set U; (iii) each vehicle begins and ends its
operation at the same depot; and (iv) the vehicle battery SoC is
always kept within the safety range [umin, umax] when the trip
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Figure 2: Relationship between the trip time and energy consumption for the selected bus routes. (a) Route 1. (b) Route 2. (c) Route 3.
(d) Route 4.
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time varies within the budgeted set U. Following the robust
optimization paradigm, a trip chain is robust feasible if it
satisfies conditions (ii)–(iv) for all possible trip time realiza-
tions. A feasible schedule of the problem is given as set of
feasible trip chains that together also satisfies condition (i).

3.2. Deterministic Problem Formulation. Let Xijk be the
binary variables that take value 1 if a vehicle housed at terminal
k traverses arc (i, j) ∈ A. At each trip node i ∈ T, denote Zi as
the trip start time and Yi as the lowest battery SoC of the
vehicle at the trip start time. ,e lower bound of Yi is denoted
as umin

i � umin + ei. At each operation start (end) node ok (dk),
k ∈ K, denoteZi as the operation start (end) time andYi as the
lowest battery SoC of the vehicle at the operation start (end)
time. On each arc (i, j) ∈ A, i, j ∈ T, denote Wij as the
amount of energy to be charged after completing trip i before
starting trip j. According to our assumption, the charging
place is at the ending depot of trip node i. Rij are the auxiliary
variables defined corresponding to Zi for constraint lineari-
zation. Denote Eij as the binary variables that are equal to 1 if
the e-buses can be charged on arc (i, j) ∈ A. Denote Uij as the
integer variables that specify the number of time units an e-bus
spends charging on arc (i, j) ∈ A. ,e deterministic problem
is formulated as follows (MD-EVSP):

min 
k∈K


(i,j)∈A

cijXijk + 
(i,j)∈A

gijWij, (1)

s.t. 
k∈K


j: (i,j)∈A

Xijk � 1, i ∈ T,
(2)


j: (i,j)∈A

Xijk − 
j: (j,i)∈A

Xjik � 0, i ∈ T, k ∈ K,
(3)


β∈K\ k{ }


i∈V

Xoβik � 0, k ∈ K,
(4)


β∈K\ k{ }


i∈V

Xidβk � 0, k ∈ K,
(5)

ai ≤Zi ≤ bi, i ∈ V, (6)

Zj − Zi − ti − sij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥ 0, (i, j) ∈ A, (7)

Yi − ei + Wij − eij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥Yj, (i, j) ∈ A,

(8)

Eij − 
k∈K

Xijk ≤ 0, (i, j) ∈ A, (9)

− aj − Zi − ti − sij − t
p

  − M 1 − Eij ≤ 0, (i, j) ∈ A,

(10)

Wij + Rijrs − aj − ti − sij − t
p

 rsEij ≤ 0, (i, j) ∈ A, (11)

Wij + Yi − ei − u
max ≤ 0, (i, j) ∈ A, (12)

Wij − rst
s
Uij � 0, (i, j) ∈ A, (13)

Rij − biEij ≤ 0, (i, j) ∈ A, (14)

aiEij − Rij ≤ 0, (i, j) ∈ A, (15)

Rij − Zi + ai 1 − Eij ≤ 0, (i, j) ∈ A, (16)

Zi − bi 1 − Eij  − Rij ≤ 0, (i, j) ∈ A, (17)

u
min
i ≤Yi ≤ u

max
, i ∈ V, (18)

Wij ≥ 0, (i, j) ∈ A, (19)

Xijk ∈ 0, 1{ }, (i, j) ∈ A, k ∈ K, (20)

Eij ∈ 0, 1{ }, (i, j) ∈ A, (21)

Rij ≥ 0, (i, j) ∈ A, (22)

Uij ∈ Z, (i, j) ∈ A. (23)

Objective (1) minimizes the sum of vehicle usage, empty
travel, and charging cost. Constraint (2) ensures that each trip is
carried out only once. Constraint (3) is the flow conservation
constraint. Constraints (4) and (5) require that each vehicle
begin and end its operation at its base depot. Constraint (6)
limits the departure time of each trip to be within the departure
timewindow. Constraint (7) ensures the time consistency of two
successive trips. Constraint (8) ensures the vehicle battery energy
consistency of two successive trips. Constraint (9) requires that
charging on arc (i, j) is performed only if trip j is succeeded by
trip i. Constraint (10) restricts that charging on arc (i, j) can be
performed only if time is available. Constraint (11) defines the
upper bound of Wij on arc (i, j) ∈ A according to the time
available. Originally, constraint (11) is formulated as follows:

Wij + Zi − aj − ti − sij − t
p

 rsEij ≤ 0, (i, j) ∈ A. (24)

To linearize quadratic terms ZiEij, auxiliary variables Rij

are introduced where Rij � ZiEij is satisfied by constraints
(14)–(17). Constraint (12) requires the battery SoC after
charging not to exceed umax. Constraint (13) ensures that the
charging time can only be integer times of the minimum
charging time unit. Constraint (18) keeps the vehicle battery
SoC within the safety range. Constraints (19)–(23) define the
domains of the variables.

