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Mobile phone data have become a critical data source for transportation research. While a cell-id trajectory was routinely
reorganized by International Mobile Subscriber Identity (IMSI), it potentially allows to analyze transportation behaviors and
social interaction of total population, with a full temporal coverage at low cost. However, cell-id trajectory is often sparse due to
low reporting frequency and uncertainness of mobile holders’ position. So, the cell-id trajectory refinement has been recognized as
challenging work to further facilitate trajectory data mining. .is paper presents a comprehensive approach to identify cell-id
trajectories of public service vehicles (PSVs) from large volume of trajectories and further refines these cell-id trajectories by a
heuristic global optimization approach. .e modified longest common subsequence (LCSS) method is used to match a cell-id
trajectory and a public transportation route (PTR) and correspondingly calculates their similarities for determining whether the
trajectory is PSVmode or not. Taking full advantages of the nature of a PSV tends to move on the PTR in uniformmotion to meet
a prescript visit to stops, a heuristic global optimization approach is deployed to build a spatiotemporal model of a PSV motion,
which estimates new locations of cell-id trajectories on the PTR. .e approach was finally tested using Beijing cellular network
signaling datasets. .e precision of PSV trajectory detection is 90%, and the recall is 88%. Evaluated by our GNSS-logged
trajectories, the mean absolute error (MAE) of refined PSV trajectories is 144.5m and the standard deviation (St. Dev) is 81.8m. It
shows a significant improvement in comparison of traditional interpolation methods.

1. Introduction

Cellular network-based data are emerging as a great data
source for urban transportation application due to the ad-
vantage in the large geographic coverage of cellular networks
and the comprehensive penetration in a population [1–3].
Generally, cellular network-based data collected by mobile
network operators can be reorganized into a mobile phone
user’s trajectory formed as a sequence of time-stamped cell-
ids (i.e., cell-id trajectory), illustrating motion characteristics
of corresponding mobile objects [4].

.e location in cell-id trajectory at a particular time is
assigned with the coordinate of an occupied base transceiver
station (BTS). .e spatial resolution of cell-id trajectory data

depends on the service radius of each BTS, which varies in
different areas, e.g., of hundredmeters inmetropolitan cities,
and several kilometers in rural areas [5]. Meanwhile, the
records of a cell-id trajectory are collected in a relatively
long-time interval, which inevitably results in the problem of
trajectory discontinuity or sparsity [6–10]. .erefore, due to
the inconformity between the spatiotemporal sparsity of the
cell-id trajectory data and the requirement on fine-scale
footprints, the refinement of cell-id trajectories becomes a
research hotspot due to its extensive application prospects.

.e trajectory refinement that refers to filling the spa-
tiotemporal gaps in the data is an approach to mitigate the
sparsity of time-series trajectories [11]. Existing refinement
method based on mobile phone location data mainly
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includes an interpolation-based method and a map-
matching-based method. .e former mainly uses spatial-
temporal correlations among records to interpolate missing
points. During interpolation, trajectory points are calculated
based on the distances and time spans between each missing
point and its contextual points by an estimation function
(e.g., nearest-neighbor function, linear function, or Gaussian
function). Ficek and Kencl [12] proposed an intercall mo-
bility model which combines Gaussian mixtures to refine
CDRs. Hoteit et al. [13, 14] compared the reconstruction
performance of various interpolation methods (linear, cubic,
nearest, and spline interpolations) on trajectories with dif-
ferent sampling interval and radius of gyration. Yu et al. [15]
simply used a spatially-linear-interpolated method to esti-
mate exposure in air pollution of cell phone user. Csaji et al.
[16] interpolated between home and office to infer user’s
location and analyze the population distribution. .ese
refinement methods might meet the requirement for pol-
lution exposure or census estimation; however, it is un-
feasible for transportation study. Perera et al. [17] provided a
method to compute the location of phone user within a cell,
but it requires extra speed information which is generally
unavailable in cell-id data.

