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Traffic flow forecasting is the key to an intelligent transportation system (ITS). Currently, the short-term traffic flow forecasting
methods based on deep learning need to be further improved in terms of accuracy and computational efficiency. )erefore, a
short-term traffic flow forecastingmodel GA-TCN based on genetic algorithm (GA) optimized time convolutional neural network
(TCN) is proposed in this paper. )e prediction error was considered as the fitness value and the genetic algorithm was used to
optimize the filters, kernel size, batch size, and dilations hyperparameters of the temporal convolutional neural network to
determine the optimal fitness prediction model. Finally, the model was tested using the public dataset PEMS. )e results showed
that the average absolute error of the proposed GA-TCN decreased by 34.09%, 22.42%, and 26.33% compared with LSTM, GRU,
and TCN in working days, while the average absolute error of the GA-TCN decreased by 24.42%, 2.33%, and 3.92% in weekend
days, respectively. )e results indicate that the model proposed in this paper has a better adaptability and higher prediction
accuracy in short-term traffic flow forecasting compared with the existing models. )e proposed model can provide important
support for the formulation of a dynamic traffic control scheme.

1. Introduction

Urban road resources are limited in time and space, and the
continuous growth of motor vehicle ownership increases the
pressure of urban traffic. Meanwhile, the similarity of res-
idents’ choice of travel route and travel time also aggravates
the traffic congestion. Problems including urban traffic
accidents, traffic congestion, and environmental pollution
have been widely concerned by the governments and the
traffic personnel. In order to improve the efficiency of traffic
operation, many countries are committed to developing
intelligent transportation systems based on communication,
sensors, computers, and other technologies [1, 2]. )e traffic
flow data is important for intelligent transportation system
analysis.)e historical traffic flow data can be used to predict
the future traffic flow, and the traffic management depart-
ment can take measures to intervene in traffic in advance in
order to ease traffic congestion and reduce traffic accidents.
Numerous studies have proposed and optimized traffic flow
forecasting methods, extracted traffic flow information,

mined potential laws of traffic flow data, and provided
theoretical support for intelligent transportation [3].

Most of the early research on traffic flow forecasting are
based on linear theoretical models, such as the historical
average model (HA), the automatic regression moving av-
erage model (ARIMA) [4] and its variants [5, 6], and the
Markov chain (MC) [7]. )ese models assume that the
conditional variance of time series is static, which does not
exist in real traffic conditions. Later, a variety of data-driven
traffic flow forecasting algorithms were developed based on
machine learning methods, such as Bayesian network [8],
K-nearest neighbor [9], and support vector machine (SVM)
[10]. However, these algorithms and their learning methods
cannot adapt to dynamic traffic, because they cannot capture
the nonlinear characteristics of complex traffic flows, and
cannot deal with a large number of structured and un-
structured traffic flow datasets.

In recent years, the real-time performance, accuracy, and
reliability of traffic data have been significantly improved
due to the rapid development of big data and intelligent
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transportation technology and the continuous improvement
of traffic facilities [11–13]. Deep neural network models with
high dimensional data processing and nonlinear data feature
mining capabilities have gained significant attention. )e
prediction model based on deep learning has gradually
become a mainstream trend of traffic flow forecasting
[14, 15]. Convolutional neural network (CNN) [16] and
recurrent neural network (RNN) [17] are two popular
networks that are widely used by researchers [18]. Since the
cyclic mechanism can perform the same task of each element
in the sequence, the RNN is more suitable for sequential
processing over time. )erefore, the RNN is widely used in
the temporal characteristics of traffic flow. However, the
RNN is susceptible to the disappearance of gradient, and it is
difficult to capture the long-term temporal characteristics. In
order to solve the problem of RNN’s long-term dependence
on time, Ma et al. proposed a long-term short-term memory
network (LSTM), compared it with the traditional predic-
tion methods, and verified the accuracy and generalization
of the LSTM prediction model [19]. Considering the tem-
poral and spatial correlation of traffic flow, Zhao et al.
established a new traffic pre-diction model based on an
LSTMnetwork throughmultiple memory cells [20]. In order
to reduce the computational complexity, Wu et al. proposed
the gated recursive cell network (GRU) based on the LSTM
and reduced the three gate functions in the LSTM to two
[21]. )e performance of the GRU was slightly better due to
the simpler gating structure and relatively low computa-
tional complexity. )e structure of these neural network
models uses continuous feedback between the input se-
quence and the time step to naturally combine the time
dependence and show better performance.