3.3. DP Equations to Define the Robustness of a Trip Chain.
In this section, we introduce the DP equations to define the
robustness of a trip chain under uncertainty set U. In graph
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G, a trip chain is represented by a path
P � ok, v1, v2, . . . , vn, dk  starting from an operation start
node ok to an operation end node dk, visiting a sequence of
trip nodes vi, i � 1, 2, . . . , n. In solving the RVRP, Agra et al.
[29] showed that only the travel time vector τ ∈ ext(U)

needs to be considered in the problem formulation to ensure
the robustness feasibility. ext(U) is the set that contains all
the extreme points of set U. Because of the structure of set U,
they defined DP recursive equations to define the robustness
of a vehicle route. As our R-MD-EVSP problem shares a
similar solution structure with the RVRP, we can define the
robustness of a trip chain by the DP recursive equations (25)
and (26) as follows.

Denote Zic as the earliest possible start time of node vi

andYic as the lowest battery SoC of the vehicle upon the start
of vi; let Wijc and Wijc be the charging amount on arc (i, j),
i.e., after the end of trip node vi and before the start of trip
node vj, when c≤ Γt trips from v1 to vi are taking their
maximum trip time, among which trip node vi takes the
nominal trip time and maximum trip time, respectively.
Denote umin

ic as the lower bound of Yic: if c<Γt,
umin

ic � umin + ei + ei; otherwise, umin
ic � umin + ei.

Zic and Yic are defined by the recursive functions (25)
and (26), respectively. A trip chain is robust if Zic ∈ [ai, bi]

and Yic ∈ [umin
ic , umax], for ∀ vi ∈ P and c≤ Γt. In fact, it

suffices to check ZiΓt and YiΓt for vi ∈ P.

Zjc �

a0

max aj, Zic + ti + tij 

max aj, Zic + ti +
Wijc

rs

+ tij, Zi,c−1 + ti + ti +
Wijc

rs

+ tij 

j � 0

c � 0

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (25)

Yjc �

u
max

j � o

min u
max

, Yic − ei + Wijc  − eij c � 0

min min u
max

, Yic − ei + Wijc  − eij , otherwise

min u
max

, Yi,c−1 − ei − ei + Wijc  − eij

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

3.3.1. =e Optimal Total Charging Amount and Charging
Policy. Denote H as the optimal total charging amount of a
trip chain. H is the maximum total charging amount re-
quired when the trip times varies within uncertainty set U

which is calculated as follows: let b � min n, Γt  be the
maximum number of trips of path P that can attain their
maximum trip time. Choose the b trips with the maximum
worst case trip time and take their maximum trip times. ,e
rest of the trips take their nominal trip times. ,en, H is
given by H � umin + E − umax where E is the total energy
consumption of P. ,e charging policy for an e-bus carrying
out trip chain P is as follows: the e-buses can get recharged
during the layover time between two successive trips for any
flexible amount that is integer time of the unit charging time
ts until the total charging amount reaches H.

3.4. Robust Problem Formulation. We introduce an MIP
formulation for the R-MD-EVSP under cardinality un-
certainty set U by incorporating the DP equations for
trip chain robustness checking into the deterministic
model.

At each node i ∈ V, given c trips have taken their
maximum trip time, c � 0, 1, 2, . . . , Γt, variables Zic, Yic,
Wijc, Wijc and parameter umin

ic are consistent with those
defined in Section 3.3. Given that γ trips on the trip chain
from the first trip to trip j (trip j not included) are taking
their maximum trip time, denote Eijc and Eijc as the
binary variables that are equal to 1 if vehicle charging can
be carried out on arc (i, j) ∈ A when trip i takes its
nominal and maximum trip time, respectively; denote
Uijc and Uijc as the integer variables that specify the
number of time units an e-bus spends charging on arc
(i, j) ∈ A when trip i takes its nominal and maximum trip
time, respectively. Denote Rijc and Rijc as the auxiliary
variables defined to linearize the quadratic terms in the
constraints.

In the robust model, the robustness of a trip chain is
ensured by linearizing of the DP equations (25) and (26) and
adding them into the problem constraints. ,e following
constraints ((27)–(30)) are the linearized forms of the DP
equations (25) and (26).

(i) Time consistency constraints:
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Zjc − Zic − ti − sij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥ 0, (i, j) ∈ Ap, c � 0, 1, 2, . . . , Γt, (27)

Zjc − Zi,c−1 − ti − ti − sij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥ 0, (i, j) ∈ Ap, c � 1, 2, . . . , Γt. (28)

Constraints (27) and (28) are the robust constraints
corresponding to constraint (7). It is developed
based on the linearization of equation (25), which

means the time consistency of two successive trips
should be satisfied for ∀c � 0, 1, 2, . . . , Γt.

