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Digital twin (DT), machine learning, and industrial Internet of things (IIoT) provide great potential for the transformation of the
container terminal from automation to intelligence. 'e production control in the loading and unloading process of automated
container terminals (ACTs) involves complex situations, which puts forward high requirements for efficiency and safety. To realize
the real-time optimization and security of the ACT, a framework integrating DTwith the AdaBoost algorithm is proposed in this
study.'e framework is mainly composed of physical space, a data service platform, and virtual space, in which the twin space and
service system constitute virtual space. In the proposed framework, a multidimensional and multiscale DTmodel in twin space is
first built through a 3D MAX and U3D technology. Second, we introduce a random forest and XGBoost to compare with
AdaBoost to select the best algorithm to train and optimize the DTmechanism model. 'ird, the experimental results show that
the AdaBoost algorithm is better than others by comparing the performance indexes of model accuracy, root mean square error,
interpretable variance, and fitting error. In addition, we implement empirical experiments by different scales to further evaluate
the proposed framework.'e experimental results show that the mode of the DT-based terminal operation has higher loading and
unloading efficiency than that of the conventional terminal operation, increasing by 23.34% and 31.46% in small-scale and large-
scale problems, respectively. Moreover, the visualization service provided by the DTsystem can monitor the status of automation
equipment in real time to ensure the safety of operation.

1. Introduction

'e container terminal is a key node of international
transportation and an important hub for cargo trans-
portation between land and sea [1]. With the deepening of
automated container terminals (ACTs) construction, the
transformation from automation to intelligence is the
trend at container terminals [2]. Various advanced
technologies, equipment, and intelligent systems were
applied into the container terminal to realize the auto-
mated, high-efficiency, and environmental friendly op-
eration. Loading and unloading efficiency, safety, and
service capacity determine the intelligent degree of the
ACT [3]. At present, the development of the ACT faces
major challenges, such as safety and efficiency [4]. High
operation risk and limited emergency capacity occur at

ACTs. Loading and unloading are a high-risk operation,
which have high safety requirements for the working
environment, mechanical equipment, and operators. In
the process of operation, all kinds of potential safety
hazards need to be faced, such as equipment failure,
equipment conflict, and human negligence. 'ese hidden
dangers have a negative impact on the operation safety.
Another key problem is the loading and unloading effi-
ciency, which restricts ACT’s economic development. 'e
processing speed of handling equipment, horizontal
transportation time, and waiting time between equipment
are the key factors affecting the efficiency of ACT oper-
ation. 'us, it is of great significance to further improve
the safety and operation efficiency of ACTs with advanced
technology and production control methods to monitor
the operation in real time.
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Some research on the operation control of ACTs was
provided for the safety production and operation efficiency.
Zhong et al. [5] established the architecture of command-
and-control system using the multiagent technology and
realized the improvement of operation efficiency when
ensuring the safe operation of the terminal. Ma et al. [6] used
the mutation hybrid frog leaping algorithm to improve the
efficiency of horizontal transportation. However, researchers
mostly focus on the analysis of historical data and seldom
consider the real-time and virtual data for the operation of
the ACT.'e common feature of the above research is based
on physical space. 'e lack of integration between physical
space and virtual space and the data generated by each
system are independent of each other, which provides a low
value for the optimization of ACT production control [7].
'erefore, there are still many problems in the production
control research for ACTs. First, few methods were provided
to achieve real-time iterative optimization of virtual and
physical space of ACT [7]. In addition, most of the research
on ACTs are based on single-type data, where the data
among systems exist in isolation. In other words, the current
research focuses on historical data and ignores real-time
data, simulation data, and fusion data. 'is adds the diffi-
culty to control the real-time process of the ACT. Under
some specific assumptions, mathematical models and al-
gorithms [6, 8] are used to improve the operation efficiency,
which is not consistent with the actual engineering
application.

With the application of new generation information
technology in industry such as digital twin (DT), artificial
intelligence (AI), and industrial Internet of things (IIoT), the
interaction between physical and virtual space becomes
possible [9]. DT is the mirror image of physical entities in
virtual space, which has the characteristics of virtual reality
mapping, real-time, prescience, and closed-loop. Tao and
Zhang [10] applied DT to shop-floor and established a DT
framework. Based on the framework, the production
characteristics such as virtual real integration, operation
iteration, and optimization of shop-floor are explored.
Eugene et al. [11] applied DT to the loading of air cargo. By
constructing a closed-loop dynamic air cargo loading DT
system, loading optimization and real-time visualization in
dynamic environment are realized. Besides, Wei et al. [12]
deeply integrated DT with the passenger-cargo RORO Port
and proposed the DT system composition and operation
mechanism. 'e applications of DT in previous research
mostly focused on manufacturing shop-floor, aviation, and
RORO port, but there is little research about ACT pro-
duction control. On this basis, a DT application framework
integrated with AdaBoost is proposed to optimize the
production control of the ACT. It can not only deal with the
uncertain factors in the operation of ACT in time but also
control the production process more accurately and flexibly.

'is study combines DTandmachine learning to explore
an intelligent operation mode for the operation at ACTs. A
DT application framework integrated with AdaBoost is
proposed, which can comprehensively manage and control
the uncertain factors in ACT operation. In view of the
uncertainty interference, the twin data is used to generate the

dynamic models iteratively according to the change of en-
vironment. 'en, the AdaBoost algorithm is introduced to
train the model repeatedly to better control the operation.
Furthermore, the proposed DT application framework is
applied to the ACT for developing the DT system. 'e
conventional and DT-based operation tests with different
scales are carried out to demonstrate the efficiency of the
proposed DT application.

'e remainder of this paper is organized as follows: in
Section 2, there is a literature summary on DT research,
machine learning, and terminal production optimization.
'e DT theoretical reference model is established, and the
proposed application framework is described in detail in
Section 3. Section 4 illustrates the model training and ex-
perimental results. Section 5 briefly concludes the research.