)e performance of a single neural network model is
limited. In order to further improve the adaptability of the
prediction model, the LSTM, the GRU, and the other
methods have been combined to form a composite model in
recent years [22]. Wu et al. used the LSTM to extract the
characteristics of the time structure, combined with the
ResNet to optimize the overall model, and reduced the
occurrence of gradient disappearance or explosion in net-
work degradation [23]. Sun et al. proposed a GRU neural
network model, called SSGRU, based on the linear regres-
sion coefficient for road network traffic [24].

Although the RNN and the improved models based on
the RNN have made substantial progress in traffic flow
forecasting, these models still have the problems of low
accuracy and low training efficiency. )erefore, to capture
the time dependence of traffic flow data more efficiently and
improve the applicability of the short-term traffic flow
forecasting model, this paper proposes a traffic flow fore-
casting model based on time convolution neural network
optimization of genetic algorithm. Taking the prediction
error as the applicability, a genetic algorithm is used to
determine the optimal hyperparameters combination of the
TCN neural network to improve the prediction accuracy of
the TCN neural network.

)e rest of this paper is organized as follows. Section 2
introduces time convolutional neural networks. In Section 3,
a GA-TCN model based on a genetic algorithm optimized

time convolutional neural network is proposed. )e pro-
posed model is verified using examples in Section 4. Finally,
Section 5 concludes the paper.

2. Time Convolutional Neural Networks

)e time convolutional neural network (TCN) [25] derived
from a CNN can directly use the powerful features of
convolution to extract the features across time steps.
)erefore, the TCN shows better performance than both the
LSTM and the GRU in many sequential tasks. )e main
structure of a TCN can be divided into causal convolution
for sequence and dilated convolution and residual modules
for historical data memory (see Figure 1).

2.1. Causal Convolution. Causal convolution is a strict time-
constrained model in which the value at time t depends only
on the value at time t at the next level and before it.

Filter F � (f1, f2, . . . , fk), the sequence
X � (x1, x2, . . . , xk), and the causal convolution at xt is

(F∗X) xt(  � 
K

k�1
fkxt− K+k. (1)

2.2. Dilated Convolution. Dilated convolution allows the
input of convolution to have interval sampling, and the
sampling rate is controlled by dilations. )e higher the level
is, the larger the size of d will be, which can make the size of
the effective window grow exponentially with the number of
layers.

Filter F � (f1, f2, . . . , fk), the sequence
X � (x1, x2, . . . , xk), and at xt, the dilated convolution with
the dilation d is

Fd ∗X(  xt(  � 
K

k�1
fkxt− (K− k)d. (2)

2.3. Residual Module. )e training becomes extremely diffi-
cult with the increase of network depth mainly because in the
process of network training based on stochastic gradient de-
scent, themultilayer backpropagation of error signals can easily
cause the phenomenon of “gradient dispersion” or “gradient
explosion.” A residual network (ResNet) [26] can well solve the
problem of difficult training caused by network depth.

In the TCN, the simple connections between the layers
are replaced by the residual structures as shown in Figure 2.
At the same time, x is transformed by 1× 1Conv to solve the
problem that x and F(x) cannot be added directly due to
different channel numbers.

3. GA-TCN Prediction Model

3.1. Model Structure. A TCN based on a convolutional
neural network can extract the time features of traffic flow
across time steps. In this paper, the TCN is selected as the
traffic flow forecasting network mainly due to its simple
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structure and strong performance for sequence modeling
tasks. )e prediction accuracy of the TCN is closely related
to the value of the hyperparameter. )e filters, kernel size,
batch size, and dilations need to be optimized in the search
space to determine the best hyperparameters combination.

)is paper uses the genetic algorithm to optimize the
TCN parameters. )e traffic flow time series data is used as
the input, the prediction error is used as the fitness value,
and the prediction of traffic flow of the next stage is con-
sidered as the output matrix. )e time iterative convolution
neural network adaptive weight adjustment model is used to
obtain the optimal solution of search space. )e structure of
the GA-TCN traffic flow forecasting model is shown in
Figure 3.

3.2.GAOptimizationModule. A genetic algorithm (GA) is a
computational model of the biological evolution process
that simulates the natural selection and genetic mechanism
of Darwinian evolution [27]. )e GA is a method to search
for the optimal solution by simulating the natural evolution
process. It transforms the target problem into the process of
biological evolution and generates new populations
through crossover, mutation, replication, and other op-
erations and eliminate the solutions with low fitness. )e
traditional GA is modified with the combination of a time
convolutional neural network. )e main steps of the op-
timization process of the modified genetic algorithm are as
follows.