(ii) Battery SoC consistency constraints:

Yic − ei + Wijc − eij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥Yjc, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (29)

Yi,c−1 − ei − ei + Wijc − eij + M 1 − 
k∈K

Xijk
⎛⎝ ⎞⎠≥Yjc, (i, j) ∈ A, c � 1, 2, . . . , Γt. (30)

Constraints (29) and (30) are the robust constraints
corresponding to constraint (8). It is developed based on the
linearization of equation (26), which means the battery SoC
consistency of two successive trips should be satisfied for
∀c � 0, 1, 2, . . . , Γt.

Other constraints are defined corresponding to the
deterministic models with the variables substituted by the
ones defined in the robust model. ,e R-MD-EVSP model is
formulated as follows:

min 
k∈K


(i,j)∈A

cijXijk + 
Γt

c�0


(i,j)∈A
gijWijc + 

Γt

c�1


(i,j)∈A
gij

Wijc,

(31)

s.t. constraints (2)–(5) and constraints (27)–(30).

ai ≤Zic ≤ bi, i ∈ V, c � 0, 1, 2, . . . , Γt, (32)

Eijc − 
k∈K

Xijk ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (33)

Eijc − 
k∈K

Xijk ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (34)

− aj − Zic − ti − sij − t
p

  − M 1 − Eijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (35)

− aj − Zi,c−1 − ti − ti − sij − t
p

  − M 1 − Eijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (36)

Wijc + Rijcrs − aj − ti − sij − t
p

 rsEijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (37)

Wijc + Rijcrs − aj − ti − ti − sij − t
p

 rs
Eijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (38)

Wijc + Yic − ei − u
max ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (39)

Wijc + Yi,c−1 − ei − ei − u
max ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (40)

Wij − rst
s
Uijc � 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (41)
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Wij − rst
s Uijc � 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (42)

Rijc − biEijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (43)

aiEijc − Rijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (44)

Rijc − Zic + ai 1 − Eijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (45)

Zic − bi 1 − Eijc  − Rijc ≤ 0, (i, j) ∈ Ap, c � 0, 1, 2, . . . , Γt, (46)

Rijc − bi
Eijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (47)

ai
Eijc − Rijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (48)

Rijc − Zi,c−1 + ai 1 − Eijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (49)

Zi,c−1 − bi 1 − Eijc  − Rijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt, (50)

u
min
ic ≤Yic ≤ u

max
, i ∈ V, c � 0, 1, 2, . . . , Γt, (51)

Wijc ≥ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (52)

Wijc ≥ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (53)

Xijk ∈ 0, 1{ }, (i, j) ∈ A, k ∈ K, (54)

Eijc ∈ 0, 1{ }, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (55)

Rijc ≥ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (56)

Uijc ∈ Z, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (57)

Eijc ∈ 0, 1{ }, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (58)

Rijc ≥ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (59)

Uijc ∈ Z, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt. (60)

Objective (31) consists of the vehicle usage, empty travel,
and the sum of charging cost in all possible cases regarding
the realizations of the trip times. ,e worst-case charging
cost cannot be expressed explicitly; therefore, it is not in-
cluded in the objective but calculated after the optimal
solution is obtained. Constraint (32) limits the departure
time of each trip to be within the departure time window.

Constraints (33) and (34) require that charging on arc (i, j)

is performed only if trip j is succeeded by trip i. Constraints
(35) and (36) restrict that charging on arc (i, j) can be
performed if time is available. Constraints (37) and (38)
define the upper bound of Wij on arc (i, j) ∈ A according to
the available time. Originally, constraints (37) and (38) are
formulated as follows:

Wijc + Zic − aj − ti − sij − t
p

 rsEijc ≤ 0, (i, j) ∈ A, c � 0, 1, 2, . . . , Γt, (61)

Wijc + Zi,c−1 − aj − ti − ti − sij − t
p

 rs
Eijc ≤ 0, (i, j) ∈ A, c � 1, 2, . . . , Γt. (62)
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To linearize quadratic terms ZicEijc and Zi,c−1
Eijc,

auxiliary variables Rijc and Rijc are introduced where Rijc �

ZicEijc is satisfied by constraints (43)–(46) and
Rijc � Zi,c−1

Eijc is satisfied by constraints (47)–(50).
Constraints (39) and (40) require the battery SoC after

charging not to exceed umax. Constraints (41) and (42)
ensure that the charging time can only be integer times of the
minimum charging time unit. Constraint (49) keeps the
vehicle battery SoC within the safety range. Constraints
(52)–(60) define the domains of the variables.