As for map-matching-based methods, the basic as-
sumption is that vehicle movement behaviors always occur
along road networks. .us, a sequence of trajectory points
can be aligned to a sequence of road segments to form a
complete path. Hidden Markov model (HMM) is the most
popular one among map-matching-based methods. Jaga-
deesh and Srikanthan [18] used a pretraining route choice
model to generate partial map-matched paths and identify
the most likely one. Another HMM model proposed by
Jagadeesh and Srikanthan is in [19] which considered the
tailored transition probabilities for the type of data. Algizawy
et al. [20] used HMM to generate a road-level traffic density,
at an hourly granularity, for each mobile trajectory. Xiao
et al. [21] used contextual relationships between trajectory
points as features of the CDR trajectories in a conditional
random field model to reconstruct individual trajectories.
Chen et al. [22] proposed two approaches for completing
CDRs adaptively to reduce the sparsity and mitigate the
problems the latter raises. However, the basic assumption
that underlies the map-matching method is questionable.
.at is, individuals in urban space can travel by public
transportation, which limits the performance of such
methods.

.is paper aims to refine sparse cell-id trajectory of
public service vehicles (PSVs) by combining vehicle trans-
port model and mobile cell-id trajectories, in which an
LCSS-based SVM classifier took full advantage of the sim-
ilarity between cell-id trajectories and designed public
transportation routes (PTRs) to separate PSVs from those
with other transport modes (e.g., walk or private car) in a
large-scale unlabeled trajectory dataset..en, each trajectory
of PSV was modeled to fit with its mobile behaviors as much
as possible at stops, junctions, and roads and be consistent to
a spatial cell cover and bus travel speed by a heuristic global
optimization. We evaluated our proposed trajectory re-
finement method by using an encrypted cell-id trajectory

dataset and a GNSS-logged bus trajectory collection. .e
results show that our approach delivers a state-of-the-art
achievement in refining cell-id trajectories.

2. Method

2.1. ConceptualModel. .e cell-id trajectory explored in this
paper is a sequence of time-stamped cell-ids. Each cell-id is a
unique identification of a base transceiver station (BTS) with
geographical coordinates and sectoral signal transmission
coverage. So, we can imagine that a refined cell-id trajectory
must occur within the overlap area among a road network
and a BTS sectorial area. Figure 1 gives an overview of the
architecture of our approach, including two phases: PSV
trajectory detection and trajectory refinement or
reconstruction.

PSV cell-id trajectory detection is to identify PSV-
generated trajectories from huge volume of cell-id trajec-
tories with various transportation modes, i.e., walk, cycle,
and private car. An LCSS alignment algorithm is used to
match a cell-id trajectory to a public transportation route
(PTR) according to a number of PTR-nearby BTS sectoral
coverages and chronological order of timestamps. LCCS
generates a sequence of corresponding points (also called
anchor points), in which an anchor point is represented to
two different locations on the PTR route and cell-id tra-
jectory, respectively.

.e similarities calculated based on the LCSS sequence
are sufficient conditions to recognize PSV trajectory by a
support vector machine classifier. Anchor points are initial
inputs to heuristic optimizationmodel for further estimating
precise locations of anchors on PTR routes, and conse-
quently, high-quality trajectories are generated by interpo-
lating among optimized anchor points.

2.2.PSVCell-IDTrajectoryDetection. .ePSV such as buses,
subways, and trams always run following the transportation
mode with fixed routes and prescript schedules, providing
transportation services for public passengers. To identify
cell-id trajectories from mass datasets, it is essential to es-
tablish a set of specific measures to quantify the correlation
between cell-id trajectories and the PTR. Based on LCSS, the
longest common sequence among a cell-id trajectory and
PTR is matched and thus a set of similarity measures are
proposed to measure the spatiotemporal correlation be-
tween them. Taking use of the similarity measures, a SVM
binary classifier is deployed to recognize cell-id trajectories
with the PSV mode.

2.2.1. BTS Sector. In a cell-id trajectory, a phone holder’s
location is roughly represented as the installation position of
the cell-id marked BTS. It is not the identical location of the
phone holder as the BTS actually covers a large geographical
area. It is impossible to catch the exact location of mobile
users as they can be anywhere inside themobile network cell.