(1) In population initialization, each chromosome is set
to the same length. If it fails to meet the length
requirements, it is filled with zero. )e coding form
of the chromosome does not adopt binary form but
only exchanges the elements between different genes.

(2) )e mean absolute error (MAE) of the TCN is used
as the fitness function:

H �
1
n



n

i�1
yt − yp



. (3)
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Figure 1: Time convolutional neural network structure.
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Figure 2: Residual connection structure.
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(3) )e individual of the solution is selected for cross-
over and mutation operations. )e modification of
the crossover function consists of two steps. First,
identify the positions on the two chromosomes (A
and B) that need to be exchanged, and then traverse
the genes on the two chromosomes at these posi-
tions. If the gene at this location on any chromosome
is zero or the gene to be swapped is related to di-
lations layers, cancel the swap at this location.
Generally, the dilation increases by a multiple of 2.
)erefore, only filters, kernel size, batch size, and the
layers of dilations are mutated.

(4) If the fitness function target value reaches the optimal
value,move to the next step; otherwise, return to step 3.

(5) Obtain the fitness target value and the best
parameters.

(6) Calculate the MAE of pre-diction based on the best
parameters.

(7) If the number of population iterations is satisfied, the
calculation stops, and then the global optimal

hyperparameters combination [filters, kernel size,
batch size, and dilations] of the TCN is obtained.
Otherwise, return to step 6.

3.3. TCN Prediction Module. )e TCN prediction module
mainly uses one-dimensional causal convolution and a filter
f of width k. According to the input traffic flow data
(X � xn− 1, xn− 2, . . . , xn− m), the convolution operation is
performed to obtain A sequence [A B] of lengthm-k+ 1 and
with the same number of channels:

[A B] � f∗Xtest, (4)

where ∗ represents the convolution operation.
)e Dropout setting allows a random selection of

neurons to be inactivated to prevent training overfitting and
speed up model convergence. )e Dropout coefficient is set
to 0.1 in the TCN prediction module.

)e Adam optimizer is used in the TCN prediction
module to optimize the parameters of the model to reduce
the loss. Adam is an adaptive optimization algorithm that
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Figure 3: Structural diagram of the GA-TCN traffic flow forecasting model.
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performs one-step optimization on a random objective
function. It combines the advantages of the AdaGrad and the
RMSProp optimizers.

ReLU represents a linear integer function and is used as
the activation function of the TCN:

S
j,l

t � g W
1
S

j,l− 1
t− s + W

2
S

j,l− 1
t + b . (5)

After adding the residual, the activation function
becomes

S
j,l
t � S

j,l− 1
t + VS

j,l

t + e, (6)

where W1 and W2 are the weight matrices and b is the bias
vector.

)e valid information in A is extracted by activating the
function S

j,l
t (B) and made accessible at the next level. )e

final output is O:

O � P⊙ S
j,l
t (B), (7)

where ⊙ represents the Hadamard product.

4. Experiments

4.1. DataDescription. )e experiment in this paper used the
public dataset PEMS, which is a real-time collection of
California highway traffic data by the Caltrans Performance
Measurement System. PEMS data was collected every 30
seconds to form the final data every 5 minutes. )e PEMS
dataset used in the experiment were collected from a station
on highway I05, as shown in Figure 4.)e time range was 00:
00:00–23:59:59 fromMay 1st to June 30th in 2014, with a total
of 61 days and 17568 records.

)e main conditions of the PEMS dataset are shown in
Table 1. )e main data used in the experiment were time-
stamp and total flow.

)rough descriptive statistical analysis of traffic data,
distribution histograms and cumulative frequency graphs
were drawn, as shown in Figure 5. We can see that the flow is
mainly distributed within 20–360. Among them, the pro-
portion in the range of 20–60 and 240–300 is relatively high,
and the proportion in the range of 60–240 and 300–360 is
relatively low.

4.2. Data Preprocessing. Due to equipment failure, noise
interference, improper storage, human error, and other
emergencies, the data cannot be collected 100%, and there
are missing and outlier values. )erefore, it is necessary to
preprocess the original data before establishing the pre-
diction model. From the descriptive statistical analysis of the
original data, it can be found that there are no large outliers
in the data, and only some 0 values exist. In the experiment,
we used 0 as the missing value. )e sensitivity of the tree
model to missing values is low, and it is suitable for the case
of moderate or large data. )erefore, the random forest was
used to fill in the missing values in this experiment.