2. Related Work

DT reflects the precise mapping between physical space and
virtual space [13]. However, the research on theory and
practical application of DT is still at its infancy. No universal
definition, implementation framework, and protocol are
available [14]. DT is an information model which is
equivalent to a physical entity in virtual space [15]. It can be
used to simulate, optimize, and control the behaviors of
physical entities. 'e concept of “twins” can be traced back
to NASA’s Apollo program, which was built to allow mir-
roring the conditions of the space vehicle during the mission
[16]. Michael Grieves first proposed the concept of the DT in
2003 and defined the conceptual model of it [17].'is model
is mainly composed of physical entities, virtual entities, and
their connections. At that time, owing to the immature data
acquisition technology in the production process, as well as
the difficulty of computer performance and algorithm to
deal with a large amount of data in real time, DT has not
been widely concerned [18]. To further understand the
concept of DT, this paper interprets DT through the specific
application of the DT in various fields in detail. At present,
DT is widely used in manufacturing, aerospace, health care,
power system, sea transportation, and other fields. Smart
manufacturing is the most concerned and hot research field
in China. Several authors [19–21] proposed the concept of a
DT workshop, expecting to realize smart manufacturing
through the interaction and integration of the physical world
and information world. 'e US Air Force research labo-
ratory applied DT to solve the maintenance and life pre-
diction problems of future aircraft in a complex service
environment [22]. Hänel et al. [23] designed a method based
on planning and process data for machining processes via
using the example of components in the aerospace industry
to create a DT model. Liu et al. [24] proposed a DT-based
cloud medical system framework medical treatment to re-
alize the management of monitoring, diagnosis, and pre-
diction of personal health. Zhou [25] applied the DT
framework to the online analysis of power grid and proposed
the online analysis of DT (OADT) method to realize the
digitalization of power grid dispatching rules. Especially,
some researchers have begun to pay attention to the ap-
plication of DT in the port field. Among this, more attention
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is paid to the port operation and terminal equipment
maintenance. Wei et al. [12] deeply integrated DT tech-
nology with the traditional port and created an equation for
the system architecture of the DT port of passenger-cargo
RO/RO to realize digital and intelligent operation of the
port. Hofmann and Branding [26] used DT to continuously
evaluate the current scheduling strategy and configuration
alternatives so as to get the best scheduling strategy to
enhance port resource utilization. In addition, Szpytko and
Duarte [27] applied DT to the container terminal and
established the comprehensive maintenance decision-
making model under the crane operation state using the
concept of DT. 'is greatly reduced the risk of gantry crane
failure (GCI) and improved the operation efficiency.

Machine learning is an important branch of artificial
intelligence. It is a method where the computer obtains a
certain model using the existing data and uses this model to
predict the future. 'e major machine learning algorithms
include neural network, support vector machine, decision
tree, clustering, and regression algorithm. With the rapid
development of the artificial intelligence technology, ma-
chine learning has attracted more and more attention. Chen
et al. [28] used a multiview learning algorithm to extract ship
descriptors from different ship feature sets to achieve effi-
cient ship tracking. Pham et al. [29] proposed the application
of data mining and machine learning technology in metal
industry. Shahrabi et al. [30] used reinforcement learning to
deal with dynamic job shop scheduling problem under the
uncertainty of stochastic jobs and machine failures. Li and
Xu [31] explored the application of machine learning in
intelligent transportation. 'e machine learning method is
applied to the traffic flow prediction to solve the problem
that the traditional traffic flow prediction model cannot cope
with the complex changes of traffic flow. Choe et al. [32]
applied machine learning to ACTs. 'e scheduling strategy
of automated guided vehicle (AGV) is dynamically adjusted
by online preference learning algorithm. Min et al. [7]
applied machine learning to petrochemical industry.'eDT
framework of production optimization in petroleum in-
dustry based on machine learning is proposed. 'e DT
model is trained by machine learning and big data tech-
nology to realize the optimization of production control.
ACToperation includes a series of related operation process
at ACTs, and its complexity involves many decision-making
problems commonly discussed in the terminal [5]. Until
now, there are abundant studies focused on the operations of
ACTs, such as safety of operation, handling equipment
scheduling, storage space allocation, and integrated sched-
uling of multiresource [33]. Chen et al. [34] deployed
adaptively the proposed ship behavior analysis framework in
the networked autonomous vehicle detection system of the
automated terminal to improve the capacity and security of
the traffic network. As for the equipment scheduling of
ACTs, previous studies have focused on improving the
operational efficiency of automated quay cranes (AQCs),
automated guided vehicles (AGVs), and automated yard
cranes (AYCs). AQC scheduling is to minimize the com-
pletion time of ship operation by determining the optimal
operation sequence for handling containers. Dagansuo [35]

was the first to study the crane scheduling problem of the
multicontainer ship terminal. In the follow-up study, a
variety of constraints are considered and noncross con-
straints are introduced into AQC scheduling problem. Also,
heuristic algorithm is used to solve the model [36]. AYC
scheduling focuses on obtaining an optimal plan for one or
more AYCs to stack and reclaim containers in the terminal
storage yard [37]. Many researchers have studied the
stacking operation of a single crane. Besides, some studies
have considered the setting of multiple cranes sharing one
stacking [38]. For AGV scheduling problems, most re-
searchers focused on seeking the optimized assignment and
routing plan for vehicles [39]. Chen et al. [40] proposed a
method based on the computer vision technology to extract
vehicle trajectory efficiently and accurately from video and
enrich more trajectory data sets under traffic conditions for
traffic flow research. Tasoglu and Yildiz [41] proposed a
simulation optimization-based solution method for the
integrated berth allocation and AYC scheduling problem
under the influence of many factors such as the berth layout.
Homayouni et al. [8] proposed a mixed integer program-
ming model for the integrated scheduling of handling
equipment in ACTs and used simulated annealing algorithm
to find the optimal solution.