4. Branch-and-Price Method

In this section, we introduce a BP algorithm to solve the
R-MD-EVSP based on the set partitioning formulation. Let
Ω be the set of feasible trip chains. Each trip chain p ∈ Ω is
defined by cp, the total operation cost, and api, i ∈ T, a binary
parameter that is equal to 1 if trip i is carried out in p. Denote
θp, p ∈ Ω, as a binary variable that takes value 1 if trip chain
p is selected to be part of the solution. ,e set partitioning
formulation of the R-MD-EVSP is as follows:

min 
p∈Ω

cpθp, (63)

s.t. 
k∈K

apiθp � 1, i ∈ T, (64)

θp ∈ 0, 1{ }, p ∈ Ω. (65)

Objective (63) minimizes the total operation cost of the
schedule. Constraint (64) ensures that each trip is carried out
once by a vehicle. As set Ω includes a large number of
feasible trip chains, it is impractical to solve the model
directly. ,erefore, we developed a column generation (CG)
algorithm to solve the linear relaxation of models (63)–(65)
called master problem (MP). ,e CG algorithm starts by
solving the linear relaxation of models (63)–(65) with an
initial set of feasible trip chains Ω, called the restricted
master problem (RMP). In each iteration, a pricing problem
is solved to generate columns with negative reduced cost to
be added to the RMP. Let πi, i ∈ T, be the dual variables
associated with constraint (64). Let cp be the reduced cost of
trip chain p ∈ Ω with respect to πi, i ∈ T, i.e.,
cp � cp − i∈Tapiπi. ,e pricing problem is defined as
follows:

min 
p∈Ω

cpθp.
(66)

A feasible trip chain p ∈ Ω corresponds to an o-d path in
G. ,e problem aims at finding a feasible trip chain with the
minimum reduced cost. We modify the cost of each arc
(i, j) ∈ A by a modified cost cij � cij − πi where πi � 0 for
i ∈ o, d{ }.,e reduced cost of an o-d path p equals the sum of
cij, (i, j) ∈ p. ,e problem is a resource-constrained ele-
mentary shortest path problem (RCESPP), and we solve it by
developing a label setting algorithm [35]. ,e CG alternates
between the optimization of the RMP and the pricing
problems until no more columns with negative reduced cost

are generated, implying that the MP has been solved to
optimality.

4.1. Robustness Checking of a Trip Chain. In solving the
pricing problem, we need to generate robust o-d paths in
graph G. Based on the DP equations (25) and (26) defined in
Section 3.3, the robustness of path P can be checked by the
following procedure.

=e Robustness Checking Procedure. On an arc (vi, vj) of
path P, for each c≤ Γt, determine the values of Wijc and Wijc

by equations (67) and (68). ,en, the values of Zjc and Yjc

are determined by equations (25) and (26), respectively. Path
P is robustness feasible if Zic ∈ [ai, bi] and Yic ∈ [umin

ic , umax]

for vi ∈ P and c≤Γt.

Wijc � max 0, min u
max

, aj − Zic − ti − tij − t
p

 rs  ,

(67)

Wijc � max 0, min u
max

, aj − Zi,c−1 − ti − ti − tij − t
p

 rs  .

(68)

4.2. Label Setting for the Pricing Problem. In this section, we
describe the label setting algorithm for generating robust o-d
paths based on the robustness checking approach proposed
in Section 4.1. In solving the RCESPP on graph G, the labels
are used to represent the partial paths starting from the start
node and the resources accumulated along the path. New
labels are generated by extending the existing labels on graph
G following the resource extension functions (REFs). New
labels are checked for resource feasibility and infeasible
labels are discarded. At each node, dominance rule is then
applied to eliminate the labels which cannot lead to a path
with a better reduced cost than the dominate labels.

Denote Li � (Ci, Rt
ic, Re

ic), c≤ Γt, as a label representing a
partial path from the start node o to a node i ∈ V with three
kinds of resource defined as follows: Ci is the reduced cost of
the path, Rt

ic is the earliest departure time of node i, andRe
ic is

the lowest battery SoC of the vehicle upon the start of trip i,
when c trips from node o to node i are attaining their
maximum trip time.

In the VRP, when the customer time windows are wide,
two customers can be served in different orders so that the
graph is cyclic. As such, in solving the pricing problem, at a
given node i in the graph, an elementary resource is defined
for each customer to record the number of times the cus-
tomer has been visited on the partial path o, 1, 2, . . ., i [31]. In
the R-MD-EVSP, because the departure time window of the
trips is small, any two trips cannot be served in different
orders and graph G is acyclic. ,erefore, in solving the
pricing problem, the elementary resource is not needed.

Based on the recursive equations (25) and (26) and the
feasibility checking approach introduced in Section 4.1, the
forward extension of a label Li to a label Lj along an arc
(i, j) ∈ A is performed by REFs (69)–(71). As the feasibility
checking approach always ensures Re

jc ∈ [umin
jc , umax], the
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resulting label Lj is robust feasible if and only if
Rt

jc ∈ [aj, bj], c � 0, 1, 2, . . . , Γt.

