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In the corresponding research available, the safety impact remains controversial in implementing signal coordination on arterials,
which calls for an in-depth exploration with the appropriate statistical methods. Based on the traffic data from Ann Arbor City
(Michigan, USA), the paper proposes a safety evaluation model considering the multiple heterogeneities. In terms of arterials with
the coordinated signalization, modeling results imply that (1) the multivariate heterogeneity shows the strongest interaction on
crash frequency, followed by the spatiotemporal and structural heterogeneities, and (2) the spatial variation is unrelated to the
temporal change among crashes in the denoted traffic analysis zones (TAZs). In an attempt to alleviate the coupled crash risks
along the coordinated arterials, the study emphasizes the necessity of dividing the subcontrol traffic areas in real time according to
the correlative degree of crash distribution. Meanwhile, the modeling framework with multiple heterogeneities can be applied for
the safety analysis of other urban roads.

1. Introduction

Arterials obtain growing concerns with the increase of the
major traffic flow among urban road networks. For en-
suring operational efficiency, the control technique of
signal coordination was widely applied along the arterials
in recent decades [1–3]. By coupling the intersections si-
multaneously along arterials, signal coordination generates
the “green wave” by optimizing the signal attributes of
phase, timing, and cycle length [4]. *e advantages of
coordinated signalization are verified from several aspects,
such as increasing the traffic output, alleviating the ve-
hicular delay, and decreasing the phenomenon of “stop and
go” [3].

*e previous study focuses mainly on the efficiency
improvement of arterials with coordinated signalization. It
should be noted that the efficiency and safety impacts are not
consistent. Signal coordination may induce safety hazards
along arterials with the efficiency optimization. Since safety

is the precondition of sustainable operation, it is imperative
to provide an in-depth safety exploration of coordinated
arterials with appropriate models.

*e safety evaluationmodel is a useful tool to identify the
crash risks [5, 6]. During the modeling procedure, the
heterogeneity should be nonnegligible on account of the
connected traffic flow along signal-coordinated arterials [7].
Heterogeneous correlations, posing an important effect on
safety analysis results, stand for the interference involved in
the data source of coordinated arterials (Figure 1). From the
micro-aspect (i.e., on the roadway segments/or at the sig-
nalized intersections), there is the multivariate heterogeneity
between injury and property damage only (PDO) crashes,
since crashes from different severities may show the diverse
contributors [8]. Meanwhile, signal coordination results in a
strong association among vehicles with the “green wave,”
thus forming the structural heterogeneity between crashes in
each traffic analysis zone (TAZ) at the meso-viewpoint [9].
Regarding the macrolevel (i.e., along the whole coordinated
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arterials), it calls for the need to distinguish the specific form
of spatiotemporal heterogeneity among the TAZs [10].

*e innovation of the paper is to provide the compre-
hensive safety analysis of signal-coordinated arterials with
multiple heterogeneities. *e paper begins with the literature
review in Section 2. Section 3 divides the signal-coordinated
arterials into roadway segments, signalized intersections, and
TAZs. Each corresponding area retrieves the data of road
design features, traffic characteristics, and crash counts.
Section 4 describes seven statistical models, including Poisson
log-normal (PLN) model, multivariate Poisson log-normal
(MPLN) model, joint multivariate Poisson log-normal
(JMPLN) model, joint multivariate Poisson log-normal
conditional autoregressive (JMPLN-CAR) model, JMPLN-
CAR model with fixed spatial and linear temporal variation,
JMPLN-CAR model with fixed spatial and linear-quadratic
temporal variation, and JMPLN-CAR model with time-
varying spatial interaction. To compare the predictable per-
formance of models, the paper adopts three kinds of criteria,
i.e., classical criteria (mean absolute deviance (MAD), the
weighted mean absolute deviance (WMAD), mean squared
prediction error (MSPE), and weighted mean squared pre-
diction error (WMSPE)), prevalent criteria (deviance infor-
mation criterion (DIC) and total deviance information
criterion (TDIC)), and emerging criteria (log pseudo mar-
ginal likelihoods (LPML) and total log pseudo marginal
likelihoods (TLPML)). In addition, variation proportion is
feasible to reveal the modeling fitness explained by the

heterogeneous correlations. With the evaluated results
(Section 5), safety improvement suggestions are outlined in
Section 6.

2. Literature Review

2.1. Efficiency Optimization of Signal-Coordinated Arterials.
*e research of signal coordination draws surging attention
from scholars. In contrast to previous control modes (e.g.,
the fixed period and isolated signal), the coordinated sig-
nalization systematically integrates arterials as a whole with
advanced approaches (e.g., the coevolutionary analysis,
sensor technology, automatic control, and information
theory) [11], thus significantly improving the movement
efficiency of vehicles.