From the above, the practical value of DT and machine
learning in manufacturing, transportation, and other in-
dustries has been demonstrated in many existing studies.
However, the application of the interaction between DTand
machine learning in the ACT still needs further exploration.
'rough the review and analysis of the existing literature, it
is found that there are still some contents to be further
explored and studied. First, an application framework that
can support the DT theory and method in ACT operation
optimization is still needed. Second, it explores how to
dynamically update the DT model to respond to the influ-
ence of uncertain factors in real time. Finally, the real-time
performance of DT is embodied. 'e acquisition and pro-
cessing of time series data in different periods is also a
difficult problem to support machine learning to complete
model training.'us, according to the above analysis results,
this paper proposes a new production and operation mode
suitable for ACT.'en, machine learning is used to enhance
DTapplication framework to achieve the production control
optimization of ACT. Besides, the framework is applied to
an actual automated terminal to verify its availability.

3. Methodology

3.1. DT *eoretical Reference Model for ACT Production
Control. Under the current terminal operation mode, the
data generated by the system usually directly affects the field
as the information flow. It has not been used to update the
virtual terminal iteratively to adapt to the dynamic envi-
ronment of operation. Moreover, traditional terminal pro-
duction control methods are generally based on expert
experience. However, the DT-based terminal operation
mode is an iterative interactive process between physical and
virtual scenes. In the DT framework, the real-time data
generated in the terminal operation are continuously
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transmitted to the virtual model through the IIoT tech-
nology. Real-time and historical data are used to train and
update the model. Feedback is provided to the control
system to achieve real-time control of production. In this
section, the DT theoretical reference model for the operation
of ACTs is discussed.

'rough the exploration of the application practice of
DT, the five-dimensional DT model was put forward [9],
which was verified to have satisfactory practicability [42]. It
also provides a general reference model for the application of
DT in different fields [43]. 'us, as for the aforementioned
challenges of ACT, a DT reference model (DT − TPOS) for
the operation optimization of the ACT is raised: DT − TPOS
reference model (see Figure 1). It can be expressed in the
form of a five-tuple model, as shown in Equation 1.

DT − TPOS∷ � TPS,TVS,TSS,TDD,T C{ }, (1)

where TPS, TVS, TSS, TDD, and T_C denote the terminal
physical space, the terminal virtual space, the terminal
service system, the terminal twin data, and the connection of
different elements, respectively. ∷ � is the meaning that can
be defined. TPS is regarded as the foundation of building the
DT − TPOS model, which provides the basic production
environment for the operation of the terminal. TVS is the
mapping of TPS, and it can also monitor and control TPS.
TSS is the core component of DT − TPOS, which completes
the function realization and application service of various
data, models, and algorithms during the operation process of
the ACT. In addition, it can also drive TVS to keep syn-
chronization with TPS. TDD is the key driver of DT − TPOS,
which can effectively solve the problem of information is-
land in ACToperation. T_C is not only the key link of DT −

TPOS construction but also the key to ensure the succes-
sively iterative optimization of the operation process. In-
terfaces (e.g., RPC, JDBC) and protocols (e.g., OPC, Http
Restful) are defined to support the connection between
DT − TPOS.

3.2. An Integrated DT Application Framework of ACT
Operation. Based on the DT theoretical reference model
proposed in Section 3.1, an integrated DT application
framework with AdaBoost in ACToperation optimization is
discussed in this section. It consists of three parts: physical
space, data service platform, and virtual space. During the
process of ACToperation, the application of DT realizes the
interconnection between the virtual world and the real
world. Furthermore, it provides a practical solution to realize
the whole physical system mapping, whole parameter dy-
namic modeling of the physical entity, and the real-time
iterative optimization of the operation process. 'erefore,
through the iterative optimization of the whole process and
the interaction between virtual reality, the intelligent deci-
sion in ACToperation process is realized. An integrated DT
application framework with AdaBoost in ACT operation
optimization is seen in Figure 2.

'e construction process of an integrated framework for
ACT production control is as follows: according to the
layout, production factors and the technological process of

the ACT, the corresponding virtual model is constructed.
After that, based on the historical data of the terminal
operation system, the virtual model is trained by machine
learning. By a series of evaluation indexes, the virtual model
is evaluated, verified, and optimized.'en, the real-time data
are used to drive the synchronization between virtual and
reality. Combined with the input information of production
demand and the real-time data of field operation, the op-
timal solution is simulated in the virtual model. 'e solution
is fed back to the terminal operation system to guide the field
operation. Finally, there is a circular interaction between
virtual and reality. To adapt to the dynamic changes of the
terminal production environment, the virtual model is
optimized by real-time iteration on the basis of constantly
updated data.

3.2.1. Physical Space. Physical space refers to the collec-
tion of existing physical entities of ACT. It can not only
ensure the basic operation of ACT but also provide all
elements of data information for the virtual space. As
shown at the bottom of Figure 2, the physical space is
composed of physical entities, such as containers, han-
dling equipment, and environment, which provides a
complex and dynamic production environment for ACT
operation. 'ese physical entities are distributed in dif-
ferent locations of ACT and connected through the IIoT
technology. 'e formal description of physical space is
shown in Equations (2)–(5):

PS � PC⋈ PE⋈ PG⋈ PN,

(2)

PC � 
i∈n

PCi � CID, RID, Ca, Cowner, CSD, Cpos, Ct, Cinfo ,

(3)

PE � 
j∈m

PEi � EID, Etype, Ecp, Ecs, Epos,Das, Einfo , (4)

