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*e development of connected and autonomous vehicle (CAV) technology has received increasing attention in recent years.
Although car-following behavior in mixed traffic with CAVs and human-driven vehicles (HDVs) is a core component of
microscopic traffic simulation, intelligent traffic systems, etc., the current study of car-following behavior in mixed traffic has some
limitations. Furthermore, actual data do not support its applicability to the Chinese traffic environment. To address this gap, this
paper designs and organizes a car-following experiment in mixed traffic in Beijing, extracts the trajectory data of CAVs and HDVs
based on video recognition, and reconstructs the extracted trajectory data using the Lagrangian theory and Kalman filter theory to
ensure the accuracy of the data. Based on this data set, this paper develops an extended car-following model. *e model considers
the cooperation between drivers by reformulating the prospect theory (PT). *e root mean square percentage error (RMSPE) is
selected to calibrate and validate the parameters of the proposed model, and the results show that there is significant heterogeneity
between CAVs and HDVs in mixed traffic, and the proposed model captures this heterogeneity well. *e model presented in this
paper provides theoretical support for microscopic traffic simulation in mixed traffic.

1. Introduction

Traffic congestion has been a hot issue for decades and will
remain so in the future. Generally, traffic congestion causes
oscillations and stop-and-go waves, which are a nuisance to
drivers and result in more accidents and lower traffic effi-
ciency. Many fascinating traffic flow phenomena, such as
hysteresis, traffic breakdown, and capacity drop, result from
the complexity and randomness of driving behavior [1]. To
better alleviate traffic congestion and control traffic flow, it is
necessary to understand the mechanism of these phenom-
ena. However, our understanding of traffic flow is still not
comprehensive and is even somewhat ambiguous [2].

In addition, understanding and exploring these human
behaviors are just as important in the field of CAVs. At
present, despite the enormous investments in CAV

technologies that the automotive industry has made to
compete in this potential market, it will still require decades
for CAVs to be fully deployed [3]. It is a fact that mixed
traffic, including CAVs and HDVs, will appear and last for a
long time. In the second and third level automatic driving
stages, although the driver does not need to perform driving
operations, they need to monitor the road environment and
the autonomous driving system and respond to takeover
requests from the system in time [4, 5]. How will these two
types of vehicles, CAVs and HDVs, operate together in
mixed traffic? How can we better understand the driving
behavior in mixed traffic and thus improve traffic condi-
tions? A model of the collaborative interaction between two
types of vehicles is one of the many essential tools.

As one of the microscopic traffic flow models, the car-
following model has been developed for many decades
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because of its ability to control the longitudinal part of the
traffic flow. During the following process, novice drivers feel
very nervous due to a lack of confidence or inaccurate
judgment of the relative speed and distance between the cars
in front and behind, which causes drivers to have very high
stress and thus affects their following behavior. Skilled
drivers may feel bored during car-following, but their rich
driving experience allows them to drive steadily behind the
preceding vehicle [6]. For different types of drivers, driving
behaviors will vary during the following process, and the
study of these behavioral characteristics is essential for
microscopic traffic flow. *e first car-following model, the
Pipes model, was proposed in 1953 [7]. Since then, nu-
merous car-following models have been proposed, reflecting
the evolution of the study of traffic flow from different
perspectives. *ese models mainly include the Gaz-
is–Herman–Rothery model [8], the intelligent driver model
[9], the optimal velocity model [10], the Gipps model [11],
and the Wiedemann model [12]. *ese models describe the
driving behavior during the car-following from different
perspectives, such as stimulus-response, safety-distance,
optimal velocity, and psycho-physical. Among them, many
methods and conclusions have been proposed to enhance
traffic flow stability, improve safety, and alleviate traffic
congestion [13]. However, the analysis of vehicle interac-
tions cannot be separated from human factors, which are
often neglected in previous studies. *e introduction of
human factors complicates the interaction between vehicles
[14]. An accurate description of the human-like collabora-
tive relationship between cars during the following process is
conducive to understanding the operation rules of hetero-
geneous traffic flow and then to implement traffic man-
agement and control measures more effectively.