Cj � Ci + c
’
ij − πi, (69)

R
e
jc � min u

max
, R

e
ic − ei + Wijc − eij, R

e
i,c−1 − ei − ei + Wijc − eij , (70)

R
t
jc � max ai, R

t
ic + ti +

Wijc

rs

+ tij, R
t
ic−1 + ti + ti +

Wijc

rs

+ tij . (71)

Variables Wijc and Wijc are consistent with those
defined in Section 3.3. c’ij is the estimated cost on arc
(i, j) ∈ A consisting of the cost of vehicle usage, empty
travel, trip start delay, and charging cost. c’ij is computed as
follows. Let Pj � o, 1, 2, . . . , i, j  be a partial path from node
o to node j. Denote Hj as the maximum total charging
amount required for Pj when the trip times varies within
uncertainty set U. c’ij � cij + gij(Hj − Hi) where cij is the
vehicle usage and empty travel cost assigned to arc (i, j);
gij(Hj − Hi) is the increased charging cost.

In the label setting algorithm, dominance rule plays a
critical role in reducing the number of extensions required as
the labeling process goes on. In Proposition 1, we introduce a
dominance rule for our label setting algorithm to improve
the computational efficiency.

Proposition 1. Let L1
i and L2

i be the two labels associated
with the paths ending at node i. L1

i dominates L2
i if (i) C1

i ≤C2
i ;

(ii) Re1
ic ≥Re2

ic , c � 0, 1, 2, . . . , Γt; and (iii) Rt1
ic ≤Rt2

ic ,
c � 0, 1, 2, . . . , Γt.

4.3. Heuristic Pricing. ,e label setting algorithm can be
time-consuming, especially in solving large-scale instances.
As we know, it is not necessary to solve the pricing problem
to its optimal and return a column with the most negative
reduced cost at each iteration of the CG. ,e computational
efficiency of the GC procedure can be improved by only
finding suboptimal solutions in the pricing problem at the
expense of an increase in the number of iterations. As such,
we adopt heuristic decisions before invoking the exact
pricing algorithm. Instead of storing all the nondominant
columns in the label setting, we maintain only a prespecified
number of them to improve the algorithm efficiency.When a
new nondominant label is added to the list and the total
number of labels has reached the limit, the label with the
largest objective value in the list will be discarded. In this
way, fewer labels are extended at each node, speeding up the
process of negative path detection. Note that this heuristic
may lead to more CG iterations and the number of labels
maintained should be carefully set through preliminary
experiment.

4.4. Branching. An initial solution is formulated by
assigning each e-bus with one trip. After each CG procedure

ends, to obtain the integer solution, branches are created in
the branch-and-bound tree by branching on the total flow of
the arcs (xij)(i,j)∈A. If not all the (xij)(i,j)∈A are integers, we
choose to branch on xij that has the highest fractional value,
creating two nodes, one with xij � 1 and the other with
xij � 0. Otherwise, an integer solution is obtained. A depth-
first search strategy is used to explore the branch-and-bound
tree. In order to obtain integer solutions more efficiently,
after each CG procedure ends, xij values in the RMP that are
larger than 0.99 are set to 1, while xij values that are less than
0.01 are set to 0. ,e preliminary experiments show that this
setting works well on speeding up the computational time
and has minor impact on the solution quality.

4.5. Obtaining Optimal Charging Plan. After the optimal
schedule is obtained by the BP algorithm, we further gen-
erate the optimal charging plan for each individual trip
chain, considering the time-of-use tariff.,e problem can be
defined as a robust fixed-route electric vehicle refueling
problem (R-FRVRP) which aims to determine the optimal
charging time and amount for an e-bus on a given trip chain.

5. Numerical Experiments

We conducted numerical experiments based on the case of
bus routes in Shenzhen. We first conducted experiments on
single-route scheduling and then on multiroute scheduling
where e-buses are allowed to carry out trips on different
routes. In the following cases, plug-in DC chargers are
established in the depots, the majority of which have the
maximum charging power of 100 kW. BYD e-buses with a
battery capacity of 260 kWh, length of 10.5m, weight of
18000 kg, and maximum driving distance of 220 km operate
on the routes. ,e characteristics of the bus routes and
charging facilities are presented in Table 2. According to the
historical running data, the charging rate is set to be 1.6 kWh
per minute, and the battery energy consumption rate is
estimated to be 0.6 kWh per minute. As defined in Section
3.1, the energy consumption of a trip depends on the trip
time following the equation δe

i � αδt
i ru. Here we set α � 1.

,e charging preparation time tp and minimum charging
time ts are set as 2min and 5min, respectively. Parameter α
takes the value of 0.5.,e daily usage cost of an e-bus cf is set
as 1000 CNY. Figure 3 shows the time-of-use tariff in
Shenzhen, which is used to set the values of gij, (i, j) ∈ A.
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,eMIP model was solved by the standard optimization
solver Cplex 12.6, and the BP framework was coded in Java
using Cplex 12.6 to solve the RMP. All the experiments were
run on a PC with Windows 10, Intel Core i5-8250U,
1.80GHz, and 8GB RAM.