Ca � Weight, Type, Length,Wide,Height , (5)

where PS is a set of all physical entities. PC is a set of
containers. PE is a set of handling devices. PG is a set of
scenarios and environments. PN is a set of intelligent
gateways. ⋈ refers to the natural connection between PC, PE,
PG, and PN, indicating the autonomous interaction between
them. n is the number of containers. PCi is the ith container.
CID is the container number. RID is the unique code of the
container bound RFID tag. Ca is the set of container at-
tributes, which includes weight, type, length, width, and
height. CSD means the place of departure or destination of
the container. Cpos is the current storage location of the
container. Ct is the date of departure or arrival of the
container. Cinfo is some other information about the con-
tainer. m is the number of handing devices. PEi is the ith
handing devices. EID is a set of device number. Etype is a set of
device types, including handling and transportation devices.
Ecp is the key parameter set of the device. Ecs is the current
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status of the device, such as idle, run, and fault. Epos is the
position of the device. Das is a set of real-time data in device
operation. Einfo is some other information about the device.

'e information perception of physical space is the key
to establish one-to-one mapping between virtual and
physical entities. In this study, the data sensing methods of
multisource data in the ACT are divided into three cate-
gories: artificial static data sensing, various sensors data
sensing, and RFID-based data sensing. Furthermore, dif-
ferent interfaces (such as RS232, RFID, MODBUS) and
communication protocols (such as TCP/IP, OPC, CAN) are
defined for ACT multisource data acquisition and trans-
mission. Multisource data acquisition and transmission
mainly through three modules: control and execution
module, perception module, and network module. 'e
control and execution module are composed of PLC, server,
worker, mechanical control, and display terminal, which is
to control the operation of the devices. 'e perception of
devices, personnel, and environment in the process of op-
eration, which is to collect the total factor data information
of ACT operation. 'e network module is composed of
RFID communication, intelligent gateway communication,
and wireless sensor network, which is to transmit the per-
ceived data information upward. Considering the differences
between devices, some can be directly through the network
module.

3.2.2. Data Service Platform. 'e data service platform is the
medium connecting physical space and virtual space during
the operation of ACT. 'rough the interaction of operation
data in data service platform, the bidirectional mapping and

interconnection between physical and virtual space can be
realized. As shown in the middle of Figure 2., the data service
platform mainly includes data processing, data mapping,
and data storage.

(1) Data Processing Module. 'e original data obtained by
the IIoT and wireless sensor technology are mostly time
series data.'e fast processing of time series data ensures the
synchronization between physical and virtual space. To use
machine learning to complete the model training success-
fully, the data need to be cleaned, resampled, correlated, and
dimensionality reduced.

(1) Data cleaning
Data cleaning plays an important role in time series
data processing. Its purpose is to filter and remove
duplicate or redundant data, supplement missing data,
correct or delete wrong data from the original data, and
finally sort out the data that can be further used. In this
paper, the data set includes the container number,
AGV number, AGV position, AGV residual power,
AGV speed, AGV current status, AGV engine current
and voltage, AGV transportation time, AQC number,
AQC position, AQC completion time, AQC placement
speed, AQC engine current and voltage, AYC number,
AYC position, AYC completion time, AYC engine
voltage and current, and so on. First, the data set is
preprocessed, such as data backup, unifying the data
format of each column, and deleting redundant empty
rows. Second, the missing values of data set are filled.
'e preprocessed data set is supplemented by the
Lagrange interpolation method in Equation (6).
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Finally, the abnormal data is processed. It is deleted or
corrected with the average value by the abnormal
degree.

f(x) � 
n

i�0
yi 

i≠ j

x − xj

xi − xj

, (6)

where f(x) is the fill value obtained, xi is the po-
sition of the corresponding independent variable, yi

is the value of the corresponding function at this
position,i≠j(x − xj)/(xi − xj) is a polynomial, and
n is the number of polynomials.

(2) Data resampling
In the process of ACT operation, the sampling fre-
quency of different types of time series data is dif-
ferent, but these data have continuity. 'us, it is
necessary to use data resampling to realize time
series data frequency unification, that is to say, the
process of transforming time series data from one
frequency to another. Generally, any data dimension
is selected as a benchmark, and the data of other
dimensions are consistent with the benchmark. An
example of data resampling is shown in equations (7)
and (8). First, assume that two sets of data are
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collected at F1 and F2 frequencies, which are X1 and
X2, respectively. Second, taking X1 as the bench-
mark, the new data dimension X∗2 is generated by X2
and is consistent with the sampling frequency of X1.
k and i are any position in the X1 and X2 data sets.

k �
F2 × i

F1
, (7)

X
∗
2i � X2k + X2(k+1) − X2k 

F1 × i − F2 × k

F1
 . (8)

(3) Data correlation analysis and dimension reduction
Data volume and data dimension should be con-
sidered when using machine learning to train the
model. In most cases, a large number of data will
cause the machine learning to run slowly. Moreover,
too large data dimension is easy to cause dimension
disaster. 'us, the data dimension reduction method
is adopted. Generally, there are two ways to reduce
the dimension of data. One is to use principal
component analysis (PCA), by destroying the orig-
inal structure of the data to extract its features. 'e
second method is the data correlation analysis. 'e
attributes of data are chosen to achieve the purpose
of dimension reduction by certain rules. In practical
engineering problems, the collected data itself has a
very important physical significance and research
value. Extracting the main features will destroy the
information of the original data. 'erefore, this
study tends to the latter. Pearson correlation analysis
was used to consider the correlation between the two
sets of data, as shown in equation (9).

ρX1X2
�
cov X1, X2( 

σX1
σX2

�


n
i�1 x1i − X1(  x2i − X2( 

��������������


n
i�1 x1i − X1( 

2
 ��������������


n
i�1 x2i − X2( 

2
 ,

(9)

where n is the number of data contained in the
dataset and the value of ρX1X2

is between −1 and 1.
'e larger the value, the stronger the correlation.