Recently, emerging automated vehicle (AV) technolo-
gies push the study of driver behavior to a new stage, es-
pecially car-following behavior. As the precursor of AV
technology, the adaptive cruise control (ACC) has been very
common. It has been more than 20 years since the advent of
the first vehicle equipped with ACC technology [15].
Moreover, the ACC technology is likely to be the primary
component for longitudinal control of higher-level AVs in
the future [16]. *erefore, it is critical to understand the
changes brought about by vehicles equipped with ACC
systems compared with traditional HDVs. Although vehicles
equipped with ACC systems have become common, only a
few studies have been conducted on the driving behavior of
ACC vehicles based on experimental field data. Several
studies have been conducted in the literature on the stability
of ACC systems [17–19]. Notably, in recent years, pioneering
work has been done to understand the behavior of ACC, and
more sophisticated control experiments have been con-
ducted. Specifically, Gunter et al. have undertaken a set of
car-following experiments to collect empirical data. *ey
calibrated an optimal velocity car-following model in their
research and analyzed the string stability for both calibrated
models based on the observed data [20]. Moreover, the Joint
Research Centre of the European Commission has con-
ducted a set of ACC experiments, and some basic features of
ACC have already been revealed [21]. However, ACC

systems make car-following decisions that depend only on
the preceding vehicle’s information, weakening the con-
nectivity of cars equipped with the ACC system. Compared
with the ACC system, the cooperative adaptive cruise
control (CACC) system makes car-following decisions with
more information from either a single vehicle or multiple
vehicles using connectivity technologies [22]. *e CACC
system allows vehicles to follow in a platoon by extra layers
of communication and automation [23]. As one of the most
popular CAV technology applications, scholars have paid a
significant amount of attention to the CACC system
[24–27]. However, the research on CACC systems has fo-
cused on what benefits CAVs may bring to traffic networks,
with little consideration of the impact of CACC systems on
vehicles not equipped with the CAV technology (HDVs). So,
it is particularly important to comprehensively consider the
cooperative relationship between CAVs and HDVs in mixed
traffic to conduct interaction analysis and achieve the op-
timal system.

A common and perhaps the most critical gap identified
in the above studies is the insufficient consideration of
human factors during the following process. *e coopera-
tion between human drivers (or between a human driver and
a CAV with a higher autopilot system) significantly affects
the car-following operation. In addition, a few studies di-
rectly used existing car-following models to simulate the
behavior of vehicles in mixed traffic without examining the
applicability of the models, either for CAVs or for HDVs.
Further, most previous studies have used the vehicle tra-
jectory data from driving simulators and numerical simu-
lations, and they employed trajectory data of HDVs to
calibrate the model. Still, these data are not representative of
real-world vehicle trajectory data in connected and auton-
omous vehicle environment. *e car-following behavior of
both CAVs and HDVs has changed in connected and au-
tonomous vehicle environment. *e traditional car-fol-
lowing model is no longer sufficient to describe their driving
behavior. *erefore, how can we obtain accurate and
credible vehicle trajectory data in connected and autono-
mous vehicle environment? How can we take human factors
into account when modeling car-following behavior in
mixed traffic? *ese questions are still to be explored.

*us, the paper focuses on modeling car-following be-
havior in connected and autonomous vehicle environment
by incorporating human factors, i.e., cooperation between
drivers. *e well-known PT describes the cooperation be-
tween drivers in this paper. *ree variables—speed differ-
ence, acceleration, and distance headway—are utilized to
model the car-following behavior of vehicles. Also, we
designed and conducted a car-following experiment in
connected and autonomous vehicle environment to obtain
the vehicle trajectory data required for the calibration and
validation of the model. In the experiment, three Tesla
vehicles, equipped with Level 2 autonomous driving func-
tions, completed the designed driving operations on the test
road section. Using the Lagrangian theory and Kalman filter
theory, we developed a vehicle trajectory reconstruction
method to reconstruct the extracted data from the collected
videos.
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*e remainder of the paper is structured as follows. *e
following section (Section 2) is about data collection, which
mainly explains the experimental and data reconstruction
method. Section 3 presents the analysis of cooperation for
car-following behavior in mixed traffic. Section 4 describes
the methodologies to model car-following behavior in
connected and autonomous vehicle environment based on
PT. *e calibration and verification of the model are pro-
vided in Section 5. *e last section concludes the paper.