.ere are two popular mobile network cell models. Most
researches represent mobile network cells as Voronoi areas
centered on BTSs (see Figure 2(a)). In this work, BTS sectors
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are used that offer a finer spatial scale due to limiting a
mobile phone location to only parts of the cell, as shown in
Figure 2(b). Generally, there are three antenna sectors per
BTS and the sector’s orientation is same as the direction of
BTS antenna. We construct sectors with an average diameter
of 500 meters in urban areas.

2.2.2. LCSS Matching. Due to the uncertainness of spatial
positioning and irregular time interval logging at a cell-id
tracking point, it is difficult to match a PSV cell-id trajectory

to a PTR route. An LCSS alignment algorithm that originates
in the field of string matching, where two strings are given to
find characters that appear left-to-right, not necessarily
consecutively, in both strings [23], is applied to find the
longest common subsequence of two sequences. .e longer
an LCCS is, the higher the probabilities that the trajectory
was generated by a PSV.

.e LCCS is extended to support periodic matching in
this work. Following pilot studies [24, 25] that processed
cell-id trajectories as strings, we discretized a continuous
PTR route into a cyclic sequence of discrete points with an
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Figure 1: Diagram of sparse cell-id trajectory refinement.
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Figure 2: (a) Voronoi centered on BTS. (b) Trisector BTS with 3 antennas.
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interval of 50 meters. Given a cell-id trajectory T and a
PSV route R,

T � ti, pi(  , i � 1, . . . , n,

R � qj , j � 1, . . . , m,
(1)

where pi is the ith point on trajectory T, ti is the timestamp
of pi, and qj is the jth point on route R.

Two points pi and qj may be considered to be matched if
qj located within the BTS sector of pi, and it can be rep-
resented as

m pi, qj  �
1, qj ∈ Spi

,

0, otherwise,
 (2)

where Sp is the BTS sector of pi.
Let T(n) denote the first n points of trajectory T and R(m)

denote the first m points of R, the LCSS between T and R.

LCSS T(n), R(m)  �

0, n � 0,

max
LCSS T(n−1), R(m) 

LCSS T(n), R(m−1) 

⎛⎝ ⎞⎠ + m pm, qn( , n≠ 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

Dynamic programming algorithm deployed to discover
optimal alignment for T and R is shown in Figure 3. A
matrix D is created to save the LCSS for every subsequence
pair of T and R. ‖T‖ and ‖R‖ are the point numbers of T and
R, respectively. Considering a PSV periodically moves along
PTR, R is designed as a periodic cyclic sequence. ext is the
search space on R for T. pi to find matched R.qj. .e entries
of D are gradually filled as the dynamic programming

proceeds (lines 4–10), and the last entry stores the LCSS of
aligning T andR. Finally, we decode D to find all the aligning
cell-id log pairs of the optimal alignment (lines 12–22). .e
extended LCSS model can be viewed as a modified version of
the models [26, 27], which not only finds the longest
common subsequence in terms of the accumulate number of
matched anchors LCSS(T, R) but also the cycle numbers of
the cell-id trajectory.

Figure 3: LCSS extension for periodic matching.
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2.2.3. Similarity Measures

(a) Anchors Ratio. An often used similarity measure for an
LCSS matching is calculated as the ratio between the
number of points in LCSS and the number of cell-ids in
original cell-id sequences size [26, 27], called anchors
ratio in this work.

SC(T, R) �
‖LCSS(T, R)‖

T′
����

����
, (4)

where LCSS(T, R) is the number of the matched anchor
point pairs, and T′ is a subset of T that is the common part
between T and R. Using T′ instead of T is because T contains
points beyond on-duty period..