(2) Data Storage and Data Mapping Module. Data storage
module is to store the processed data and provide persistent
data service for virtual space. 'e stored data are mainly
physical data and virtual data. Physical data mainly include
task data, equipment data, container data, and so on. Virtual
data mainly includes simulation data, model data, and de-
cision data. Relational, nonrelational, and temporal data-
bases are used to store various types of data. It provides
reliable and reusable data resources for ACT operation
analysis and decision-making.

Data mapping is to establish the mapping operation
mechanism between data through data structure informa-
tion. It supports the synchronous mapping between physical
data and virtual operation. Data timing analysis, data as-
sociation, and data synchronization are included [8]. First,
the temporal data model is built through the characteristics
of the data. Second, the fast index and multiscale

transformation of the data sequence set are used to complete
data sequence analysis, and the complex network and related
algorithms are used to realize data association. Finally,
through the relationship between data and virtual real as-
sociation rules, the ACT data network is established to
complete the running state analysis.

3.2.3. Virtual Space. Virtual space ismainly composed of twin
space and service system, as shown in the upper part of Fig-
ure 2. 'e DT service system mainly provides scheduling
scheme generation, operation equipment and process status
monitoring, production information statistics, and other ser-
vices for ACT operation. Twin space provides a virtual oper-
ation environment for the ACT.'e construction of twin space
mainly includes the whole factor entity modeling, the dynamic
modeling of operation process, and simulationmodeling of the
ACT. 'e operation plan generated by the service system will
be verified in the twin space. 'e twin space will feed back the
verification results to the service system.'e service systemwill
adjust the operation plan by the results.'e adjusted operation
plan will continue to be sent to twin space for verification until
the set optimization goal is met. 'ere will be iterative in-
teraction between twin space and service system to ensure
continuous operation of terminal. Twin space plays an im-
portant role in virtual space. To restore the scene more truly,
the whole factor entity modeling and dynamic modeling of
operation process for the ACT are described.

(1) Total Factor Entity Modeling of ACT Operation. 'e
multidimensional twin model of mechanical devices, con-
tainers, and other production factors of ACT is constructed
from geometry, physics, behavior, rules, and dimensions.
'e geometric model is constructed in compliance with the
geometric feature parameters of the elements. 'e physical
model is integrating the deep physical characteristics of the
device based on the geometric model. 'e behavior model
describes the behavior of the device according to the be-
havior relationship among the components. 'e rule model
uses the XML language to describe the deduction and as-
sociation rules of device to realize multidimensional mod-
eling of elements.'emultidimensional twin model of AGV
is built (see Figure 3). 'e multidimensional twin model of
each element is assembled and integrated according to the
spatial layout and equipment connection relationship in the
field operation. 'e multidimensional and multiscale model
from parts to equipment to the whole working environment
is constructed. In this study, 3D Max and Unity 3D are used
to complete the rapid construction of the multidimensional
and multiscale model, and the formal description is shown
in Equations (10)–(14).

VS � PC′ ⋈ PE′ ⋈ PG′ ⋈ PN′, (10)

PCi
′, PEi
′∷ � GmS⋈PmS⋈BmS⋈RmS, (11)

PC’
� PC1′, PC2′, PC3′, PC4′, . . . , PCn

′ , (12)

PE’
� PE1′, PE2′,PE3′, PE4′, . . . , PEn

′ , (13)
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PS↔1: 1
VS,

PC↔1: 1
PC’

,

PE↔1: 1
PE’

,

PG↔1: 1
PG’

,

PN↔1: 1
PN’

,

(14)

where PC′, PE′, PG′, and PN′ represent the DT multidi-
mensional models corresponding to each production ele-
ment. ⋈ refers to the natural connection between PC′, PE′,
PG′, and PN′. PCi

′ represents the virtual entity corre-
sponding to the ith container. PEi

′ represents the virtual
entity corresponding to the ith handing devices. ∷ � means
that can be defined as. GmS is a set of the geometric models.
PmS is a set of the physical models. BmS is a set of the
behavior models. RmS is a set of the rule models.↔1: 1

rep-
resents the one-to-one mapping relationship.

More importantly, the verification of the virtual real
consistency of the DT model is required according to pass
the virtual real consistency verification rules proposed by
Tao et al. [44]. It can ensure the validity, correctness, and
accuracy of the model (see Figure 4).

(2) Dynamic DT Modeling of Operation Process for ACT. In
the process of ACT operation, there are many factors that
affect the operation efficiency, and the operation state of
AQC, AGV and AYC is coupled. It is difficult to build a more
accurate dynamic mechanism model of operation. 'erefore,
the DT-based dynamic mechanism model is proposed to
accurately respond to the dynamic changes in the ACT op-
eration (see Figure 5). Machine learning is a method of
learning from data. 'rough the data training, the algorithm
model is constructed and the goal optimization is completed

based on themodel. DTcan provide powerful data support for
production process analysis.'us, machine learning is used to
train the DT dynamic model. Before entering the stage of
machine learning, data acquisition, preprocessing, and feature
engineering should be completed. All kinds of data operations
are described in detail in the previous section of the data
processing platform. Next, the training and verification,
optimization, and deployment of the model will be described
comprehensively.

(1) Model Training and Verification
Before training and verifying the DTmodel, the data
segmentation is completed. 'e processed data set is
divided into training set and verification set. Espe-
cially, the training set accounts for 80% of the total
data set. 'e training set is used to build the pre-
diction model. 'en the trained model is predicted
on the validation set. 'e model is optimized
according to the prediction results. 'e training goal
is to build the mathematical relationship by the
existing data and algorithm, as shown in Equation
(15).

