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Aimed at the problem of occasional congestion control, the cusp catastrophe theory is used to establish the catastrophe model of
the urban road system under occasional congestion, finding breakpoints and analyzing stability after urban road system ca-
tastrophes by constructing the energetic function; based on the catastrophe characteristics of the urban road system, the feasibility
method of congestion control is discussed. The results show that the control method of traffic flow based on catastrophe
characteristics of the urban road system can effectively improve the efficiency of the road system in theory. Finally, the ap-
plicability of the control method based on catastrophe characteristics is analyzed by examples under different occasional

congestion situations.

1. Introduction

Occasional congestion refers to the phenomenon of traffic
congestion caused by the decline of road capacity due to
occasional accidents. Occasional congestion often ad-
versely affects the efficiency of the urban road system, and
improper control may even cause the congestion to spread
to upstream intersections and form regional blockages.
Therefore, the research on the control of urban road
congestion has important theoretical significance and
practical value.

In existing research on the control of occasional
congestion, the goal is to minimize the delay time [1], or
limit the density [2], or the maximum capacity [3]; the
control methods mainly adopt the signal light control [4].
The above research mainly focuses on the single-lane
situation. In this paper, for the multilane situation, take
the maximum capacity as the goal, the control method of
traffic flow based on catastrophe characteristics of urban
road system is proposed, and the efficiency of the control
method under different occasional congestion situations
is discussed.

2. Catastrophe Theory and the Urban
Road System

Catastrophe theory is the French mathematician Thom’s
theory of discontinuous change based on mathematical
theories such as singularity theory and stability theory [5]. In
catastrophe theory, potential refers to the ability of the
system to develop in a certain direction. The independent
variable of the potential function is the state variable used to
describe the behavior of the system, and the factor that
affects the change of the behavior of the system is the control
variable. Existing studies have summarized 7 primary ca-
tastrophes when the number of state variables does not
exceed two and the number of control variables does not
exceed four: cusp catastrophe, folding catastrophe, dovetail
catastrophe, hyperbolic umbilical point catastrophe, but-
terfly catastrophe, ellipse umbilical point catastrophe, and
parabolic umbilical point catastrophe [6]. For a system with
a catastrophe phenomenon, as long as the number of its state
variables and control variables is established, one of the
corresponding seven elementary catastrophe functions can
be selected as the catastrophe model of the system to analyze
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the catastrophe characteristics of the system. The basic idea
of catastrophe theory is to use bifurcation theory to analyze
the stability of the system, to classify breakpoints according
to potential functions, to study the characteristics of dis-
continuous states near various breakpoints, to find the
breakpoints of potential function catastrophes, and to an-
alyze the system by the process of catastrophe from one
stable state to another stable state [7]. Catastrophe theory has
very strong applicability and has been applied to various
fields since it was proposed.

Cusp systems generally have five major characteristics:
sudden jump, multimodality, unreachability, divergence,
and hysteresis [6]. The road traffic system is a complex
system described by multiple parameters. Its operation
process conforms to the five characteristics of cusp abrupt
changes: sudden jump (the system transition from a non-
crowded state to a crowded state is not a gradual process, but
a leap, a catastrophe), multimodality (the system has two
steady states, crowded and noncrowded), unreachability
(some areas in the system cannot be reached in practice),
bifurcation (when the system is in a critical equilibrium
state, where just an unstable balance exists instantaneously.
Once it encounters disturbances from external factors, this
balance may be destroyed. The system may be biased to a
crowded state or a noncrowded state), divergence (in a
critical state, small changes in control variables will lead to a
catastrophe of the state variable), and hysteresis (the di-
rection of the catastrophe is related to the direction of the
control variable, and the catastrophe of the control variable
from one direction is different from the catastrophe from the
other direction) [8].

This paper uses the cusp catastrophe theory to analyze
the catastrophe characteristics of the urban road system
under occasional congestion. Taking the occupancy rate of
the traffic volume in the carrying capacity as the state
variable, and the change rate of the traffic flow and the
change rate of the road capacity as the control variables, the
cusp catastrophe model of the urban road traffic system
under occasional congestion is established. The impact of
occasional congestion on the road traffic system is first
manifested as changes in control variables, which further
cause state variables to change in multiple state spaces and
even the system catastrophes. The cusp catastrophe model is
used to analyze the catastrophe characteristics of the system,
determining breakpoints and analyzing stability after the
urban road system catastrophes. Finally, we give a feasible
method for traffic flow control.