Specifically, the efficiency optimization of signal coor-
dination had two aspects: (1) setting the green bandwidth to
increase the traffic output [12] and (2) quantifying the
performance index, such as reducing the vehicular delay,
decreasing the queue length, considering the product of
traffic flow, and improving the traveling speed [13]. To
achieve the mentioned optimization objects, several algo-
rithms were provided of the Max-Band control [14], for-
ward-backward [15, 16], fuzzy control, game theory [17], ant
colony [18], hierarchical and distributed control [19], and
linear programming of mixed integers [14].

In summary, the previous literature focuses mainly on
the efficiency improvement of signal coordination. It needs
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Figure 1: Multiple heterogeneities along the signal-coordinated arterials.
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to provide the corresponding safety evaluation since the
efficiency and safety impacts are not consistent.

2.2. Safety Evaluation of Signal-Coordinated Arterials.
Signal coordination is able to optimize the moving efficiency
of vehicles, while its safety impact is controversial in the
current studies. One viewpoint is that the safety status
improves significantly after applying the signal coordination
on arterials. Carter and St-Onge [20] verified the 4.9% crash
reduction of Phoenix city (Arizona, USA) under the oper-
ation of signal-coordinated arterials. Meanwhile, the unsafe
behaviors were decreased in the study of Khattak et al. [21]
due to the existence of consecutively vehicular platoons with
signal coordination. Moreover, scholars identified the de-
crease of pedestrian, right-turn, and right-angle crashes with
the control of signal coordination in the before-after study
[22, 23]. An explanation was that signal coordination mit-
igates the phenomenon of “stop and go,” therefore de-
creasing the possibility of crash occurrence [24, 25].

In contrary to the above findings, there is a conclusion
that signal coordination incurs safety hazards along arterials.
For instance, crashes occurring at the signalized intersec-
tions were migrated to the roadway segments due to the
performance of signal coordination [9]. To alleviate the
vehicular delay, signal coordination was also allocated the
high-speed limit on arterials. However, this countermeasure
was potentially correlated with severe injury outcomes [26].
When vehicles entered the signalized intersections at the end
of “green wave,” they might execute the unsafe behaviors of
speeding and frequent lane changing [27]. In addition, there
was a longer vehicular delay on the adjacent uncoordinated
arterials, where the drivers became inpatient and might
engage in “road rage” [8].

In conclusion, the safety study of signal coordination
deserves an in-depth exploration with effective evaluation
models.

2.3. Statistical Models of Crash Frequency considering the
HeterogeneousCorrelations. *erewere a number of classical
safety evaluation models of crash frequency, such as the
Poisson regression model (the primary Bayesian counting
model) [28], negative binominal/Poisson-Gamma regression
model (solving the issue of overdispersion) [29], and zero-
inflated Poisson regression model (considering the existence
of zero crashes in units) [6]. Based on the traditional ap-
proaches, several models revealed the heterogeneity to ensure
the stability of regression results, including the random effects
model, finite mixture/latent class model, Markov switching
model, and generalized linear model [30]. Alternatively, the
random effects model is more flexible to reflect the hetero-
geneous differentiation as the random term [30, 31]. With the
method of maximum likelihood estimation, the model could
acquire a better goodness-of-fit for variables.

2.3.1. Multivariate Heterogeneity. Crashes of different types
may show the diverse contributors [32, 33]. For achieving
the safety analysis at the microscopic aspect, crashes are

usually classified into several levels as injury, PDO, and
fatality. *e multivariate random effects model is able to
reflect heterogeneous correlations among crashes with dif-
ferent severities [30, 34].

2.3.2. Structural Heterogeneity. *e structural heterogeneity
exists between crashes at units with different road design and
traffic flow features (e.g., roadway segments and signalized
intersections along the coordinated arterials) [9]. Scholars
concluded that the random effects model suffices to address
the structural heterogeneity [30, 35]. However, the structural
relationship between the units was not truly formulated.
With the joint random effects model, Fan et al. [9] recently
rebuilt the structural association between the roadway
segments and signalized intersections.

2.3.3. Spatiotemporal Heterogeneity. In contrast to the
structural correlation, spatial heterogeneity derives from
crashes in units with similar characteristics [36, 37]. *e
analysis of spatial heterogeneity has attracted a wide pop-
ularity in the aspects of intersections [38], segments [36, 39],
TAZs [33, 40], corridors [41], counties [26], and states/
provinces [42]. Generally, the spatial heterogeneity in the
random effects model was reflected as the distance function
of homogeneous units [10].

*ere are the analyses of temporal variation among
multiple years of crash data. For instance, Cheng et al. [43]
explored the spatial and temporal heterogeneities (i.e.,
spatiotemporal heterogeneity) in the same model, where the
specific forms included the fixed spatial and linear temporal
association, fixed spatial and linear-quadratic temporal as-
sociation, and time-varying spatial association.