(b) Traverse Completeness. Traverse completeness refers to
the ration between the length of the LCSS and the length of a
PTR. Anchor points of LCSS(T, R) split T and R, resulting in
a set of subtrajectories ST1, . . . , STi, . . . , STn  and a set of
subroute SR1, . . . , SRi, . . . , SRn . Applying Hausdorff dis-
tance [28] to determine whether (STi, SRi) is matched with
each other, all geometrically closed pair
(STj, SRj), j � 1, . . . , m could be regarded as traversed
partial on the PTR; correspondingly, traverse completeness
TC is defined as follows:

TC(T, R) �
L(MSR)

L(R)
,

MSR � SR1 ⋃


. . .⋃  SRj ⋃


. . . SRm ,

(5)

where MSR is the union of matched subroutes
SRj, j � 1, . . . , m, L(MSR) is the length of union-routes MSR,
and L(R) is the total length of route R.

(c) PSV Cycles or Round-Trips. PSV cycles denote to the
cycles of periodic matching of cell-id trajectory on the PTR,
indicating how many round-trips the PSV run along the
route.

CYC (T, R) �
me − ms

L(R)
, (6)

where ms and me are the mileages of the first and last anchor
points, respectively, me − ms represents the total distance
during on-duty time, and L(R) is the total length of route R.

2.3. Trajectory Refinement

2.3.1. Trips Partition. A PSV cell-id trajectory often in-
cludes several round-trips along a PTR route, each al-
ternating with a long-time stay at terminal stations as
drivers have access to toilet facilities at rest, fuel, and food

establishments. .e stop time cannot be directly obtained
from original data, so we introduced a spatiotemporal
kernel density estimation (STKDE) method to identify
these stays and therefore enable to partition trips. Tra-
jectory refinement or reconstruction is thus able to be
performed trip by trip because those short trajectories
generated at terminal stay time are eliminated.

We first transform the cell-id trajectory into a time-
distance relationship by calculating the distance between
start station and each BTS..en, the kernel density along the
distance axis is estimated as

f(d) �
1
hd


i

Ks

d − di

hd

 , (7)

where m is the accumulated mileage of the PSV, Ks is a
kernel function for the spatial domain, and hs is the spatial
bandwidth. Trajectory point is weighted on a univariate
kernel density function Ks as follows:

Ks(u) �

2
π

1 − u
2

 , u
2 < 1,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

.e kernel density f(d) is estimated based on the
travel duration when the PSV pass through the spatial
domain. Points on which the PSV has met traffic con-
gestion, junctions, or stops often have high-density values.
In particular, the long-time stay at terminal stations
causes an extremely high-density peak, which can be used
to partition trips [29].

2.3.2. Heuristic Global Optimization. For a round-trip
matching, we deploy a heuristic global optimization ap-
proach to estimate the precise locations of anchor points
on the route. It tends to match a time-stamped point
sequence to a monotonically increased mileage sequence.
For each anchor point of the LCSS from a cell-id trajectory
and a PTR, it must satisfy (a) locating within the inter-
section of the PTR and BTS sectors, (b) having a longer
mileage than previous points’ one, and (c) having new
location nearby the initial.

A heuristic optimization model, as a commonly used
model on finding approximate global optima problems, is
used to search new location of anchor points naturally.
Assuming a PSV always tends to move on a PTR in uniform
motion to meet a prescript visit to stops, an objective
function is defined as equation (8) to minimize the standard
deviation of bus speed along a route in which the speeds
among two consecutive anchors totally depend on their
locations and time interval.
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minimize: F mi(  � 
n−1

i

mi+1 − mi

ti+1 − ti

−
1

n − 1


n−1

i

mi+1 − mi

ti+1 − ti

 ⎡⎣ ⎤⎦

2

,

subject to:

mi <mi+1,

lbi <m< ubi,

(9)

where mi is the mileage of the ith anchor along the PTR, ti is
the timestamp, n is the total number of anchor points, and
lbi, ubi are the upper and lower limits of the decision var-
iables mi being optimized.

As illustrated in Figure 4, by iteratively adjusting the
location of anchor points in a search space, a minimum
objective function value is reached by leveraging dwelling
times on bus stops and cross-roads besides the above-
mentioned constraints. .e steps of the method are listed as
follows.