2. Data Collection and Processing

High-precision vehicle trajectory data are necessary to
support the research of micro-driving behavior in connected
and autonomous vehicle environment. However, the vehicle
trajectory data acquired based on in-vehicle devices or
videos have non-negligible measurement errors that ad-
versely affect the establishment and calibration of micro-
scopic driving models. *us, a data acquisition experiment
was designed and implemented.

In this paper, the experiment was carried out using three
Tesla vehicles. Some well-known experiments on mixed
traffic were also done with the help of a few test vehicles. For
example, the CACC experiments of PATH Laboratory at the
University of California, Berkeley. In the study of modeling
cooperative and autonomous adaptive cruise control dy-
namic responses, their experiments were carried out using
four production Infiniti M56s (the vehicle equipped with a
commercial ACC system) provided by Nissan [28].*en, we
extracted the collected videos to obtain the original vehicle
trajectory data. To obtain richer data, a total of 90 minutes of
video data were collected for trajectory extraction (greater
than 45 minutes in NGSIM), with a granularity of 0.1
seconds. Finally, a two-step reconstruction method was
presented by combining the Lagrange algorithm and Kal-
man filter theory to achieve interpolation replacement and
noise reduction of the abnormal data in the data set.

2.1. Experimental Implementation of the Cooperative
Adaptive Cruise Control. *e video data used for vehicle
trajectory extraction in this study were collected on De-
cember 27, 2019. Ninety minutes of video data, divided into
six segments, were collected every 15 minutes.*e collection
site was located at Majiabao West Road, Fengtai District,
Beijing, with a total length of about 230m, and the collection
method was 4K high-definition video. Figure 1 shows the
survey location and camera position.

To obtain actual data for mixed traffic, three Tesla ve-
hicles, which can achieve Level 2 autonomous driving, were
driven back and forth on Majiabao West Road in Beijing for
1.5 hours. *e videos are recorded with a high-resolution
camera located on a high building nearMajiabaoWest Road.
*e autonomous driving functions, including adaptive
cruise control, lane keep assistance, and lane departure
warning, are active when the drivers enter the test area. To
simulate a connected environment, the drivers of the three
Tesla vehicles interact via real-time video communication.
For example, when a Tesla driver performs a lane-changing

operation, the other two Tesla drivers in adjacent lanes are
informed through real-time video communication and then
cooperate with the driver to complete the operation. In
addition, the three Tesla vehicles share speed information in
real time. In this way, the experimental vehicles can simulate
a CACC scenario. *e vehicles could receive speed advice
from other vehicles via real-time video communication and
then decide whether to perform coordinated acceleration or
deceleration. *e three Teslas’ roofs were marked in purple,
green, and yellow to facilitate identifying the test cars in the
video, as shown in Figure 2. During trajectory extraction, we
combine two methods to improve the accuracy of secondary
tracking of Tesla vehicles. On the one hand, we use support
vector machines (SVMs) as a classifier to classify the Tesla
vehicles and then detect the Tesla vehicle data. *e reali-
zation of this process uses color filters to generate image
features. On the other hand, convolutional neural networks
(CNNs) are used to learn the features for the Tesla vehicles,
and the accuracy of the Tesla vehicle tracking is improved by
controlling the Euclidean distance between different classes
of feature vectors.