3. Data

3.1. Description of Signal-Coordinated Arterials. *e data
records six arterials with the signal coordination from Ann
Arbor City (Michigan State, USA) [44], located in
Eisenhower, Packard, Plymouth, Stadium, State, and
Washtenaw Roads. Since 2009, the signal-coordinated
arterials apply the Adaptive Control System (ATCS),
which poses the advantages of presenting the flexible
signal plan, reflecting the timely traffic status, and pro-
viding the reasonable interference of signal coordination
[45]. More specifically, ATCS detects the real-time traffic
status (i.e., occupancy, flow, and congestion) with the use
of monitors installed upstream of signalized intersections.
*e detected data serves to predict the vehicular queuing
length, thus optimizing the corresponding signal attri-
butes. It is mentioned that the relative signal attributes
(cycle, timing, and phase) could not be directly acquired
from the arterials due to their changeable features with the
time variation.

Along the coordinated arterials, we investigated 38
roadway segments and 38 signalized intersections. For the
purpose of differentiating the specific location, each sig-
nalized intersection locates in the area consisting of the
central district and safety affecting region (i.e., 250 feet away
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from the stop bar) (Figure 1) [36, 39]. *e roadway segment
lies in the section between two adjacent intersections. Every
TAZ is formulated by the signalized intersection and its
adjacent roadway segment. With the distinguished units, the
paper extracts the dependent variables, road design features,
and traffic characteristics, respectively (Table 1).

Google Earth 2014 is capable of pinpointing the latitude
and longitude intervals for the 38 roadway segments (or
signalized intersections). With the geographical informa-
tion, nine-year (2009–2014) crash data were retrieved from
the Michigan Department of Transportation (MDOT). *e
total crash count, excluding the crashes related to animals,
nonmotor vehicles (e.g., bicycles and motorcycles), and
pedestrians, is 5613 along the coordinated arterials com-
posed by 1996 crashes of roadway segments and 3647
crashes of signalized intersections.*ere are 1576/2989 PDO
crashes and 387/657 injury crashes occurring on the seg-
ments/intersections. *e fatal crashes are filtered due to the
small sample size.

Road design variables, revealing operational require-
ments of the signal-coordinated arterials, are obtained by the
road survey with Google Earth 2014. Meanwhile, the paper
acquires the related traffic characteristics with the software
of ArcGIS and the traffic volume map of the Southeast
Michigan Council of Governments (SEMCOG) [46]. *e
related traffic variables suffice to describe the development
status of arterials under the coordinated signalization.

3.2. Data Processing. According to the conclusion of Alarifi
et al. [39], multicollinearity exists among the variables. *e
potential disturbance involved in the data may lead to
unstable results during the modeling process. For alleviating
the multicollinear effect, we employ the techniques of
product-moment and Spearman rank-order [47]. When the
correlation coefficient is larger than 0.6 between two esti-
mated variables, only the more important one (i.e., the
variable reflecting the characteristic of arterials more in
detail) will remain. *e filtered variables are in italics in
Table 1.

4. Methodology

4.1. Model Configuration. *ere are seven models in the
paper, including four existing models (i.e., PLN model,
JMPLNmodel, JMPLN-CARmodel, and MPLNmodel) and
three newly formulated models (i.e., JMPLN-CAR model
with fixed spatial and linear temporal variation, JMPLN-
CAR model with fixed spatial and linear-quadratic temporal
variation, and JMPLN-CARmodel with time-varying spatial
interaction). Detailed descriptions are summarized in
Table 2.

According to Table 2, the comparison of models 1-2
verifies the existence of multivariate heterogeneity between
PDO and injury crashes. Similarly, the paper could compare
models 2-3, 3-4, and 5–7 to explore the structural, spatial,
and spatiotemporal heterogeneities, respectively.

4.1.1. Poisson Log-Normal Model (Model 1). *e framework
of model 1 is specified as [34]

y
k
ij ∼ Poisson θk

ij􏼐 􏼑,

E y
k
ij􏼐 􏼑 � θk

ij,
(1)

where yk
ij stands for the crash count of unit i (i �1, 2, . . .,

M; M � 38 is the total number of units) for severity level j

(j �1, 2, . . ., S; j � 1 for injury and j � 2 for PDO) that
belongs to structure k (k �1 for roadway segment and k � 2
for signalized intersection). θk

ij represents the expectation of
yk

ij.
*e probability of crash counts satisfies the formula as

follows:

pr y
k
ij􏼐 􏼑 �

exp −θk
ij􏼐 􏼑 θk

ij􏼐 􏼑
yk

ij

y
k
ij􏼐 􏼑!

. (2)

θk
ij further follows the distribution as

log θk
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij, (3)

where λk
j is the intercept of severity level j and structure k; βkj

reflects the regression vector related to the explanatory
vector Xk

i ; Dk
i stands for the dichotomous variable, equaling

to the length of segment i if k � 1 and equaling to 0 if k � 2;
εk

ij ∼ Normal(0, (1/Q)); and Q ∼ gamma(0.01, 0.01) [8].