3. Study Area and Datasets

3.1. Study Area. .e study was conducted at Huilongguan
town to evaluate the proposed public transit mode detection
and cell-id trajectory refining method. Huilongguan town is
one of the largest townships in the northern part of Beijing,
China. .e town has a total population of about 450,000
people and an area of 34.5 square kilometers. Being one of
the most populated residential areas in Beijing, choked
traffic has been an archenemy to urban transportation
system in this area. As shown in Figure 5, the town streets
and road maps were sourced from OpenStreetMap and total
20 bus routes and related more than 400 bus stops covering
this area were also retrieved from Beijing Public Transport
Corporation (BPTC).

3.2. Datasets. Cellular phone network signaling datasets,
covering the town extension area on early August, 2016,
were collected, about 670,000 mobile phone trajectories, 240
million records with an average phone-station interaction
interval of 280 seconds. Each record includes timestamp
(TS), International Mobile Equipment Identity (IMEI),
tracking area code (TAC), and cell identity (CI), repre-
senting an interaction event between a mobile phone (IMEI)
and a base station (TAC plus CI) at a dedicated time (TS). All
private information in mobile phone datasets has been
encrypted to protect privacy.

Ground truth datasets were collected by deploying an
android device-based cell signal monitor program. Fol-
lowing GNSS positioning (longitude, latitude, and time),
cellular towers information along bus routes was also ac-
quired, including cellular network (GPRS/EDGE/UMTS/
LTE), current cell identity (CID), current area identity
(LAC/RNC/TAC), signal strength (RSSI and RSRP for LTE
networks), and cells that were used by the mobile device.
.is tracking dataset was logged with a sampling interval of 1
second and a GPS positioning error of 5–10 meters. It is
mainly used to calibrate and validate our proposed model.

3.3. Data Preprocessing. Ground truth datasets were reor-
ganized as follows. First, the information about bus round-
trips was extracted from GNSS-measured bus trajectories.
.en, bus cell-id trajectories were prepared by resampling
raw cellular tacking datasets with a long-time interval of 280
seconds to be consistent with our big cellular collection in
2016.

As shown in Figure 6, a subset of ground truth datasets at
route no. 307, totally 3,8273 GNSS points and 136 cell towers
of BTS, were illustrated, among which each BTS might be
deployed many times when our android devices passed
through its covered area. Figure 6 displays both a GNSS
trajectory and a cell-id trajectory from 8 : 00 to 20 : 00 within
4 separate round-trips. GNSS points overlap bus route very
well but cell-id points are quite poor.

4. Results

4.1. PSV Cell-ID Trajectory Detection by LCSS. Applying our
revised LCSS algorithm to register cell-id trajectories
datasets to 20 bus routes in Huilongguan, the similarities
between trajectories and bus routes were calculated. Total
843 candidate cell-id trajectories with 16,732 time-stamped
track points (or towers) were identified with an anchor ratio
threshold of 0.2. In this work, the cell-id trajectories that are
from bus drivers or conductors are called “PSV mode.” By
human interpretation, 456 cell-id trajectories (phone
holders) were labelled as “PSV mode” and the rest were
“non-PSV mode.” .e statistics of similarity measures of
PSV mode trajectories is listed in Table 1.

Support vector machine (SVM), which may maximize
the margin by separating two classes of samples, was used to
identify PSV cell-id trajectories from others in this work.
K-fold cross-validation was used for SVM parameters tuning
such that the model with most optimal value of hyper-
parameters can be trained. .e interpreted candidates are
divided into 5 folds, out of which four folds are for training
and one for testing..e results of five repeated classifications
are shown in Table 2. For PSV cell-id trajectory detection,
the precision is about 90% while the recall is from 88.60% to
92.32%. For non-PSV mode detection, the precision is
around 88%, and the recall is from 88.37% to 93.54%.