)e traffic flow data is a nonstationary random sequence.
In the experiment, minimum and maximum normalization

was adopted to map the data to the interval [0,1]. )e
normalization is defined as

z �
x − xmin

xmax − xmin
, (8)

where z is the normalized data, x is the original data, and
xmin and xmax are the maximum and maximum values of x,
respectively.

)ere were obvious differences in the characteristics of
sunrise travel between working days and weekend days.
)erefore, the data was divided into working days and
weekend days. )ere were 43 working days and 18 weekend
days. )e data of the last working day and last weekend day
were used as the test set, and the rest of the data was used as
the training set.

4.3. Experiment Settings

4.3.1. Baseline Methods. In order to better verify the pre-
diction effect of the model proposed in this paper, the
following three baseline methods are added in the experi-
ment for comparison.

)e first method is LSTM. It is special RNN that adopts a
threshold structure to transform the RNN, solves the
problems of gradient disappearance and gradient explosion
in regression prediction of long time series of RNN, and can
learn long dependence.

)e second method is GRU. It is a variant of RNN. )e
LSTM has three gate functions: input gate, forgetting gate,
and output gate, whereas in the GRU model, there are only
update and reset gates.

)e final method is TCN. Time convolutional neural
network is a new algorithm based on CNN that can solve
time series prediction.

4.3.2. Evaluation Metrics. In this experiment, the root mean
square error (RMSE), the mean absolute error (MAE), and
the mean absolute percentage error (MAPE) are used as the
evaluation indexes of the model:

RMSE �

�������������

1
n



n

i�1
yt − yp 

2




,

MAE �
1
n



n

i�1
yt − yp



,

MAPE �
1
n



n

i�1

yt − yp

yt




,

(9)

where yt and yp are the true and the predicted values of the
traffic volume, respectively, and n is the number of samples.

4.4. Parameter Optimal Value. )e search range of filters,
kernel size, batch size, and dilations layer is set to [5–30],
[2–10], [8, 16, ..., 128, 256], and [2–8], respectively. )e
optimal combination of TCN is determined to be
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[filters� 20, kernel size� 3, batch size� 32, and dilations�

[1, 2, 4, 8, 16, 32]]. With the increase of the number of
iterations, the training error of the GA-TCN model grad-
ually converges, and the mean square error of the hyper-
parameter optimal solution decreases to achieve the optimal
solution of the search space, as shown in Figure 6.

4.5. Experimental Results. Figures 7 and 8 compare the
prediction results of the four models on working and
weekend days, respectively. All four models can fit the real
data well. During the morning peak and evening peak on
working days, the flow has the obvious mutation. We choose
6 : 30 to 9 : 00 as an example to compare and analyze the
prediction model. As can be seen from the enlarged figure of

this period, when the traffic volume changes dramatically,
the changing trend of the GA-TCN model is most similar to
the actual traffic volume. )e prediction error of each model
can be obtained by calculating the difference between the
predicted value and actual flow. Among them, the average
error of LSTM, GRU, TCN, and GA-TCN is 8.40, 5.81, 7.29,
and 5.18, respectively. GA-TCN model has the lowest error
and the highest prediction accuracy. On weekend days, the
peak traffic flow lasts longer and is relatively stable. We
choose 13 : 00 to 18 : 30 as an example to compare and
analyze the prediction model. )e predicted results of the
GA-TCN model are consistent with the actual traffic flow,
while the predicted results of the LSTM and GRU model

Figure 4: )e station of data collection.

Table 1: )e main conditions of the PEMS dataset.

Timestamp Station Freeway Direction of travel Station length Total flow Avg. occupancy Avg. speed
2014/5/1 0:00 716453 105 E 0.305 59 0.0105 68.5
2014/5/1 0:05 716453 105 E 0.305 60 0.0104 68.6
2014/5/1 0:10 716453 105 E 0.305 59 0.0107 68.8
2014/5/1 0:15 716453 105 E 0.305 57 0.0103 68.7
2014/5/1 0:20 716453 105 E 0.305 53 0.0098 68.6
··· ··· ··· ··· ··· ··· ··· ···
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Figure 6: Convergence curve of the GA-TCN model.
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have an obvious time lag. )e average error of LSTM, GRU,
TCN, and GA-TCN is 3.82, 4.47, 3.16, and 3.47, respectively.
TCN has the smallest mean error, followed by GA-TCN.
Although the average error of GA-TCN is larger than that of
TCN, the error value of GATCN is basically the same; that is
to say, the prediction result of TCN is completely consistent
with the change trend of the actual flow. )is shows that the
GA-TCN model proposed in this paper has strong adapt-
ability and higher prediction accuracy.