2.2. Vehicle Trajectory Reconstruction. Professional collab-
orators have performed video-based extraction of vehicle
trajectory data. Vehicle trajectory information extraction
includes vital steps, such as coordinate system establishment
and conversion, vehicle detection and positioning, vehicle
classification, target vehicle tracking, and trajectory infor-
mation extraction. *e vehicle trajectory data obtained by
video extraction include a vehicle identification number,
recording time, vehicle type, lane number, horizontal co-
ordinate X, vertical coordinate Y, speed, and acceleration.

*e error of vehicle trajectory data extraction based on
video is directly related to the sampling frequency of video
frames [29]. *is error can be divided into two categories.
One is the system error based on different detection
methods; the other is the random error, i.e., the noisy data
generated during the detection process.

For the speed data calculated by the vehicle longitudinal
position information, there are two kinds of abnormal
values: negative values and extreme values. In addition, the
analysis of vehicle acceleration data finds that there is a
specific moment when the vehicle speed data are correct.
However, the acceleration data are too large, beyond the
limit of the physical properties of the vehicle and the bearing
capacity of the human body, so this kind of abnormal value
also needs to be corrected. *e possible causes of system
errors include light, occlusion, and other uncontrollable
factors. In the process of vehicle trajectory extraction, the
unsuccessful recognition of the vehicle position in the image
and the abnormal disturbance of the vehicle detection edge
can cause system errors. *e random error is mainly gen-
erated because the original vehicle trajectory data obtained
from video extraction will be perturbed up and down around
the vehicle’s actual position, resulting in obvious noise se-
quences in the data.*is random error is unavoidable, and it
will be transferred to the speed and acceleration data. *ere
are many reasons for random errors, such as the external
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environment, the construction of the instrument itself, and
the temporal granularity of the vehicle trajectory extraction.
Random errors cannot be eliminated, but they can be filtered
by signal filtering techniques, such as Kalman filter tech-
niques [30].

We design a two-step reconstruction method of vehicle
trajectory based on the error analysis, as shown in Figure 3.
First, according to the physical performance of the vehicle
and the human body’s tolerance limit, combined with the
recorded actual speed data of the experimental vehicles, the
speed extremes, negative speed values, and abnormal values
of acceleration are identified. *e Lagrange interpolation
method is used to re-estimate these outliers. Second, due to
the random error in video trajectory extraction, the Kalman
filter method is used for noise reduction.

Step 1. Vehicle trajectory data correction based on the
Lagrangian interpolation method.

Interpolation is the process of solving for the values
corresponding to the missing or incorrect discrete points
when the series of discrete points and their corresponding
values are known [31]. *is study uses the Lagrange in-
terpolation method to correct the abnormal values of speed
and acceleration. *e thresholds of detecting outliers are
mainly determined according to the physical performance of
the vehicle and the human body’s tolerance limit, combined
with the actual speed data recorded by the experimental
vehicles. In this paper, we adopted detection thresholds of
5m/s2 for acceleration and −8m/s2 for deceleration. *ese
thresholds were chosen after large-scale testing [32]. In fact,
lower absolute thresholds (close to the physical acceleration
of the vehicle) will result in the detection and subsequent
removal of a large number of points, and loss of information

about the trajectory trend. Taking the speed correction of the
experimental vehicle No. 1 as an example, as shown in
Figure 4, by identifying the outliers, the negative speed
values, speed extremes, and the vehicle position are effec-
tively corrected.

In this step, the threshold boundary set for identifying
abnormal values of speed and acceleration should not be too
strict to reduce the impact of the human correction on the
original structural characteristics of the vehicle trajectory
data.

Step 2. Noise reduction based on Kalman filter method.
After Lagrangian interpolation, the Kalman filter

method is used to reduce noise for speed and acceleration.
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Figure 1: (a) Survey location and (b) camera position.
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Figure 3: Flow chart of vehicle trajectory reconstruction.
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*e Kalman filtering is affected by the Kalman gain, which
depends on the ratio between the system noise and the
observed noise. *e two noises are expressed using their
respective covariances. *e system noise covariance is
expressed as Q, and the observed noise covariance is
expressed as R. Since the calculation of the Kalman gain
depends on the ratio between Q and R, four groups are
designed in this study with R as the variable, that is,
Q� 0.0001, R� 0.001, Q� 0.0001, R� 0.005, Q� 0.0001,
R� 0.01, and Q� 0.0001, R� 0.1, to compare and analyze the
efficiency of the Kalman filtering, as shown in Figure 5.