4.2. Trajectory Refinement by Heuristic Optimization.
Once the trajectories with a PSV mode were identified, our
proposed heuristic optimization method is used to deter-
mine the precise location of anchor points on a bus route at a
specific timestamp by concerning its corresponding BTS
sector and other contextual information. To evaluate the
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performance of our heuristic globe optimization approaches,
the ground truth datasets were deployed. As the result of
trajectory matching shown in Figure 7, 81 out of 136 BTS

along bus route no. 307 were detected that they have
counterparts anchor points existing on the route.

Five optimization algorithms including particle swarm
optimization (PSO), augmented Lagrangian (AL), compass
search (CS), and artificial bee colony (ABC) were tested to
solve the optimization problem of spatiotemporal modelling
of a cell-id trajectory. For our PSV’s location optimization, it
is actually a continuous, constrained, and single-objective
problem..at is, an anchor point of a BTS needs to be found
in optimization space which is the common segment part of
the BTS sector and the bus route.

A python library PyGMO was deployed for imple-
menting this iterative process, and all results were
evaluated by the indicators of MAE (mean absolute er-
rors) and St. Dev (standard deviation) by referring to
ground truth GNSS tracking points. As shown in Figure 8,
the compass search algorithm achieved the best perfor-
mance in comparison of others. .e estimated locations
of anchor points at their BTS-communication time have
the smallest errors. Based on the optimized cell-id tra-
jectories, we further make a spatiotemporal interpolation
among anchor points using method in [13] and recon-
struct a high-quality PSV trajectory.
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Figure 9 presents the iterative process of a trip of PSV
cell-id trajectory data using compass search algorithm. A
monotonic basin hopping (MBH) meta-algorithm is
applied.

To avoid local optimization and accelerate conver-
gence velocity of iteration, a monotonic basin hopping
meta-algorithm is applied in the abovementioned opti-
mization processes. .e optimization space threshold λ
roughly set to 500m to avoid an explicitly unreasonable
location was tested in the iteration. As shown in Figure 10,
the objective decreases quickly at the beginning and finally
converges at minimization after 120,000 iterations.
Generally, an acceptable result could be reached after
8,000 iterations.

4.3. Comparison with Other Spatiotemporal Interpolations.
To evaluate the advantages of our proposed method, we
selected three most popular trajectory reconstruction
methods, nearest sampling (nearest), linear interpolation
(L), and cubic hermit interpolation (CH), [13] to make a
comparison. .ese popular interpolations have two
models, constrained (C) and unconstrained (U),
depending on whether ancillary transportation line

datasets are used or not. Calculating the difference be-
tween the estimated location and the GNSS measured
location of a tracking point at a specific timestamp, the
performances of the abovementioned methods are shown
in Figure 10, among which our method (compass search
algorithm) has the smallest error on its refined cell-id
trajectory.

.e box of CS errors is compact with a small median of
166m. Among traditional interpolation methods, con-
strained linear interpolation seems introducing a relatively
good result with a median of 207m, but the range of errors
widely varies. Moreover, CS is also robust and the better
performance is due to the fact that we accounted for the
unique transportation model of PSV and the constraints of
public transport line.

5. Discussion

5.1. Shift in LCSSMatching. Assuming a bus route crosses a
BTS sector that is a wireless-signal coverage area (Fig-
ure 11), it leads to a piece of road intersection on which a
mobile holder (a bus driver) moves when the phone
communicates with the corresponding BTS at a particular
time. .e end-points of the interaction may be called,
entry point and exit point. All communication events with
this BTS must happen on the interactions with big
probabilities.

.e revised LCSS for trajectory matching is a forward
matching process. .is process is able to find the longest
common subsequence, but cannot guarantee an appro-
priate anchor point that is expected to be the identical
location of the bus when moving on roads at a specific
time. Among the discretized points on the intersection
part, the closer a point is to the entry, the higher the
probabilities of the point are to be matched. .is is
because the effect of mismatch and process variation
results in shifting in the process of LCSS.

Our heuristic optimization with compass search algo-
rithm further adjusts the initial positions of cell-id trajectory
points within the intersection part and estimates appropriate
positions to match a PSV-mode transportation along the bus
route. In comparison of four GNSS trajectories, the average
distance between initial points and estimated points is about
197m with a deviation of 57m.