5.1. Single-Route Scheduling. We first analyze the
performance of the MIP model and BP algorithm based on
Route M133 in Shenzhen. A display of bus Route M133 is
shown in Figure 4.

In generating a timetable, estimation of the scheduled
trip times is critical. We adopted the method suggested in
[27] to generate homogeneous running time (HRT) periods,
the trip time within each of which follows the same dis-
tribution. We generate the HRT periods for Route M133
based on the trip time data of 100 weekdays fromAugust 1 to
December 31 in 2017. Figure 5 presents the distribution of
the trip time of Route M133 during different periods of the
day. Within each HRTperiod, the scheduled trip time is set
according to a rule-of-thumb: the average trip time plus the
standard deviation of the trip time. Figure 6 shows the
scheduled trip time and maximum deviation from the
scheduled trip time within each running time period. We
generate the timetable including 276 trips. Except for the
original timetable, we also create timetables with the number
of scheduled trips ranging from 64 to 154 by changing the
headway requirements. ,ese timetables account for the
small-scale instances.

5.1.1. Results. ,e performance of the MIP model and BP
algorithm with uncertainty budget Γt � 0, 1, 2, 3 is presented
in Table 3. ,e deterministic solution corresponds to the
case with Γt � 0. ,e table shows the objective of the MIP
model obtained by Cplex and BP algorithm (Obj), number of
vehicles used (#V) in the solution obtained by the BP,
optimal gap of the MIP and BP, and the computational time.
When the MIP gap is higher than 90%, we report the root
relaxation solution obtained by Cplex in the bracket. If the
root relaxation is not solved by Cplex within 3600 s, an em
dash (“—”) is used.

,e results indicate that Cplex is not able to solve the
model to near optimal in a short time. Some instances are
not solved by Cplex in 3600 s; however, the BP algorithm is
able to generate high-quality solutions with small BP gaps
within a reasonable computational time. ,e objective
obtained by the BP algorithm is consistently lower than that
obtained by the MIP model. For a given instance, the total
operational cost, including the cost of vehicle usage and
charging, becomes higher with the increase of the uncer-
tainty budget Γt. ,is is due to the more vehicles put into
use and a larger amount of planned daytime charging
amount. When the level of protection Γt increases, the
planned daytime charging amount becomes higher if the
number of vehicles used stays the same; the daytime
charging amount can be reduced when the number of
vehicles used increases.

5.1.2. Impact of the Trip Start Buffer Time. We investigated
the impact of trip start buffer time on the optimal schedule.
Each case is named as “number of trips—budget value.”
,e trip start delay time t d varies among 0, 3, 5, and 8
minutes. t d � 0 means that trip start delay is not per-
mitted. As shown in Figure 7, the number of e-buses used
is reduced with the increase of td in cases “96-0,” “112-0,”
and “276-0.”,e results indicate that allowing for trip start
buffer time can reduce the number of e-buses put into
operation in some cases. Trip start buffer time can increase
time flexibility of the schedule and saves the operational
cost in some scenarios. With the increase of the uncer-
tainty budget, the planned charging amount increases,
protecting the schedule against the variation of energy
consumption.

Table 2: Characteristics of the bus routes in the single and multiroute scheduling cases.

Route Length
(km)

Number of
stops

Operation
period

Headway
(min)

Ave. trip time
(min)

Number of
trips

End depot
I

End depot
II

M133 37.5 44 6 :10–22 : 30 5–12 110 276 1 (16) 2 (8)
E7 39.7 15 7 : 00–22 : 00 10–60 70 84 3 (20) 4 (5)
E11 75.5 18 6 : 00–21 : 30 6–10 120 194 3 5 (10)
E14 41.9 22 7 : 30–22 : 00 15–50 110 70 3 6 (10)
E22 57.1 19 6 : 30–20 : 00 60 120 34 3 7 (5)
42 17.3 23 6 : 30–22 : 30 10–15 45 132 8 (10) 9 (8)
43 17.6 25 6 : 30–22 : 30 10–15 60 130 3 9
81 31.6 44 6 : 30–21 : 30 5–15 80 204 3 8
Note. End depots are numbered from 1 to 9 as follows: 1, Changlingdong depot; 2, Shekou bus depot; 3, ShenzhenNorth Railway Station; 4, Longgangyiwu bus
depot; 5, Nanaoxinda bus depot; 6, Tantou West; 7, Hangzi bus depot; 8, Moon Bay; 9, Window of the World. ,e values in the brackets next to the depot
index are the number of charging piles established at the depots.