Yt � f Xt + ω( , (15)

where Yt is the control target, Xt is a real-time
controllable variable, and ω is a real-time uncon-
trollable variable. 'e scenario of loading and
unloading synchronization is considered. Assuming
that the number of container tasks to be loaded and
unloaded is N, the time to complete a container is Ci

and task start time is Si. Vj refers to any scheduling
scheme generated in ACToperation.'e completion
time of loading and unloading operation is shown in
Equation (16). To minimize the completion time, the
machine learning goal for the purpose of ACT
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operation optimization can be described by Equation
(17).

Ttotal � 
i∈N

Ci − Si(  , (16)

Find Vj ⟶
Δ

min
j∈V

T. (17)

In the process of training, machine learning algo-
rithms such as decision tree, XGBoost, AdaBoost,
and random forest are used for model training. 'e
decision tree is a machine learning algorithm that
can solve classification or regression problems. 'e
process of decision tree training is to split samples
into subtree nodes by continuously selecting split
attributes. 'e goal of splitting is to minimize the
gain of each node. 'e calculation of gain value is
shown in Equation (18).

G � 
xi∈R1(j,s)

yi − c1( 
2

+ 
xi∈R2(j,s)

yi − c2( 
2
,

(18)

where R1 and R2 represent the split branches of each
node and c1 and c2 are the values returned by the two
split child nodes.
XGBoost algorithm is a typical boosting algorithm. It
is a second-order Taylor expansion of the loss
function, and a regularization term is added to the
objective function to find the optimal solution of the
whole, as shown in Equation (19). 'is makes the
objective function and the complexity of the model
balanced, and the over fitting phenomenon can be
avoided.

Lt � 
i

l yi, yi
(t− 1)

+ ft xi(   +Ω ft( , (19)

where Ω(ft) is the model complexity.
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AdaBoost is not only an iterative algorithm but also a
representative boosting algorithm.'e weights αi are
updated for errors in each iteration.'emain idea of
the algorithm is to add a new weak classifier hi(x) in
each round until a predetermined small enough
error rate is reached. M is the number of weak
classifiers. As shown in Equation (20). However,
random forest is a typical bagging algorithm based
on decision tree. It uses the bagging technology to
train some small decision trees and finally sets and
averages the prediction results of these small decision
trees to complete the construction of the forest
model.

F(x) � 
M

i�1
αihi(x). (20)

'e verification set and evaluation index are used to
verify different models and training results of dif-
ferent algorithms. 'e accuracy score (Ac), root
mean square error (RMSE), interpretable variance
(Ivar), and fitting error (FE) were used to evaluate
the model quality. 'e calculation of model accuracy
is shown in Equation (21), and yi and yi are the
predicted value and real value, respectively.

Ac � 1 −
i∈m yi − yi/yi




m
. (21)

RMSE is the mean value of the square root of the
error between the predicted value and the true value,
as shown in Equation (22). 'e smaller the value is,
the smaller the error is. A minimum value of 0 in-
dicates a perfect model. A minimum value of 0 in-
dicates a perfect model.

RMSE �

�������������


m
i�1 yi − yi( 

2

m



. (22)

Ivar index is the similarity between the dispersion
degree of the difference between all predicted values
and real values and the dispersion degree of the
sample itself, as shown in Equation (23). 'e
maximum value is 1. 'e larger the value is, the
closer the dispersion degree of prediction and
sample value is.

Ivar � 1 −
i∈m yi − yi − yi − yi  

2

i∈m yi − yi( 
.

(23)

'e calculation of FE is shown in Equation (24). Its
true value and absolute value can be represented by a
curve to intuitively compare the efficiency of dif-
ferent algorithms.

FE �
log2 1 + yi(  − log2 1 + yi( 

log2 1 + yi( 
. (24)

(2) Model optimization and deployment

Safety has always been the most concerned problem
in ACTs. Before the model is put into production, the
real-time data must be used to complete the model
test in the test site to verify the effectiveness and
safety of the model. 'e model is optimized by real-
world test results and feedback from relevant tech-
nical departments. 'e optimized DTmodel can be
deployed online. 'e DT model needs to be con-
nected with the IIoTand TOS systems in ACTto fully
obtain real-time data. On the contrary, the DTmodel
will provide feedback for the running results to the
system so that the system can change the improper
places in time. 'en, the control command is sent to
the control and execution module to realize the
operation optimization of the ACT.

4. Case Study

4.1. Background. 'e Shanghai Yangshan phase IV auto-
mated terminal is located on the west side of the Yangshan
deep water port and opened for trial operations in December
2017. It is the largest single container terminal with the
highest degree of comprehensive automation in the world.
At present, 21 AQCs, 108 AYCs, and 110 AGVs have been
put into operation. 'e terminal handling operation is
mainly composed of automated handling equipment for
terminal handling, horizontal transportation, yard handling,
and automated terminal production control system. 'e
system structure and operation process of the terminal are
seen in Figure 6. With the development of artificial intel-
ligence, automation, and other technologies, the ACT has
obvious advantages in improving handling efficiency and
production safety. To further improve the productivity and
operation safety of the terminal on the original basis, the
Shanghai Port launched a terminal intelligent operation
management and control project, including the use of big
data, machine learning, and other technologies to complete
the development of the DT system.

4.2. Analysis

4.2.1. Parameter Setting. Container loading and unloading
is the core of terminal operation. In the process of loading
and unloading operation experiment, the parameters of the
ship demand, the quantity of equipment required, the
number of tasks, and the distribution of the container area
are set (see Table 1). Before the test experiment started, the
battery should be fully charged and the tire pressure should
be normal. In addition, consider the power consumption
and fault conditions under continuous operation.