3. Catastrophe Model

3.1. State Variables and Control Variables of the Urban Road
System. In this paper, the occupancy rate of traffic volume in
the carrying capacity is selected as the state variable of the
system. Traffic flow and road capacity are the two control
variables of the system, in order to maintain the same di-
mension as the state variable, the change rate of traffic flow
and the change rate of road capacity are selected as the
control variable of the system, and the cusp catastrophe
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model is established to analyze the catastrophe character-
istics of the road traffic system under occasional congestion.

Definition 1. The occupancy rate of the traffic volume in the
carrying capacity is taken as a state variable, denoted as 7 (t):
_X()
Y@

n(t) x 100%, (1)

where X (¢) is the traffic volume of the road system and Y (¢)
is the carrying capacity of the road the system.

Definition 2. The change rate of the traffic flow is regarded as

a control variable of the system, denoted as y(¢):

Q(t) - Q(0)
Q(0)

where Q(0) is the traffic flow at the moment of the accident
and Q(t) is the traffic flow at the moment t.

y(®) = x 100%, (2)

Definition 3. Take the change rate of the road capacity as
another control variable of the system, denoted as A (¢):

C(0)-C(t)

MO ="

x 100%, (3)
where C (0) is the road capacity at the moment of an accident
and C(t) is the capacity of the road at the moment t.

In practice, urban roads often use multiple lanes in the
same direction in urban planning. When accidents occur,
the lanes are occupied and the road capacity will inevitably
decrease. Occasional accidents occur in different locations
and have different impacts on road capacity. The impact
value is mainly determined by the lane utilization coefficient.
Take three lanes as an example. From the center line of the
road to the rightmost lane, they are defined as lanes 1, 2, and
3 respectively. The utilization coefficient of the lane is
gradually reduced, and the utilization coeflicient of each lane
is 1.00, 0.8-0.89 (take 0.87), and 0.65-0.78 (take 0.73), re-
spectively; then, when an accident occurs, the road capacity
Cis

C=CyPp;, (4)

where C,) is the design capacity of the road and P is lane loss
coefficient, expressed by the ratio of the number of lanes
available to the total number of lanes [9]:

N-n

P= x 100%, (5)
where 7 is the number of damaged lanes and N is the
number of total lanes.

In equation (4), 8; denotes the weight which is the sum
of utilization coeflicients of available lanes to total lane
utilization coeflicients, as occasional congestion occurring in
lane i:

Yoa-ya
Yo

i=1,2,3, (6)

/3]':
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where ) af is the sum of utilization coeflicients of lanes
occupied or damaged as occasional congestion occurring in
lane i and ) «; is total lane utilization coeflicients.

3.2. Cusp Catastrophe Model of the Urban Road System under
Occasional Congestion. Taking the occupancy rate of the
traffic volume in the carrying capacity as the state variable,
and the change rate of traffic flow and the change rate of
capacity as the two control variables, the cusp catastrophe
model of urban road system under occasional congestion is
established, and its potential function is

E(n) =10 +y®n* (t) + M6y (8). (7)

According to E' (1) =0, the equilibrium surface (ca-
tastrophe manifold) is

4 (t) + 2y () (t) + A(t) = 0. (8)
According to E" (1) = 0, the singularity is
127 (t) + 2y (t) = 0. (9)

Combine equations (8) and (9) to obtain the bifurcation
set:

8y ()’ +271(t)" = 0. (10)

The urban road system is a three-dimensional space
composed of state variables # (t) and control variables A (t),
y (). The equilibrium surface is a smooth surface containing
folds (or pleats). The upper and lower sheets of the surface
are stable equilibrium points. In the middle sheet, the system
moves in the direction which minimizes potential function;
at this state, the equilibrium point is unstable, so it is called
the unreachable region, while in the upper and lower sheets,
the potential function reaches the minimum value and the
equilibrium point is stable, which is also the state the po-
tential function is usually located in. The bifurcation set is
defined by projection of the fold, which determines the area
of the catastrophic behavior [10].

When control variables move outside the bifurcation set,
the corresponding equilibrium point changes in the upper or
lower of the manifold, and the system is stable; when control
variables move through the bifurcation set point, the cor-
responding equilibrium point is at the edge of the upper and
lower of the manifold; at this time, the system is about to
undergo a catastrophe; when control variables move around
the inner region of the bifurcation set, the equilibrium point
is at the middle sheet of the manifold, and the system is in an
unstable state, and it jumps to another state at any time.