4.1.2. Multivariate Poisson Log-Normal Model (Model 2).
We have

log θk
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij, (4)

where εk
ij ∼ MNk

j(0,Σε) indicates the multivariate-hetero-
geneous effect between injury and PDO crashes [8]. Also, Σe is
the corresponding matrix of variance-covariance denoted by

Σ−1
ε ∼ Wishart(R, n), (5)

where Σ−1ε is the inverse matrix of Σε; R represents the scale
matrix of Jonathan et al. [48]; and n is the freedom degree,
assigned as 2 according to the classification of structure k.
Model 2 further discusses the multivariate heterogeneity on
roadway segments (or at signalized intersections) in the
microscopic aspect compared to model 1.

4.1.3. Joint Multivariate Poisson Log-Normal Model (Model
3). Compared to model 2, model 3 incorporates the
structural-heterogeneous correlation in each TAZ from the
mesoscopic level. Inspired by the study of Fan et al. [9],
model 3 follows the formula as

log θk
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij + ηZi + Hk, (6)

where η is the vector of regression parameters related to the
explanatory vector Zi of TAZ and Hk represents the term of
structural heterogeneity between each segment and its ad-
jacent intersection [9]. More specifically, H1 � δ1μ1i is the
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structural heterogeneity from the intersections acting on the
segments, while H2 � (δ2μ1i + δ3μ2i ) stands for the structural
heterogeneity from the segments acting on the intersections;
δm (m �1, 2, 3) reflects the estimated coefficient. μk

i satisfies
Normal(0, (1/τk

i )) and τk
i is the precision parameter [33].

4.1.4. Joint Multivariate Poisson Log-Normal Conditional
Autoregressive Model (Model 4). Model 4 further considers
the spatial-heterogeneous correlation among the TAZs. *e
corresponding equation is shown as

log θk
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij + ηZi + Hk + ψi, (7)

where ψi stands for the CAR term of spatial relationship.*e
specific distribution of ψi is assigned as

ψi|ψ−i ∼ Normal
􏽐j≠iwijψi

􏽐j≠iwij

,
σ2ψ

􏽐j≠iwij

⎛⎝ ⎞⎠, (8)

where ψ−i is the set derived from ψi [39]; (1/σ2ψ) reflects the
CAR precision parameter assumed to be the gamma hyper-

Table 1: Descriptive statistics of coordinated arterials.

Location Variable Mean SD Min Max

Roadway segment

Dependent variable
Total crash counts 51.74 54.79 0 196

Injury crash 10.18 10.03 0 34
PDO crash 41.47 41.47 0 176

Road design feature
Number of lanes 4.92 0.82 2 7

Segment length (mile) 1.07 0.79 0.06 3.24
Median opening width (ft) 13.28 19.13 0 60.45

Functional roadway classification (1� principal arterial, 0�minor arterial) 0.26 0.45 0 1.00
Lane density (no. of lanes/mile) 13.41 20.78 1.55 87.72

Median opening density (no. of median openings/mile) 2.39 5.40 0 23.76
Traffic characteristic

Posted speed limit (mph) 36.71 4.39 30 45
AADT (veh/day) 24229.79 7603.32 12298 38386

Traffic analysis zone

Dependent variable
Crash counts 81.80 99.40 25 455

Road design feature
Length (mile) 1.19 0.79 0.06 3.36

Traffic characteristic
Average posted speed limit (mph) 36.98 4.43 30 45

Average AADT (veh/day) 24545.39 7422.46 12298 38386

Signalized
intersection

Dependent variable
Total crash counts 95.97 69.15 4 308

Injury crash 17.29 12.08 0 46
PDO crash 78.66 78.66 4 262

Road design feature
NETMA: number of exclusive through lanes on major road 2.74 0.89 2 5
NETMI: number of exclusive through lanes on minor road 0.71 1.23 0 4

RWMA: roadway width of major road (ft) 67.12 22.62 36.03 135.38
RWMI: roadway width of minor road (ft) 42.15 14.49 21.18 76.87

PLMA: presence of left-turn lane at both approaches on major road (1� yes,
0� no) 0.50 0.51 0 1

PRMA: presence of right-turn lane at both approaches on major road (1� yes,
0� no) 0.68 0.47 0 1

PLMI: presence of left-turn lane at both approaches on minor road (1� yes,
0� no) 0.61 0.50 0 1

PRMI: presence of right-turn lane at both approaches on minor road (1� yes,
0� no) 0.84 0.37 0 1

Number of legs (1� 4 legs, 0� 3 legs) 0.68 0.47 0 1
Intersection size (1 if number of lanes from all approaches≥ 19, 0 otherwise) 0.26 0.45 0 1

PMMA: presence of median on major road (1�Yes, 0�No) 0.39 0.50 0 1
PMMI: presence of median on minor road (1�Yes, 0�No) 0.32 0.47 0 1