Figure 5 shows that the filtered curves of different groups
display different trends. Group 1 is closest to the original
curve, and Group 4 has the smoothest curve after noise
reduction. Still, some speed measurements of Group 1 are
greater than 70 km/h after noise reduction, and the maxi-
mum speed value of Group 4 is less than 50 km/h after noise
reduction, neither of which matches the actual value
recorded in the experimental field. *e effect of noise re-
duction for Groups 2 and 3 could not be judged by Figure 5
alone, so this study uses the recorded actual speed data of the
experimental vehicles to calculate the percentage error of
different speed intervals, as shown in Figure 6. As Figure 6
shows, Group 2 has the best noise reduction effect and the
smallest cumulative percentage error, 9.4%. In addition, the
percentage error of Groups 4 and 1 after noise reduction is
more considerable, presumably due to the under-reduction
and overfitting phenomena in the Kalman filter process. So,
the ratio between the system noise and the observed noise
should fall reasonably within the accuracy requirements and
the original data characteristics.

Analysis of the reconstructed trajectory data of Group 2
reveals that the speed values are all within 70 km/h, which is
consistent with the actual value recorded in the experimental
field. In addition, the acceleration values of Group 2 also

meet the constraints of vehicle dynamics limits and the
human body’s tolerance, all concentrated between −3m/s2
and 3m/s2, as shown in Figure 7.

3. Analysis of Cooperation for Car-Following
Behavior in Mixed Traffic

*e experiment collects six 15-minute videos. After tra-
jectory extraction and reconstruction, about 821,045 frames
of vehicle trajectory data of 9730 vehicles are obtained (1
frame is equal to 0.1 s). It is necessary to define the types of
car-following behavior to model the car-following behavior
of vehicles in mixed traffic. *e distributions, such as the
speed, acceleration, and distance headway, are analyzed and
then used to understand the cooperation between drivers
during the following process.

3.1. Different Types of Car-Following Behavior in Mixed
Traffic. *ere are two vehicle types in mixed traffic, CAV
and HDV, so a total of four car-following types are derived,
as shown in Figure 8. Since CAVs are equipped with au-
tomatic driving and communication functions, they can
obtain information about the speed and distance of the
vehicle in front of them. However, HDVs do not have these
functions, so we speculate that their car-following behavior
differs from each other.

Figure 8 shows that there are four car-following types in
mixed traffic, namely CAVs followed by CAVs, CAVs fol-
lowed by HDVs, HDVs followed by CAVs, and HDVs
followed by HDVs. Twenty pairs of car-following groups (5
pairs for each car-following type) are selected from the
vehicle trajectory set to study the distribution of the vehicle’s
speed, acceleration, and distance headway during the fol-
lowing process. Figure 9 shows the vehicle’s speed

1.67 1.71 1.75 1.79 1.83 1.88 1.92 1.96 2.00 2.04 2.08 2.13 2.17 2.21 2.25 2.29 2.33 2.38 2.42
–5

0

5

Sp
ee

d 
(m

/s
)

10

15

20

25

30

35

10

12

14

16

18

20

8

6

4

2

0

40

Time (s)

Y 
(m

)

Original speed
Speed a�er Lagrange interpolation Corrected position

Original position

Figure 4: Schematic diagram of data correction based on Lagrangian interpolation.