4. Catastrophe Analysis

When using the cusp catastrophe model to analyze the
catastrophe process of the road traffic system under occa-
sional congestion, it is necessary to construct the energetic
function of the system to describe the relationship between
the variables. The energetic function is the complex sum
term of the potential function, which has the same catas-
trophe characteristics as the potential function [6].

Therefore, through analyzing the energetic function of the
system, breakpoints of the system can be solved and the
stability of the system can be discussed. On this basis, the
feasibility control method of the flow under the occasional
congestion can be obtained.

The energetic function of the road traffic system [3] is as
follows:

E() = mQ(OV? (1), (11)

where m is the mass coefficient of the standard unit vehicle
and V (t) is the average speed of the vehicle.

4.1. Speed Model Based on the Relationship between Traffic
Flow Parameters. Traffic flow Q, average speed V, and
density K are the three basic parameters that characterize
traffic flow, and the basic relationship between the three is
[11]: Q =VK. According to the Greenshields velocity-
density linear model [12], V = aK + b, where a and b are the
variable coefficients, which can be obtained through data
regression analysis. The flow-density relationship is thus
obtained as

Q =aK” + bK. (12)

Let (dQ/dK) =0, that is, 2aK + b = 0, obtaining the
following: when K = —(b/2a), V = b/2, the flow reaches the
maximum value: Q. = —(b*/4a); the following road ca-

pacity C is formulated:

2
c-Y (13)
4a
Let the length of the road be L, the time when the vehicle
passes in the free flow state is expressed as T, = L/b;
meanwhile, V =L/T, K = (V/a) — (b/a), and combining
with flow-density relationship (12), we obtain

Q= —4c<%>2 +4C % (14)

Formula (14) can be regarded as a quadratic equation of
one variable about T,/T, and the path resistance function
can be obtained by solving

2
rn(is@) w

The application range of the road impedance function
model is 0< (Q/C) <1, the degree of road load Q/C as the
independent variable, denoting different vehicle flow speeds.
When Q/C =1, that is, T/T, = 2, it means that the vehicle
travel time is twice the free travel time, when the road isin a
saturated state [13].

Based on the independent resistance function, the av-
erage speed V (t) of vehicles in the urban road system can be
expressed as

V() = (16)

b
2/1+1=(QM®ICH)]



4.2. Catastrophe Analysis of the Urban Road System under
Occasional Congestion. From equations (11) and (16), the
energetic function of the urban road system is
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2
1 5 5 aK?(t) + bK (1)
E(K (), C (1) = gm(aK* (t) + bK () )b <1 + \]1 —cw | (17)
The set of breakpoints of the energetic function can be
obtained by 0E (K (), C(t))/0K (t) = 0, which can be sim-
plified as
2 2
<a1<(t)+1b) . \/1 K () +bK (1) aK (1)* + bK (1) o )
2 c) C (1 -(ak’ (1) + BK (1)/C (1))
and the breakpoints are obtained: Whether the second derivative is negative or not is the
condition for judging the stability of breakpoints:
3
K(t) = %C(t). (19)

2 2 12
E(K (1), 1 K 1/2 K K
IEXM.CH) _ 20K (0)+ ib] 2aK (1) +3b] + laX () + 1/2b]"aK" (¢) + bR 2) (20)
3K (t) 2 271 c)(1-(aK? (1) + bK ()/C(1)))
simplified as minimum point, and also y (¢) begins to change; at time i, the
3 potential function reaches the junction of the bifurcation set
K(t)< Ec(t)- (21)  point; that is, when the control variable satisfies the bifur-

When 9*E (K (), C(£))/0K (t)* >0, the energetic func-
tion has a minimum point, breakpoints can be judged to be a
stable breakpoint; when O’E(K (1),C(t))/0K (t)*<0, the
energetic function has a maximum value, and breakpoints
can be judged to be an unstable breakpoint; when
*E(K (1), C(t))/0K (t)* = 0, it is the inflection point of the
energetic function with respect to density.