Traffic characteristic
PSMA: posted speed limit on major road (mph) 37.24 5.03 30 45
PSMI: posted speed limit on minor road (mph) 30.79 5.27 25 40

ASD: absolute speed limit difference between major and minor roads (mph) 6.84 5.38 0 20
AADT on major road (veh/day) 24861 7619.88 12298 38386

Note. Filtered variables are shown in italics after the correlation analysis in Section 3.2.
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prior (0.01, 0.01); and ψi is represented by the matrix W,
where each entry wij is the spatial heterogeneity between
units i and j. *e formula of wij is given as

wij �
e

− αdij , if i and j are on the same arterial,

0, if i and j are on different arterials,

⎧⎨

⎩ (9)

where dij is shown as the geometry centroid length and α
(>0) indicates the decline rate of distance [49].

Derived from model 4, models 5–7 identify the different
types of spatiotemporal-heterogeneous correlations in Sec-
tions 4.1.5–4.1.7, respectively.

4.1.5. Joint Multivariate Poisson Log-Normal Conditional
AutoregressiveModel with Fixed Spatial and Linear Temporal
Variation (Model 5).

log θkt
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij + ηZi + Hk + 􏽦STt

i ,

􏽦STt

i � ψi + ξ + δi( 􏼁∗ t,
(10)

where θkt
ij is the crash count of θk

ij divided by time t (t �1, 2,
. . ., T); 􏽦STt

i � ψi + (ξ + δi)∗ t reveals the spatiotemporal
heterogeneity, consisting of the fixed spatial correlation ψi

and the linear temporal variation (ξ + δi)∗ t; t is the linear
trend of time; ξ is the average variation among all units; and
δi follows the similar distribution as ψi.

In model 5, it is emphasized that the spatial variation (ψi

and δi) is independent of the temporal changing (t) [43].

4.1.6. Joint Multivariate Poisson Log-Normal Conditional
Autoregressive Model with Fixed Spatial and Linear-Qua-
dratic Temporal Variation (Model 6). We have

log θkt
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij + ηZi + Hk + STt

i , (11)

STt

i � ψi + ξ + δi( 􏼁∗ t + c∗ t
2
. (12)

Model 6 addresses the fixed spatial and linear-quadratic
temporal variation (STt

i ) based on model 5. In equation (12),

c∗ t2 reflects the quadratic temporal variation; and c is the
coefficient corresponding to the quadratic time t2.

ψi and δi are unrelated to t and t2, which indicates that
the temporal trend does not affect the spatial connectivity
and vice versa [10].

4.1.7. Joint Multivariate Poisson Log-Normal Conditional
Autoregressive Model with Time-Varying Spatial Interaction
(Model 7). Model 7 presents the spatiotemporal interaction
between the spatial and temporal heterogeneity in reality
[10]:

log θkt
ij􏼐 􏼑 � λk

j + βkj X
k
i + D

k
i + εk

ij + ηZi + Hk + 􏽣ST
t

i ,

􏽣ST
t

i � ψt
i ,

(13)

where the time-varying spatial interaction ψt
i satisfies the

distribution as MNt(0,Σk). Σk is the variance-covariance
matrix expressed as

Σ−1
k ∼ Wishart(R, n), (14)

Σ−1k is the inverse matrix of Σk; R is the scale matrix defined
by Aguero-Valverde and Jovanis [50]; and n stands for the
degree of freedom [10].

4.2. Bayesian Inference and Model Comparison. *ree types
of methods are feasible to identify the differentiation among
the models, including the classical criteria (i.e., WMAD/
MAD and WMSPE/MSPE), pervasive criteria (i.e., TDIC/
DIC), and emerging criteria (i.e., TLPML/LPML). *e
summary of the criteria is presented in Table 3.

4.2.1. Mean Absolute Deviance and Mean Squared Prediction
Error. *e classical approaches of MAD and MSPE are
employed to compare the model fitness [41, 52, 53]. Re-
garding the structure k, they are separately presented in the
following equations:

Table 2: Summary of employed models.

Model Abbreviation Section Role

PLN model Model 1 4.1.1 Foundation of the crash frequency analysis with the
random effect

MPLN model Model 2 4.1.2 Identifies the multivariate heterogeneity
JMPLN model Model 3 4.1.3 Explores the multivariate and structural heterogeneities

JMPLN-CAR model Model 4 4.1.4 Captures the multivariate, structural, and spatial
heterogeneities

JMPLN-CAR model with fixed spatial and linear
temporal variation Model 5 4.1.5 Discusses the multivariate, structural, and

spatiotemporal heterogeneities
JMPLN-CAR model with fixed spatial and linear-
quadratic temporal variation Model 6 4.1.6 Addresses the multivariate, structural, and

spatiotemporal heterogeneities
JMPLN-CAR model with time-varying spatial
interaction Model 7 4.1.7 Reflects themultivariate, structural, and spatiotemporal

heterogeneities
Note. *e full name of the models is shown in Section 1.
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MADk
�

1
MST

􏽘

M

i�1
􏽘

S

j�1
􏽘

T

t�1
Y

kt
ij − θkt

ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (15)

MSPEk
�

1
MST

􏽘

M

i�1
􏽘

S

j�1
􏽘

T

t�1
Y

kt
ij − θkt

ij􏼐 􏼑
2
. (16)

For each TAZ, the weighted MAD (i.e., WMAD) is
shown as [52]

WMAD �
M

M + M
MAD1

+
M

M + M
MAD2

, (17)

where MAD1 and MAD2 are related to roadway segments
and signalized intersections, respectively.

In terms of Ykt
ij and θkt

ij , the calculation of WSPE is
similar to that of WMAD.

4.2.2. Deviance Information Criterion. *e formula of DIC
for structure k is described as [36, 39, 40, 53, 54]

DICk
� D

k
+ P

k
D, (18)

where D
k represents the posterior mean deviance and Pk

D

shows the complexity measurement of the model.
Total deviance information criterion (TDIC) of total

TAZs is formulated as

TDIC � DIC1
+ DIC2

. (19)

4.2.3. Log Pseudo Marginal Likelihoods. LPML of each
structure k satisfies the formula as follows [10, 43, 51]:

LPMLk
� log􏽙

M

i�1
􏽙

S

j�1
CPOk

ij, (20)

where CPOk
ij is the conditional predictive ordinate given by

CPOk
ij �

1
T

􏽘

T

t�1

1
f 􏽐

T
t�1 Ykt

ij |βk
(t)􏼐 􏼑

⎛⎝ ⎞⎠

− 1

. (21)

In equation (21), f(·|·) is the conditional predictive
distribution.

In terms of TAZs, the total LPML is denoted as follows:

TLPML � LPML1 + LPML2 � log􏽙
M

i�1
􏽙

S

j�1
CPO1

ijCPO
1
ij􏼐 􏼑.

(22)

4.3.VariationProportion. *e paper utilizes α1, α2, and α3 to
reveal the variation proportion explained by the multivar-
iate, structural, and spatiotemporal correlations (i.e., ε, H,
and ST), respectively. *e specific formula is shown as

α1 �
sd(ε)

sd(ε) + sd(H) + sd(ST)
,

α2 �
sd(H)

sd(ε) + sd(H) + sd(ST)
,

α3 �
sd(ST)

sd(ε) + sd(H) + sd(ST)
,

(23)

where sd(·) is the standard deviation. *e lower value of αm

(m �1, 2, 3) indicates the relatively weaker heterogeneous
correlation corresponding to the total sum of heterogeneities
[34].

5. Results

*e paper conducts the modeling estimation with the
software of WinBUGs 1.4.3 [55], where the total iterations
perform as 30,000 containing discarded 10,000 iterations at
the burn-in-step.

5.1. Goodness-of-Fit for Models. Tables 4 and 5 provide the
predictive performance of models 1–4 and 5–7, respectively.
According to Table 4, model 4 with the lowest TDIC value
(888.565) prefers models 1–3 (separately with the TDIC
value of 903.119, 926.193, and 973.746). However, the
evaluation result of WMAD and WMSPE is inconsistent
with the counterpart of TDIC. It is because WMAD and

Table 3: *e summary of comparison criterion in the paper.

Criterion Section Characteristic Role Status

WMAD/
MAD 4.2.1

Fails to consider the complexity of models; generates the
biases when adopting the models with the nonparametric or

highly parameterized characteristic

*e lower the value, the better the
goodness-of-fit of the estimated

model
Classical criteria

WMSPE/
MSPE 4.2.1

Fails to account for the complexity of models; generates the
biases when adopting the models with the nonparametric or

highly parameterized characteristic

*e lower the value, the better the
goodness-of-fit of the estimated

model
Classical criteria

TDIC/DIC 4.2.2
Explores the posterior mean deviance and the complexity of
models; generates the biases when adopting the models with
the nonparametric or highly parameterized characteristic

*e lower the value, the better the
goodness-of-fit

of the estimated model
Pervasive criteria

TLPML/
LPML 4.2.3

Poses a better fitness for models
with the nonparametric or highly

parameterized characteristic

*e higher the value, the better the
goodness-of-fit of the estimated

model

Emerging
criteria

Note. *e full name of the criteria is shown in Section 1; the detailed description of the above criteria is in Fan et al. [10], Heydari et al. [51], and Zeng and
Huang [52].
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WMSPE fail to account for the complexity of models in
contrast to TDIC (Table 3).