4.2.2. Model Training. 'e target of DTmodel training is to
minimize the makespan. 'e speed of handling device,
waiting time between devices, failure rate, and other factors
will cause the change of target value. After obtaining the
historical data of terminal operation, the missing data will be
supplemented by Equation (6). 'en, the AGV running
speed is set as the data sampling frequency benchmark in
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many indicators that affect the completion time. 'e data
sampling interval is F1 � 20 s. 'e other indexes are
resampled using Equation (8). Finally, the correlation be-
tween indicators is analyzed through Equation (9).

Based on historical data, the DT model is trained by
AdaBoost, random forest, and XGBoost algorithm. To make
the experiment more convincing, six time points with large
interval were randomly selected as the reference points of
training. 'e time interval is 30 days, and the test times of
each algorithm is 5. In addition, the data for 75 days ahead of
each time point are used as the training set, and the data for
15 days after are used as the verification set to compare the
differences between the algorithms. 'e FE curve (see
Figure 7) intuitively shows that the AdaBoost algorithm is
superior to the random forest and XGBoost algorithm.
Equations (21)–(23) are used for further comparative
analysis to comprehensively evaluate themodel (see Table 2).
'e results in Table 2 show that the model trained by the
AdaBoost algorithm is better than other algorithms though
comparing Ac, RMSE, and Ivar. 'us, the AdaBoost algo-
rithm is chosen to train the DT model.

4.3. Results and Discussion. 'rough the verification, opti-
mization and deployment of the DT model in the previous
section, the DT-based experimental platform is built (see
Figure 8). Because the actual use of the system is classified,

the pictures shown in this paper are the simulation process
pictures of the laboratory computer. Driven by the real-time
data of physical space, the DT model is optimized by ma-
chine learning to ensure the synchronous operation between
physical and virtual. 'rough the iterative interaction be-
tween the service system and twin space, the real-time
management and control of terminal operation process are
realized. In the case of loading and unloading synchroni-
zation, the goal of machine learning is set to minimize the
completion time. Two groups of small-scale and large-scale
tests have been carried out on the conventional and DT-
based terminal operation modes. 'e number of tasks be-
tween 5 and 30 is defined as a small-scale problem. 'e
number of tasks between 30 and 200 is defined as a large-
scale problem. 'e data involved in the routine ACT op-
erations are recorded during the actual test results according
to the number of tasks. 'e DT-based ACT process com-
pletes the test in the same scenario and records the relevant
data information. Compared with the conventional ACT
operation process, the DT-based performance evaluation
indicator on the ACT operation process is analyzed.

Among these indicators, the operation time of AQCs
refer to the time taken by AQC to complete a task multiplied
by the average number of tasks for each AQC. 'e turn-
around time of AGV refers to the task completion time of
AGV minus the time of receiving tasks. 'e operation time
of AYC is the time taken by AYC to complete a task

Operation
process

Container
ship

Unload

Load

Control Command

VMS

EDI System

TOS

Database

ECS

DMS PAS ......
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Figure 6: 'e system structure and operation process of the terminal.

Table 1: Parameter setting for the operation of ACT.

Configurations Detailed information

Ship demand

Planned berthing ship Changjiang 002, length of 258meters
Planned berthing time 7:00 a.m. on 19. Oct.
Operation test time 9:00 a.m. to 4:00 p.m.

Plan berthing location 4–6 container regions corresponding to the shoreline position
Estimated time of departure 6:00 p.m. on December 19

Berthing way Berthing on starboard side
AQC Number of AQC 4 AQCs were used
AGV Number of AGV 10 AGVs were used
AYC Number of AYC 6 AYCs were used
Container Number of containers 20 feet, the quantity varies from 20 to 200
Container region Use of container region Container regions 3–6 are used
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Table 2: 'e DT model evaluation results.

Indicators Time points
12. Jul. 2020. 11. Aug. 2020. 10. Sep. 2020. 10. Oct. 2020. 9. Nov. 2020. 9. Dec. 2020

Random forest
Ac (%) 96.26 96.83 97.12 97.48 97.59 97.91
RMSE 0.0198 0.0154 0.0133 0.0115 0.0102 0.0092
Ivar 0.5127 0.4203 0.4820 0.6270 0.5143 0.6637

AdaBoost
Ac (%) 97.92 98.06 98.20 98.37 98.41 98.63
RMSE 0.0148 0.0129 0.0110 0.0104 0.0093 0.0076
Ivar 0.7213 0.6850 0.7426 0.6039 0.8452 0.8962

XGBoost
Ac (%) 97.74 97.98 98.15 98.26 98.33 98.56
RMSE 0.0178 0.0141 0.0126 0.0119 0.0106 0.0089
Ivar 0.6433 0.5876 0.5329 0.7148 0.7746 0.8361

Figure 8: DT-based symbolization experimental test platform.
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Figure 7: Fitting error curves of three algorithms. (a) Random forest. (b) AdaBoost. (c) XGBoost.
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multiplied by the average number of tasks for each AYC.'e
waiting time of AGVs is the sum of the time spent by AGVs
waiting for AQC or AYC. 'e operation efficiency of AQCs
is the operation time of AQCs divided by AQCs operation
times. 'e turnover rate of AGV is the turnover times of
tasks completed by AGV per hour. 'e number of failures
refers to the number of failures of automation devices in the
task. System time-consuming refers to the time taken by the
system to issue instructions during operation.'emakespan
is the time taken to complete the last task, that is, the dif-
ference between the end time of the last task and the start
time of the first task.

4.3.1. Test Results for Small-Scale Problems. 'e handling
operations with 20 tasks were tested, including the results of
two modes of conventional operations and DT-based op-
erations. 'e test cases are evaluated by the performance
indicators of AQCs, AGVs, and AYCs. Ten tests were carried
out for handling operations under this scale, and the eval-
uation results are shown (see Table 3).