5.2. How a Time Interval Affects the Spatiotemporal Modeling
in Trajectory Refinement? From the comparison of heuristic
optimization and traditional interpolations in the above
section, our proposed method did improve the accuracy of
trajectory refinement. Moreover, the inherent quality of cell-
id trajectories, particularly the time intervals of tracking
points on a cell-id trajectory, also has big effects on the
refinement.

Based on the ground truth datasets collected in four
round-trips at bus route 307, the cellular signaling data
originally logged with one second interval were resampled
into a number of trajectories with intervals ranging from
10 s to 600 s. .e BTS (cell-id) number in these resampled

Table 1: Similarity measures of PSV cell-id trajectories.

Mean St. Dev
Anchor ratio 0.79 0.13
Traverse completeness 0.89 0.12
PSV cycles 3.24 0.83

Table 2: Classification results.

PSV Non-
PSV

Total # of
true T

Recall
(%)

Test
1

PSV 421 35 456 92.32
Non-PSV 41 346 387 89.41

Total # of est.
T

462 381 843 90.98

Precision 91.13% 90.81% – –

Test
2

PSV 415 41 456 91.01
Non-PSV 25 362 387 93.54

Total # of est.
T

440 403 843 92.17

Precision 94.32% 89.83% – –

Test
3

PSV 404 52 456 88.60
Non-PSV 39 348 387 89.92

Total # of est.
T

443 400 843 89.21

Precision 91.20% 87.00% – –

Test
4

PSV 402 54 456 88.16
Non-PSV 41 346 387 89.41

Total # of est.
T

443 400 843 88.73

Precision 90.74% 86.50% – –

Test
5

PSV 412 44 456 90.35
Non-PSV 45 342 387 88.37

Total # of est.
T

457 386 843 89.44

Precision 90.15% 88.60% – –
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cell-id trajectories varies from six hundred to two dozen,
as shown in Figure 12(a). .e errors of estimated tra-
jectory to the GNSS trajectory increase from thirty meters
to six hundred meters, as shown in Figure 12(b). .e

interval of 5 minutes that is close to the average interval of
our big cell-id trajectory collection generates an error of
180m. Once the interval is greater than 10 minutes, our
proposed method will not support acceptable trajectory
refinement any more.

Matched BTS
Unmatched BTS
Cell-id trajectory

BTS
Entry point
Exit point
PTR discrete point
Initial location of anchor points
Estimated location of anchor points
Adjustment
Search space
PTR
BTS sector

PTR

(a) (b)

Figure 7: Anchor point’s search space in a matched BTS sector.
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Figure 8: Comparison of five heuristic optimizations.
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Figure 9: Iterative convergence in compass search optimization.
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Figure 10: Boxplot of absolute errors of estimated points.
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Figure 11: Diagram of BTS coverage and LCSS offset.
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6. Conclusion

.is work proposed a novel approach to reconstruct the spa-
tiotemporal location of vehicles between sparse updates in a cell-
id trajectory. First, an LCSS-basedmachine learningmethodwas
proposed to detect PSV-mode cell-id trajectories from the huge
volume of cellular network signaling datasets. .en, a heuristic
global optimizationmethodwas deployed to estimate the precise
locations along bus routes of these detected cell-id trajectories.
Evaluated with ground truth datasets, our proposed method has
achieved very good performance in both accuracy and ro-
bustness in comparison with traditional interpolations.

Our heuristic global optimization with compass search
algorithm overcomes the issue of location shifting in LCSS
whenmatching a cell-id trajectory and a bus route..is leads
to a set of high-quality anchor points, that is, a spatial
position at a road network that is originally corresponding to
a cell-id tracking point at a particular time is estimated in the
common intersection part of the BTS sector and the road
network. .e experiment indicates that, by taking advantage
of the nature of PSV-mode cell-id trajectories, our approach
works well on cellular network signaling datasets with five-
minute sampling interval, but the performance decreases
sharply after a ten-minute sampling.
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