04:30 06:30 08:30 10:30 12:30 14:30 16:30 18:30 20:30 22:30 00:30

0.2

0.4

0.6

0.8

1.0

1.2

Pr
ic

e (
CN

Y/
kW

h)

Time

Price

Figure 3: Time-of-use tariff in Shenzhen.
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5.2. Multiroute Scheduling. We carried out numerical ex-
periments on two cases with multiple bus routes and depots.
,e multiroute scheduling is applied in the cases. ,e
characteristics and layouts of the transit system in the case
are shown in Table 2 and Figure 8. Case I includes five depots
and four express bus routes: Route Nos. E7, E11, E14, and
E22, that all have one end stop at the Shenzhen North
Railway Station, formulating a hub-and-spoke topology.,e
timetable of the four routes includes a total number of 382
trips. Case II includes three depots and three bus routes:
Route Nos. 42, 42, and 81, that share end stops with each
other, formulating a circle topology. All the depots are
equipped with charging facilities. ,e timetable of case I and
case II includes a total number of 382 and 466 trips.

5.2.1. Results. We obtained the optimal schedule for cases I
and II by the BP algorithm. ,e computational results are
shown in Table 4. ,e table shows the objective of the MIP
model obtained by the BP algorithm (Obj), number of ve-
hicles used (#V), total charging amount, computational
time, and BP gap with uncertainty budget Γt � 0, 1, 2, 3.

5.3. Schedule Robustness. We investigated the schedule ro-
bustness through Monte Carlo simulation based on the

randomly generated trip time data. ,e simulation is
performed by generating Nran d � 10000 random realiza-
tions of trip time from normal distribution N(ta

i , sdi) for all
trip nodes i ∈ T, where ta

i and sdi are the mean and standard
deviation of the trip time. Each random realization repre-
sents one day’s e-bus schedule.

Table 5 presents the statistics on the deterministic
(Γt � 0) and robust (Γt � 1, 2, 3) solutions for single-route
instances. ,e number of vehicles used (#V), infeasibility
rate of the trip chain (IR-TC), schedule (IR-S), and price of
robustness (PoR) are reported. Denote the total number of
infeasible trip chains as NIF

tc . If the schedule contains in-
feasible trip chains, the schedule is regarded as infeasible.
Denote the total number of infeasible schedules as NIF

s . IR-
TC is calculated as NIF

tc /(Nran d ∗Nveh) where Nveh is the
number of e-buses used; IR-S is calculated as NIF

s /Nran d.
PoR is the percentage of increase in the operational cost of
the robust solutions compared with that of the deterministic
solution.

About 0.94% to 9.81% of the simulated e-bus trip chains
experience delays using the deterministic solutions. With
Γt � 1, the infeasibility rate drops to almost zero while the
total operational cost increases by 1.25% to 16.14%. We
calculated the penalty of the trips chains incurred by the
violation of the trip start time window and battery SoC safety
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Figure 5: Trip time distribution of Route M133 in a day based on the historical running data.

Figure 4: A display of bus Route M133 in Shenzhen.
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Figure 6: HRT periods of Route M133 generated based on the historical running data. (a) Outbound. (b) Inbound.

Table 3: Computational results of the MIP model and BP on single-route instances.

Number of trips Γt
Obj #V Gap (%) Run time (s)

MIP BP BP MIP BP Cplex BP
62 0 16916.5 16912.8 16 5.4 0 3600 0

1 18107.3 16400.0 16 11.64 0 3600 1
2 19876.8 16800.0 16 19.50 0 3600 1
3 21763.3 17000.0 17 26.48 0.12 3600 1

96 0 22900.7 22676.7 21 8.30 0.14 3600 8
1 25664.7 25504.5 22 18.18 0.21 3600 5
2 30395.0 27279.2 22 30.91 0.21 3600 6
3 35098.3 33331.9 22 40.17 0.26 3600 8

112 0 26294.3 25711.1 23 12.53 0.42 3600 10
1 30508.7 26714.7 24 24.61 0.60 3600 7
2 36842.2 30202.2 24 37.57 0.58 3600 8
3 51072.5 33858.5 24 54.97 0.71 3600 10

154 0 38082.3 36578.7 33 13.35 0.20 3600 24
1 69344.3 37041.8 33 52.41 0.22 3600 34
2 (33000) 42180.0 33 — 0.68 — 56
3 (33000) 45606.0 33 — 0.84 — 13

276 0 (49000) 56443.3 49 — 0.82 — 129
1 (49000) 67309.1 49 — 0.86 — 169
2 — 82386.7 49 — 1.02 — 191
3 — 99134.4 49 — 0.92 — 113
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Figure 7: ,e influence of departure delay time on the number of vehicles used under different values of uncertainty budget.
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Figure 8: Continued.
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range. Figure 9 shows the changes of the objective and
penalty per 100 trip chains under different values of Γt. With
the increase of Γt, the objective increase while the penalty
decreases. ,is result coincides with that in Table 3,

indicating that the schedules with Γt � 0 and Γt � 1 are
Pareto optimal solutions.