'e performance indicators value of conventional ter-
minal operation comes from the real operation data and the
calculation results of the data. 'e DT-based terminal op-
eration can continuously optimize and update the DTmodel
by sensing the data of physical space in real time. 'e sit-
uation of on-site operation is adjusted through the driving of
real-time data to deal with the congestion and waiting in the
operation. It can be seen from Table 3 that the tasks com-
pletion time of the DT-based terminal operation is 23.34%

less than that of conventional terminal operation. Obviously,
the operation efficiency has been improved. However, there
is an iterative interaction process in the DT-based terminal
operation, which is more time-consuming than the con-
ventional operation mode. According to statistics, the sys-
tem time-consuming is 51.47% higher than that of
conventional terminal operation system in small-scale
problems. Moreover, the twin space will provide feedback to
the system based on the location and performance of the
devices. 'e system assigns the task to the nearest device to
reduce the waiting time of the operation by the feedback
results. 'e operation time of AQCs and AYCs and the
turnover time of AGVs in DT-based terminal operation have
been reduced to a certain extent, which are reduced to
23.52%, 21.53%, and 24.76% of conventional operation
mode, respectively. 'e operational efficiency of AQCs has
also been improved. In terms of the failure rate, compared
with the conventional mode, the number of failures is greatly
reduced due to the prediction characteristics of DT. In the
process of DT-based terminal operation, the system will
predict the possible failure time of the devices by the motor
power, tire pressure, and other relevant performance data.
During this period, the use of these devices is reduced to
reduce their failure rate.

4.3.2. Test Results for Large-Scale Problems. 'e test results
of two modes in a large-scale problem with 120 tasks (see
Table 4). It can be seen from Table 4 that DT-based the
terminal operation mode is still superior to the conventional

Table 3: Test results of conventional and DT-based operations for small-scale problems.

Performance evaluation indicator Conventional terminal operation mode DT-based terminal operation mode Improvement (%)
Number of AQC/AGV/AYC 4/10/6 4/10/6 —
Number of tasks 20 20 —
AQC operation time (s) 1161 888 23.52
AGV turnaround time (s) 786 616.8 21.53
AY operation time (s) 863.2 649.5 24.76
AGV waiting time (s) 173 68 60.6
AQC operational efficiency (%) 16.20 28.11 11.91
AGV turnover rate (car/h) 3.8 5.28 1.48
Number of failures 2 1 50
System time-consuming (s) 68 103 −51.47
Total operation time (s) 2810.2 2154.3 23.34

Table 4: Test results of conventional and DT-based operations for large-scale problems.

Performance evaluation indicator Conventional terminal operation method DT-based terminal operation method Improvement (%)
Number of AQC/AGV/AYC 4/10/6 4/10/6 —
Number of tasks 120 120 —
AQC operation time (s) 7266 5028 30.80
AGV turnaround time (s) 8973 6492 27.64
AYC operation time (s) 7768 4934 36.48
AGV waiting time (s) 473 195 58.77
AQC operational efficiency (%) 22.14 36.71 14.57
AGV turnover rate (car/h) 3.93 5.68 1.75
Number of failures 3 1 66.6
System time-consuming (s) 428 593 −38.55
Total operation time (s) 24007 16454 31.46
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terminal operation mode. Compared with small-scale op-
eration, DT based the operation mode has been further
improved from 23.43% to 31.46% in operation efficiency. In
addition, the system time consumption is reduced from
51.47% to 38.55%. 'e main reason is that the DT-based
terminal operation mode uses machine learning to con-
tinuously learn the states in the operation process and
update the DTmodel. 'is makes the operation mode more
suitable for the actual production situation. Although the
system time-consuming is inferior to that of the conven-
tional terminal operation mode, the gap between the two
modes has been narrowing. It is believed that after repeated
iterations, the DT-based terminal operation mode will be
better than the conventional operation mode in terms of
system time-consuming.

To sum up, the test results of two scales show that DT-
based terminal operation mode can effectively optimize the
production control under the same production environment
by setting the goal of machine learning as the minimum
completion time. 'e continuous training and optimization
of the DT model also ensures the operation safety of the
terminal. 'e DT application framework and system in this
paper have certain theoretical and practical significance for
the realization of rapid and efficient production control of
the ACT. At the same time, DT application in the ACT has
guiding significance for port and transportation industry.

5. Conclusions

'is study proposed a safety operation optimization
framework integrating DT with the AdaBoost algorithm at
ACTs. To provide a more complete data set for the training
of the DT model, we employed data cleaning, data resam-
pling, and correlation analysis to deal with the problems of
missing values and inconsistent sampling frequency in the
original time series data. After that, a multidimensional and
multiscale DT model is constructed. AdaBoost, random
forest, and XGBoost algorithms are used to train the DT
dynamic mechanism model to deal with the occurrence of
uncertainty in the operation. More specifically, the quality of
the model is comprehensively evaluated by Ac, RMSE, Ivar,
and FE so as to determine which algorithm to be used for
model training. 'en, the trained model is tested by real-
time data of terminal operation, and the model is optimized
and deployed online according to the results. Based on the
proposed framework, the DT system is developed in the
ACT. Different scale experiments are performed to dem-
onstrate the integrated application of DT and AdaBoost
algorithm at the ACT. 'e experimental results show that
the DT-based terminal operation mode has higher loading
and unloading efficiency than that of the conventional
terminal operation efficiency.

In future, the following aspects can be further carried out
to expand this research. First, the research on the con-
struction of the high-fidelity virtual space model has a
certain value. Second, the construction of complex DT
dynamic mechanism model and the selection of model
evaluation index are worthy of further study. Finally, the
application of an integrated DT framework and modeling

method in AGV scheduling will also be an important re-
search direction. Based on the DT, a new generation of
virtual real combination and intelligent decision-making
AGV scheduling twin environment is established to solve
the complex AGV scheduling problem with multiresource
integration and strong dynamic real-time performance.
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