Table 5 adds the approach of TLPML to further quantify
the division of temporal dimension in models 5–7. Model 5
notably rules out models 6-7 as associating with the highest
TLPML value (−65.750>−66.890>−75.470) and the lowest
TDIC value (4780.790< 4785.050< 4940.530). However, the
estimate of WMAD and WMSPE generates the biases
compared to TLPML and TDIC according to Table 3.

With the above criteria, it is difficult to directly compare
the fitness between models 1–4 and 5–7 due to the increase
of temporal dimension in latter models. *erefore, the paper
utilizes the method of variation proportion to complete the
model comparison (Table 6). It is shown that the values of
sd(ε), sd(H), and sd(ST) are greater than 0, which verifies
the existence of multivariate, structural, and spatiotemporal
heterogeneities. By incorporating the multiple-heteroge-
neous correlations simultaneously, models 5–7 implicitly
obtain a better predictive performance compared to models
1–4. Combined with themodeling results in Table 5, it can be
summarized that model 5 poses a better fitness than other
models.*e parameter estimation and discussions below are
based on model 5.

Meanwhile, the value of α1 (0.764) is larger than α3
(0.166) and α2 (0.070) (Table 6). It implies that multivariate
heterogeneity has the most powerful impact on the

assessment results, followed by the spatiotemporal and
structural heterogeneities [34, 40, 53].

5.2. Parameter Estimation. Presented in Table 7 is the re-
gression result of models 5–7. *e corresponding results of
models 1-2 and 3-4 are shown in the Supplementary Ma-
terials section in Tables S1 and S2, respectively. Meanwhile,
the point range plots of Table 7 are provided in the Sup-
plementary Materials section in Figures S1–S5. Based on the
results of roadway segments in model 5, several contributors
are positively associated with the occurrence of injury and
PDO crashes, including the median opening width, lane
density, posted speed limit, and log AADT. Meanwhile, the
principal arterial is assumed to cause more crashes than the
minor arterial according to the modeling result of functional
roadway classification. In terms of the TAZs, the estimation
results are summarized as (1) the increase of average AADT
causing more crashes; (2) the higher average posted speed
limit decreasing the possibility of crash occurrence; and (3)
the length of TAZ not being a significant indicator of crash
frequency. Regarding the signalized intersections, four
variables (i.e., NETMA, NETMI, number of legs, and log
AADT on major road) are the positively statistical evidence
impacting on the number of injury and PDO crashes at the
significance level of 95%. PLMA, PLMI, PMMA, and PMMI

Table 4: Summarized results of the predictive performance for models 1–4.

Criteria
Model 1 Model 2

Model 3 Model 4
Roadway segment Signalized intersection Roadway segment Signalized intersection

DIC 433.301 540.445 399.828 526.365 — —
TDIC 973.746 926.193 903.119 888.565
MAD 3.236 4.886 3.030 4.769 — —
WMAD 4.061 3.8995 3.903 3.93
MSPE 26.030 48.310 25.060 46.840 — —
WMSPE 37.170 35.950 35.800 36.320
Note. From model 3, the roadway segment and signalized intersection are incorporated in the whole TAZ (Section 4.1.3).

Table 5: Summarized results of the predictive performance for models 5–7.

Criteria Model 5 Model 6 Model 7
TLPML −65.750 −75.470 −66.890
TDIC 4780.790 4785.050 4940.530
WMAD 1.473 1.465 1.592
WMSPE 5.379 5.292 6.871

Table 6: Summary of the variation proportion related to models 5–7.

Criteria Model 5 (95% BCI) Model 6 (95% BCI) Model 7 (95% BCI)
sd(ε) 5.179 (4.161, 6.748) 43.360 (20.060, 66.430) 4.996 (3.843, 6.169)
sd(H) 0.481 (0.098, 1.172) 0.568 (0.096, 1.705) 0.347 (0.065, 1.003)
sd(ST) 1.126 (0.556, 1.807) 11.580 (0.905, 19.810) 1.215 (0.987, 1.392)
α1 0.764 (0.651, 0.873) 0.796 (0.754, 0.940) 0.761 (0.669, 0.818)
α2 0.070 (0.015, 0.164) 0.011 (0.002, 0.028) 0.052 (0.011, 0.138)
α3 0.166 (0.089, 0.258) 0.193 (0.043, 0.239) 0.187 (0.151, 0.236)
Note. BCI is the Bayesian “credible” interval.
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increase the crash count. *e variation of ASD is unrelated
to both crash occurrences.

6. Conclusion and Discussion

Previous research lacks the comprehensive heterogeneity
consideration for the signal-coordinated arterials.*is paper
aims to build the safety evaluation model by incorporating
multiple heterogeneities simultaneously, including the
multivariate heterogeneity (at the microscopic level),
structural heterogeneity (from the mesoscopic aspect), and
spatiotemporal heterogeneity (in the macroscopic view-
point). *e model serves to identify the significant con-
tributors to crash frequency, thus achieving the accurate
safety analysis of arterials with the coordinated signalization.