Therefore, the break flow Q (i) of the urban road system
at the catastrophe time can be obtained:

3C(i)>2 ,3¢0)

2b 2 (22)

Q1) =a(

After the catastrophe, the potential function will con-
tinue to move continuously to the minimum value until it is
stable at time j; then the stable traffic flow will be

N_9a . .
Q(j) = 3C* () +3C0)) (23)

Suppose that when an accident occurs at 0 moment, the
road capacity becomes smaller and the control variable A ()

of the system becomes larger instantly. According to
Maxwell’s agreement, the potential function will move to a

cation set point: 8y ()% + 271 (i) = 0, the potential function
suddenly becomes smaller, discontinuity occurs, and the
system jumps from the original stable state to another stable
state; as the control variable continues to change, the po-
tential function continues to move slowly and continuously
to the minimum value; the system stabilizes after reaching
the equilibrium point j in the new stable area and obtains a
stable traffic flow: Q(j) = (9a/b*)C*(j) +3C(j) (see
Figure 1).

5. Traffic Flow Control Method Based on
Catastrophe Characteristics of the Urban
Road System

Catastrophe theory has two main catastrophe conventions:
ideal delay convention and Maxwell convention. The former
believes that the system has been stable at the established
equilibrium position and remains unchanged until the
equilibrium position disappears; the latter refers to the
general direction of the system that makes the overall po-
tential extremely small to shift to the equilibrium position.
The road traffic system is affected by the control variables
and its operation changes are more random. Therefore, the
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F1GURE 1: The change graph of the potential function of occasional congestion.

Maxwell agreement is more suitable for the road traffic
system.

In the catastrophe model, the larger the potential
function, the higher the operating efficiency of the urban
road system. According to Maxwell’s agreement, the po-
tential function always moves to the smallest equilibrium
position of the potential global, from one stable area to
another stable area, until the equilibrium is stable in another
area; that is, the system has a catastrophe. At this time, the
potential function can only move to the maximum direction
with the help of external force, that is, adopt the corre-
sponding traffic flow control strategy to improve the op-
erating efficiency of the urban road system.

Based on the analysis of the catastrophe process of urban
road system, at a critical point the stable points, and the bi-
furcation set, the potential function suddenly becomes smaller,
and the system suddenly changes from the original stable
region to another stable region and continuously becomes
smaller in the new stable region until balanced. Based on this,
the feasibility control methods of the traffic flow are given: (1)
Before a catastrophe, control the traffic flow to make it less than
the breakpoints. Preventing the catastrophe occurs, and the
potential function decreases sharply. (2) After a catastrophe,
control the traffic flow with a certain restriction rate to be as
small as the stable traffic flow, preventing the potential function
moving to a smaller direction, in order to obtain the maximum
capacity. According to formulas (22) and (23), the traffic flow
restriction rate is obtained [3]:

4(3aC (i) + %)

* =|1- %. 24
y* (t) [1 3ac(i)+2b2:|><100/ (24)

6. Experiment

6.1. Experimental Parameters. In this paper, a cellular au-
tomaton model is used to simulate the evolution of a three-

lane road traffic flow under occasional accidents. Construct a
one-direction and three-lane road system with a length of
800 cells (one cell is 3.75 m in length equal to 3 km in actual
length). The design capacity of the road system is 4200puc/h,
and the maximum speed of the vehicle v = 67.5km/h. The
forced lane change probability and random slowdown rate of
ordinary vehicles are 0.7 and 0.3, respectively. The vehicle
enters the road with probability of 0.7 from the area which is
at the entrance of each lane with a length of 6 cells. Starting
from 1000 s before the accident, data is collected 100 s per
interval until the accident lasts 2000 s, and the traffic flow
evolution data with a duration of 3000s is obtained (see
Table 1).

6.2. Results and Analysis. The parameters describing the
urban road system after urban road system catastrophes
under the three occasional situations are calculated (see
Table 2).

Based on the parameter after urban road system ca-
tastrophes, the flow restriction rates under three occasional
congestion situations are calculated separately, and a
comparison is drawn between the operating efficiency of the
urban road system before controlling and after control,
obtaining the efficiency of the traffic flow controlling (see
Table 3).

The analysis of the example shows that, under occasional
congestion, the traffic flow control method based on the
catastrophe characteristics of the road system can effectively
improve the operation efficiency of the road system and
improve the road capacity. The efficiency of traffic flow
controlling is related to the location of the accident and the
number of lanes occupied. The results show the following:
when one lane is occupied, the efficiency of traffic flow
controlling is higher than when two lanes are occupied. In
the case of a lane being occupied, the efficiency of traffic flow
controlling when lane 2 is occupied is lower than when lane
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TaBLE 1: Traffic flow simulation data under occasional accidents.