Table 6 presents the robustness evaluation results of the
multiroute scheduling cases. When Γt � 0, about 4.09% and

(b)

Figure 8: A display of the route layout of (a) case I and (b) case II.

Table 4: Computational results of the BP on multiroute instances.

Case Γt Obj. #V Charging amount (kWh) Run time (s) BP gap (%)
Case I 0 81638.3 73 11141.3 392 1.02

1 92313.4 76 16313.4 398 0.96
2 114236.0 76 17522.4 676 1.10
3 132200.5 76 18247.8 590 1.32

Case II 0 69279.0 64 6895.6 6248 1.89

1 76556.2 64 11178.4 8979 1.848261
2 86540.8 64 13533.2 8261 0.12
3 98607.3 64 13444.1 6350 1.06

Table 5: Robustness of the single-route schedules.

Number of trips Γt
Infeasibility rate (%)

PoR (%)
Trip chain Schedule

96 0 0.94 19.27 —
1 0.00 0.00 9.52
2 0.00 0.00 15.41
3 0.00 0.00 30.77

112 0 7.20 87.31 —
1 0.00 0.05 3.76
2 0.00 0.00 14.87
3 0.00 0.00 24.06

154 0 5.65 92.08 —
1 0.01 0.26 1.25
2 0.02 0.70 13.28
3 0.03 1.04 19.79

276 0 9.81 99.86 —
1 0.00 0.00 16.14
2 0.00 0.00 31.49
3 0.00 0.00 43.06
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3.12% of the simulated trip chains experience delay in cases I
and II, respectively. When Γt � 1, the infeasibility rate drops
to zero while the objective increases by 10.49% and 8.48% in
cases I and II, respectively. We also calculated the penalty of
the trips chains incurred by the violation of the trip start time
window and battery SoC safety range. Figure 10 shows the
changes of the objective and penalty per 100 trip chains
under different values of Γt. With the increase of Γt, the
objective increases while the penalty decreases. ,e results
indicate that the schedules with Γt � 0 and Γt � 1 are Pareto
optimal solutions.

Based on the above evaluation results, we can make the
following conclusions:

(i) ,e infeasibility rate of the deterministic solution is
significantly higher than that of the robust solutions
in the simulation.

(ii) ,e schedule robustness can be greatly improved at
the expense of an increase in the total operational cost.

(iii) Trade-off between the infeasibility rate and PoR is
needed to choose a proper value of uncertainty
budget when generating robust schedules.
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Figure 9: Objective and penalty under different values of Γt in single-route cases.

Table 6: Robustness of the multiroute schedules.

Case Γt
Infeasibility rate (%)

PoR (%)
Trip chain Schedule

Case I 0 4.09 98.84 —
1 0.00 0.00 10.49
2 0.00 0.00 19.19
3 0.00 0.00 13.59

Case II 0 3.12 95.36 —
1 0.00 0.00 8.48
2 0.00 0.00 11.54
3 0.00 0.00 12.24
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6. Conclusion

In this paper, an R-MD-EVSP model and BP algorithm are
introduced as a novel approach for e-bus scheduling under
travel time uncertainty. Partial charging and trip start time
window are taken into consideration. ,e cardinality con-
strained uncertainty set was adopted to control the level of
uncertainty. ,e proposed methodology was tested on the
real-world transit operation cases in Shenzhen including
single-route and multiroute cases. ,e size of the instances
varies from 62 to 466 timetabled trips. ,e results showed
that the BP algorithm is able to generate provably high-
quality solutions efficiently for large-scale instances. With
the increase of the uncertainty budget, the planned charging
amount increases to protect the schedule against the vari-
ation of energy consumption when the number of e-buses
used stays the same; the charging amount can be reduced
when the number of vehicles used increases. Additionally, a
sensitivity analysis of the trip start buffer time was carried
out. ,e analysis showed that allowing for trip start buffer
time can increase time flexibility of the schedule and save the
operational cost in some scenarios. ,e robustness of the
schedules was evaluated through Monte Carlo simulation
based on the randomly generated trip time data. ,e results
showed that the infeasibility rate of the deterministic so-
lution is significantly higher than that of the robust solu-
tions. Applying the robust schedules can effectively protect
against trip time and energy consumption variation at the
expense of an increase in the operational cost. ,erefore,
transit operators need to trade off between the infeasibility
rate and PoR to choose a proper value of uncertainty budget
when adopting robust schedules.

In future research studies, more realistic battery charging
and energy consumption process should to be considered in
the robust e-bus scheduling model. Besides, heuristic methods
are needed to solve the problem instances of larger scale.
Furthermore, different kinds of uncertainty sets can be con-
sidered to control the trip time variation. Trip time and energy
consumption can be described by independent uncertainty
sets, accounting for more general e-bus operation cases.
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