)ree evaluation indicators, RMSE, MAE, and MAPE,
were obtained through the predicted working and weekend
days data of four different models, as shown in Table 2. In the
evaluation index statistics, the prediction results of the
proposed GA-TCN model are the best. )e RMSE, MAE,
and MAPE of the suboptimal working day model are
18.36%, 28.90%, and 24.69% higher than that of the GA-
LSTM model, respectively. )e RMSE, MAE, and MAPE of
the suboptimal weekend day model are 3.27%, 2.38%, and
5.68% higher than that of the GA-LSTMmodel, respectively.

4.6. Analysis of Influencing Factors. In order to more intui-
tively show that the proposed GA-TCN model has better
accuracy than the other models, Figure 9 shows the RMSE and
MAE distribution histograms of the four models according to
the data in Table 2.)e working dayMAE of LSTM, GRU, and
TCN is higher than that of the weekend days, while the
working day MAE of the GA-TCN is lower than that of the

weekend days. Since the data volume on weekdays was more
than twice that of the weekend days, the results demonstrate
the GA-TCN proposed in this paper is more suitable for the
processing of big data, can more effectively capture the short-
term dependence of traffic flow, and improve the accuracy of
short-term traffic flow forecasting.

Generally, the time interval for short-term traffic flow
forecasting is [5–30] min. For further evaluation, the per-
formances of four models were tested for short-term traffic
flow forecasting at different time intervals. )e results are
shown in Tables 3 and 4.

With the increase of prediction time interval, the pre-
diction difficulty of the model gradually increases. It can be
seen from the comparison of prediction performance at
different time intervals in Figure 10 that the prediction error
of the four models increases roughly linearly. Among them,
the change trend and degree of RMSE and MAE of the four
working day models are the same. )e RMSE, MAE, and
MAPE of weekend days LSTM increase by 2.93, 1.91, and
0.5%, respectively, being the most significant changes. )e
RMSE and the MAE of the GA-TCN increase by 1.34, 1.07,
and 0.37%, respectively, being the lowest changes. )e re-
sults show that the performance of the proposed GA-TCN is
better than the existing models at all time intervals. )e
proposed model has relatively good prediction performance
when the data interval is large, and the data sample is small,
and it can be better applied to short-term traffic flow
forecasting at various time intervals.
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Figure 7: Comparison of the real value of traffic flow in a working day.
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4.7. Influence of Parameters on Model Optimization.
Finding the optimal characteristic parameter value by ge-
netic algorithm will reduce the prediction efficiency of the
model. In order to reduce the influence of the searching
process on the efficiency of prediction, we first selected some
samples to preliminarily determine the searching range of
TCN characteristic parameters. )en, we make statistics on
the optimal individuals of 200 iterations and analyze the
relationship between characteristic parameters and error
and efficiency, as shown in Figure 11.

It can be seen from Figure 11(a) that MAE increases
with the increase of filters, and MAE within the range of
5–15 is relatively low and stable. Figure 11(b) shows that
although kernel size has a certain influence on MAE, the
influence is small. )e impact of batch size on model
prediction results is related to the actual data size. You
need to adjust the batch size based on the data size.
However, under the same number of epochs, a large batch
size requires less batch and shorter training time. In other

words, in order to improve the forecasting efficiency, the
larger the batch size, the better. However, increasing the
batch size will reduce the model generalization perfor-
mance, and the model performance will decline. )is also
indicates that in Figure 11(c), when the batch size is 32 or
64, the prediction effect is good, but with the increase of
the batch size, the prediction performance gradually de-
creases. Figure 11(d) shows that with the gradual increase
of dilations layer, the model accuracy first improves and
reaches the optimal value when dilations layer � 4
(dilations � [1, 2, 4, 8]), and then gradually decreases,
because the increase of dilations layer leads to a larger
receptive field. )e benefit of increasing receptive field is
to obtain longer temporal dependence of traffic flow.
However, with the increase of dilations layer, the number
of network layers gradually deepened, and the amount of
computation and complexity increased, leading to more
difficult training of the model, so the model accuracy
decreased.
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Figure 8: Comparison of the real value of traffic flow on a weekend day.