Lane 2 is occupied

Lane 3 is occupied

Lanes 2 and 3 are occupied

Number  Speed, Density, Flow, Speed, Density, Flow, Speed, Density, Flow,

km/h puc/km puc/h km/h puc/km puc/h km/h puc/km puc/h
1 57.72 84.79 3663.03 61.40 78.16 3739.40 60.78 79.40 3727.27
2 58.53 82.27 3671.52 60.66 81.03 3921.21 59.12 83.03 3824.24
3 58.80 81.62 3776.97 59.27 81.48 3767.27 53.15 91.32 3618.18
4 56.45 80.60 3470.30 60.47 80.27 3778.18 54.49 91.38 3719.70
5 56.00 86.97 3723.64 58.02 82.40 3699.40 58.53 82.24 3763.64
6 56.52 86.73 3710.30 55.85 86.94 3621.82 57.33 84.19 3621.21
7 58.21 85.56 3866.67 57.81 86.77 3827.88 56.16 87.74 3754.55
8 57.833 84.95 3760.00 58.80 83.55 3766.06 55.73 87.44 3742.42
9 56.47 86.40 3746.67 60.01 81.72 3803.64 57.83 84.91 3830.30
10 54.23 89.15 3716.36 57.00 87.20 3795.15 55.65 88.61 3725.76
11 40.06 113.61 3143.03 39.12 119.73 3204.85 33.12 134.98 2915.15
12 20.28 179.20 2090.91 19.39 186.66 2009.70 11.68 237.86 1492.42
13 12.96 224.13 1226.67 13.32 223.51 1208.49 5.26 309.43 369.70
14 12.79 225.61 1130.91 12.70 225.57 1136.97 5.15 311.62 248.50
15 12.68 225.28 1042.42 13.38 222.51 1111.52 5.14 311.43 269.70
16 12.52 227.29 1099.39 13.48 223.49 1229.09 5.21 309.69 256.06
17 12.46 227.36 1082.42 13.26 222.45 1216.97 522 309.18 259.09
18 12.87 224.90 1060.61 13.04 222.01 1116.36 5.17 310.48 260.61
19 12.98 222.42 1078.79 13.01 220.93 1105.45 5.10 311.27 266.67
20 13.16 221.91 1255.76 13.13 222.40 1236.36 5.27 309.04 251.52
21 13.22 221.50 1202.42 13.15 223.04 1139.40 5.13 310.51 230.30
22 13.96 222.52 1277.58 12.92 224.99 1101.82 523 309.54 256.06
23 13.09 223.99 1118.79 12.37 229.52 1073.94 4.99 313.61 225.76
24 13.32 221.69 1089.70 12.35 228.94 1043.64 4.86 315.40 233.33
25 12.61 226.18 1066.67 12.98 224.53 1067.88 5.09 311.69 231.82
26 12.87 225.99 1174.55 13.26 221.53 1135.76 5.23 310.02 239.40
27 12.48 226.84 1069.20 13.53 219.57 1180.61 5.14 310.00 268.18
28 12.51 227.52 1044.85 13.65 218.93 1271.52 5.26 309.49 271.21
29 12.46 226.93 1082.42 13.41 220.77 1160.00 5.25 309.72 271.21
30 12.83 224.88 1126.06 12.71 226.21 1106.67 5.10 311.78 251.52

TaBLE 2: Calculation of system evolution parameters under occasional congestion.
Situation
Parameter Lane 2 is occupied Lane 3 isoogzc:i)ied Lanes 2 and 3 are 0cc(1)1;5>i6esd5
=-0.34 a=—0U. . a=—uU.
- 82 2365 ° b=102.42 atthe same time 5 5

Road capacity 1863.08 2013.85 538.46
Traffic flow at breakpoints 2433.14 2564.60 774.55
Change rate of the flow when it is stable —-53.75% -56.01% -68.00%
Change rate of capacity when it is stable 21.45% 22.82% 30.52%

TaBLE 3: Analysis of traffic flow control results under accidental accidents.

Analysis of controlling efficiency

Lane 2 is occupied

Situation

Lane 3 is occupied

Lanes 2 and 3 are occupied

Flow restriction rate

Road capacity without controlling
Road capacity with controlling
Efficiency of flow controlling

-70.29%
1463.39
1627.55
11.22%

—64.43%
1554.32
1776.22
14.28%

—-91.44%

374.12
394.75
5.51%

3 is occupied. Analyzing the reasons, the remaining capacity
of the road when one lane is occupied is greater than when
two lanes are occupied, and the remaining capacity of the

road when lane 3 is occupied is greater than when lane 2 is
occupied. As a result, it can be obtained that the traffic flow
controlling method based on the catastrophe characteristics
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is more effective when the accidental accident has a small
impact on the road capacity, which can better control the
congestion and improve the road capacity.