Tables 5 and 6 show that models 5–7 perform better than
models 1–4 due to the existence of multivariate, structural,
and spatiotemporal heterogeneities. Signal coordination
forms the “green wave” to impose the high-speed limit for
the consecutively vehicular platoon, where the vehicles are
densely correlated. *us, the coupled vehicles connect as a
whole generating the multivariate, structural, and spatio-
temporal heterogeneities. *e conclusion verifies the ne-
cessity of proposing the safety evaluation model with the
multiple heterogeneities. In addition, it is imperative to
provide the safety improvement countermeasures to alle-
viate the correlated crashes caused by the multiple hetero-
geneities, such as (1) adding the content of signal-
coordinated arterials during the driving license test to en-
hance the drivers’ theoretical and practical cognition; (2)
setting the warning signs at the entrance of coordinated
arterials [9]; (3) equipping the variable message sign system
(VMSS) to present the traffic information for vehicles in real
time [56]; (4) providing vehicles with the advanced tech-
nologies of autonomous driving, connected vehicle, and
artificial intelligence [57–59], thus achieving the accurate
crash control and eliminating the interference of humans.

Model 5 is superior to models 6-7 (Table 5), implying that
there exists the fixed spatial and linear temporal variation
(Section 4.1.5). Specifically, it indicates that the variation of
spatial heterogeneity is unrelated to the temporal changing
among the TAZs. It is possible that, with the aid of signal
coordination, the stable spatial correlations on signalized
intersections evenly affect the whole TAZs [8]. *e signal
coordination allows the vehicular platoon to pass through the
intersections with the invariant headways, while the invariant
headways are associated with the stable distribution of pla-
toon, resulting in the unchanged spatial heterogeneity. Given
the consistent spatial association, it is necessary to divide the
subcontrol traffic zones based on the correlative degree of
vehicles in real time. With the response to the dynamic traffic
demand, the approach can avoid the “green wave” being too
long or too short, thus ensuring the stability of vehicular
movement and alleviating the unsafe behaviors (e.g., accel-
eration and “stop and go”) [60, 61].

Meanwhile, it is found that multivariate heterogeneity
obtains a stronger impact on the evaluation results than the
structural and spatiotemporal heterogeneities (Table 6). In
view of the differentiation among the multivariate,

structural, and spatiotemporal heterogeneities, appropriate
suggestions are recommended for divers, such as (1) paying
more attention to the vehicular distribution in real time, thus
dynamically responding to the correlative criterion; (2)
maintaining the driving speed and headway to ensure the
awareness of safety risks; (3) adopting the actuated advance
warning system (ADWS) [62]; and (4) equipping the on-
board sensors in vehicles to retrieve a large amount of data
(e.g., the acceleration, application status of vehicular com-
ponents, and the distance between other vehicles) with the
video recording technology [63].

For the roadway segments (Table 7), median opening
width is positively correlated with injury and PDO crash
counts. A feasible explanation is that the high-speed ve-
hicular platoon migrates from the signalized intersections to
the adjacent segments due to the implementation of signal
coordination. Without the signalized control, the aggregated
vehicles on the segments pose relatively short headways
[8, 9]. Under the scenario, the wider median opening may
incur more risky driving behaviors (e.g., the simultaneous
U-turn of vehicles), thus resulting in the phenomenon of
traffic jams more easily. Similarly, the increase of lane
density, posted speed limit, log AADT, and functional
roadway classification causes safety hazards along the
roadway segments [39, 64–66]. In order to alleviate the crash
hazards of roadway segments along the coordinated arte-
rials, the countermeasures are provided: (1) reducing the
width of median opening, evenly decreasing the setting of
median opening; (2) implementing the low-speed limit on
the segments; (3) applying the vibrating deceleration
pavement markings to control the vehicular speed; and (4)
maintaining a sufficient sight distance for the drivers.

At the signalized intersections (Table 7), the higher
possibility of injury and PDO crash occurrences is due to the
increase of NETMA, NETMI, the number of legs, and log
AADT on the major road. Meanwhile, PLMA, PLMI,
PMMA, and PMMI result in more crash counts. *e above
findings are in accordance with the previous literature
[8, 39, 67–69]. *e variable of ASD is independent of crash
count. As opposed to the minor road, signal coordination
allocates the adequate “green wave” on the major road with a
high-speed limit [9, 41]. In the presentation of decreasing the
ASD (or appropriately increasing the posted speed limit on
the minor road), the crash variation of whole intersections is
insignificant due to the limited traffic flow and “green
bandwidth” on the minor road.

Although the study considers the potential disturbance
involved in the data, the issue of multicollinearity may not be
completely resolved. *e safety evaluation of the signal-
coordinated system needs to be further explored by
employing more effective methods to address the multi-
collinearity among variables, e.g., testing each variable in the
safety evaluationmodel and then excluding ones to be highly
correlated.
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