Table 2: Comparison of prediction results of four different models.

Model
Workday Weekend

RMSE MAE MAPE (%) RMSE MAE MAPE (%)
LSTM 5.94 3.99 2.72 5.38 3.89 3.74
GRU 4.77 3.39 2.74 4.11 3.01 2.70
TCN 5.33 3.57 2.02 4.10 3.06 2.42
GA-TCN 4.03 2.63 1.62 3.97 2.94 2.29

8 Journal of Advanced Transportation



0

1

2

3

4

5

6
RM

SE

workday weekend

LSTM
GRU

TCN
GA-TCN

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
A

E

workday weekend

LSTM
GRU

TCN
GA-TCN

(b)

workday weekend

LSTM
GRU

TCN
GA-TCN

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

M
A

PE

(c)

Figure 9: Performance comparison of the four models. (a) Comparison of RMSE. (b) Comparison of MAE. (c) Comparison of MAPE.

Table 3: Comparison of evaluation indicators on working days.

Model Evaluation indicators
Time intervals (min)

5 10 15 20 25 30

LSTM
RMSE 5.94 6.27 6.48 6.85 7.52 8.08
MAE 3.99 4.42 4.71 4.97 5.49 5.97
MAPE 2.72% 2.79% 2.88% 2.92% 2.98% 3.07%

GRU
RMSE 4.77 5.12 5.35 5.89 6.33 7.02
MAE 3.39 3.89 4.11 4.51 4.92 5.48
MAPE 2.74% 2.79% 2.85% 2.95% 3.00% 3.09%

TCN
RMSE 5.33 5.53 5.93 6.13 6.73 6.93
MAE 3.57 3.94 4.28 4.76 5.18 5.51
MAPE 2.02% 2.11% 2.16% 2.20% 2.28% 2.41%

GA-TCN
RMSE 4.03 4.27 4.55 5.02 5.37 5.79
MAE 2.63 3.05 3.53 3.81 4.25 4.51
MAPE 1.62% 1.68% 1.72% 1.82% 1.89% 1.97%
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Figure 10: Continued.

Table 4: Comparison of evaluation indicators on weekend days.

Model Evaluation indicators
Time intervals (min)

5 10 15 20 25 30

LSTM
RMSE 4.53 4.92 5.27 5.94 6.76 7.46
MAE 3.46 3.67 4.21 4.67 4.98 5.37
MAPE 3.74% 3.83% 3.96% 4.01% 4.10% 4.24%

GRU
RMSE 4.11 4.38 4.79 5.16 5.73 6.12
MAE 3.01 3.31 3.69 3.91 4.37 4.75
MAPE 2.70% 2.80% 2.95% 3.16% 3.25% 3.37%

TCN
RMSE 4.1 4.32 4.57 4.82 5.12 5.47
MAE 3.06 3.22 3.45 3.54 3.91 4.24
MAPE 2.42% 2.50% 2.56% 2.69% 2.73% 2.85%

GA-TCN
RMSE 3.97 4.21 4.38 4.76 4.93 5.31
MAE 2.94 3.06 3.32 3.51 3.7 4.01
MAPE 2.29% 2.34% 2.44% 2.51% 2.58% 2.66%
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Figure 10: Performance comparison of the fourmodels at different time intervals. (a) Comparison of RMSE onworking dataset. (b) Comparison of
MAE onworking dataset. (c) Comparison ofMAPE onworking dataset. (d) Comparison of RMSE onweekend dataset. (e) Comparison ofMAE on
weekend dataset. (f) Comparison of MAPE on weekend dataset.
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Figure 11: Continued.
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5. Conclusion

In this paper, a short-term traffic flow forecasting model
based on genetic algorithm optimization time convolution
neural network is proposed. In the proposed model, the
prediction error is taken as the fitness value, and the filters,
kernel size, batch size, and dilations of the temporal con-
volutional neural network are optimized using the genetic
algorithm to determine the prediction model with the best
accuracy and efficiency.)emodel is experimentally verified
on the PEMS dataset. )e experimental results show that the
proposed model is better than the existing baseline methods
including LSTM, GRU, and TCN and has more adaptability
and higher accuracy in short-term traffic flow forecasting.

)e experiment conducted to verify the effectiveness of the
proposedmodel was limited to certain parts of the city. In order
to establish a more accurate prediction model, the entire urban
road network should be used as the research object. In future
research, many influencing factors such as traffic accidents,
temperature and humidity, and precipitationwill be considered.
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