7. Conclusion

In this paper, taking the occupancy rate of the traffic volume
in the carrying capacity of the road system as the state
variable, the change rate of the traffic flow, and the change
rate road capacity as the control variables, a cusp catastrophe
model of the road traffic system is constructed under oc-
casional congestion. Find breakpoints and analyze stability
after urban road system catastrophes by constructing the
energetic function; based on the catastrophe characteristics
of the urban road system, the feasibility method of con-
gestion control is discussed. And give the traffic flow control
method on this basis: (1) Before a catastrophe, control the
traffic flow to make it less than the breakpoints. Preventing
the catastrophe occurs, and the potential function decreases
sharply. (2) After a catastrophe, control the traffic flow with a
certain restriction rate to be as small as the stable traffic flow,
preventing the potential function from moving to a smaller
direction, in order to obtain the maximum capacity.
Through example analysis, it is found that, in the case of
accidental accidents that have less impact on road capacity,
the control method of traffic flow based on the catastrophe
characteristics is more effective and can better control
congestion and improve road capacity; in the case of acci-
dental accidents, the traffic flow control method is more
effective. When the road capacity is greatly affected, it is
difficult to effectively improve the capacity of the urban road
system only by controlling the traffic flow.

Data Availability

The data were obtained from experiments of the traffic flow
simulation procedures.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the National Social Science
Fund of China (19BGL275) and Department of Science and
Technology Project of Shaanxi Province (2020]Q-654).

References

[1] G. Hong Cheng, S. Li-Jun, and J.-Y. Chen, “Modeling and
control of urban expressway traffic flow,” Journal of Highway
and Transportation Research and Development, vol. 23, no. 8,
pp. 101-105, 2006.

[2] J. Guo, X. L. Chen, and H. Z. Jin, “Research on model of traffic
flow based on cusp catastrophe,” Control and Decision, vol. 2,
pp. 237-240, 2008.

[3] C. Tao and C. Senfa, “Research on models of Congestion
control based on catastrophe theory,” Journal of Systems
Engineering, vol. 21, no. 6, pp. 598-605, 2007.

[4] J. C.Long, Z. Y. Gao, and H. L. Ren, “Dynamic signal control
method of urban network traffic,” China Journal of Highway
and Transport, vol. 22, no. 4, pp. 108-114, 2009.

[5] R. Thom, Structural Stabiltiy and Morphogenesis, W.
A. Benjamin, Ingc, vol. 36, no. 5-6, , pp. 611-613, San Francisco,
CA, USA, 1972.

[6] L. Fuhua, Catastrophe Theory and its Application, pp. 1-6,
Shanghai Jiao Tong University Press, Shanghai, China, 1987.

[7] L. Jiqi, “Study on waterproof and drainage of arch tunnel,”
Shanxi Architecture, vol. 3, pp. 299-301, 2007.

[8] J. GuandS. Chen, “Nonlinear analysis on traffic flow based on
catastrophe and chaos theory discrete dynamics in nature and
society,” Discrete Dynamics in Nature and Society, vol. 2014,
Article ID 535167, 11 pages, 2014.

[9] L. Xu, L. Li, L. Guang-Ze et al., “Review of multilane traffic
flow theory and application,” Journal of Chang’an University:
Natural Science Edition, vol. 40, no. 4, pp. 78-90, 2020.

[10] A. E. Papacharalampous and E. I. Vlahogianni, “Modeling
microscopic freeway traffic using cusp catastrophe theory,”
IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 1, pp. 6-16, 2014.

[11] W. Dianhai, Traffic Flow Theory, China Communications
Press, Beijing, China, 2002.

[12] H. B. Zhu, H. X. Ge, L. Y. Dong, and S. Q. Dai, “A modified
NaSch model with density-dependent randomization for
traffic flow,” The European Physical Journal B, vol. 57, no. 1,
pp. 103-108, 2007.

[13] Y. Xu, D. Zhang, and A. J. K. Chowdhury, “Urban road traffic
flow control under incidental congestion as a function of
accident duration,” Open Physics, vol. 16, no. 1, pp. 1085-1093,
2018.