Journal of Advanced Transportation 5



0 2 4 6 8 10
Time/ (s)

13 15 17 19 21 23
0

20

40

60

80

100

Sp
ee

d/
 (k

m
/h

)

Speed_KalmanFilter
Speed_original

(a)

0 2 4 6 8 10
Time/ (s)

13 15 17 19 21 23
0

20

40

60

80

100

Sp
ee

d/
 (k

m
/h

)

Speed_KalmanFilter
Speed_original

(b)

0 2 4 6 8 10
Time/ (s)

13 15 17 19 21 23
0

20

40

60

80

100

Sp
ee

d/
 (k

m
/h

)

Speed_KalmanFilter
Speed_original

(c)

0 2 4 6 8 10
Time/ (s)

13 15 17 19 21 23
0

20

40

60

80

100

Sp
ee

d/
 (k

m
/h

)

Speed_KalmanFilter
Speed_original

(d)

Figure 5: Comparison of different Kalman filter parameter settings. (a) Group 1; (b) Group 2; (c) Group 3; and (d) Group 4.
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distributions of the leader and follower for the different car-
following types.

As shown in Figure 9, for the first of the four types of car-
following, when CAVs follow CAVs, the vehicle speed is
distributed in the high-speed region. *e possible reason is
that both vehicles use CAV technologies, and thus the
willingness to cooperate between drivers is stronger. *e
speed distributions of the other three types are similar.*ere
is no communication between the front and rear vehicles for
these three car-following types, which affects the car-fol-
lowing behavior of the driver. *e distribution relationship

between the speed difference and the follower’s acceleration
for different car-following types appears in Figure 10.

Although the speed distributions are concentrated in the
high-speed region when the vehicles in the car-following
pairs are both CAVs, the distributions of the speed difference
and the follower’s acceleration are more dispersed, as shown
in Figure 10. Figure 10 also shows that the distributions are
more concentrated for the car-following pairs of Types 2 and
4, which indicates that when the follower is a CAV, the
vehicle is more sensitive to the speed change of the front
vehicle. *erefore, the acceleration change of the follower is
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Figure 8: Four car-following types in mixed traffic.
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Figure 9: Vehicle’s speed distributions of four car-following types. (a) Type 1; (b) Type 2; (c) Type 3; and (d) Type 4.
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also more sensitive. *e situation reverses when the follower
is an HDV.

We further analyzed the distance headway distribution
when the follower is a CAV or an HDV, respectively, as
shown in Figure 11. From Figure 11(a), we can see that, in
general, the distance headway distribution is more discrete
when the follower is a CAV, but the median value is smaller
than that when the follower is an HDV. Further analysis of
the distance headway distributions for the four car-following
types shows that the second car-following type causes this
phenomenon. When both vehicles in the car-following pair
are the CAV, the distance headway distribution is more
concentrated, and the median value is smaller, which can be
seen in Figure 11(b).

3.2. Analysis of Cooperation during the Following Process.
In this part, taking the car-following pairs in the data set as
an example, the cooperation between vehicles is explained
from the variation of speed, headway, and the follower’s
acceleration. Figure 12 shows the speed variation of the

vehicles, where Figures 12(a) and 12(b) shows the case that
the follower is a CAV and an HDV, respectively.

Figure 12 shows that the speed variation of the leader and
follower displays the same trend during the following
process, regardless of whether the follower is a CAV or an
HDV, which indicates that the speed cooperation between
vehicles does exist during the following process. However, a
comparison of Figures 12(a) and 12(b) reveals that the speed
change of the follower is smoother when the vehicle is an
HDV. Conversely, when the follower is a CAV, the speed
variation of the vehicle fluctuates more. To further verify the
cooperative relationship between vehicles, Figure 13 com-
pares the variation trends of acceleration and distance
headway when a CAV and an HDV are the followers.

Analysis of the variation of the follower’s acceleration
with the distance headway shows that there is also a co-
operative relationship between vehicles during the following
process. *is relationship is more noticeable when the
follower is a CAV because the follower’s acceleration is more
sensitive to the change of distance headway, as shown in
Figure 13(a).
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Figure 10: *e distribution relationship between the speed difference and the follower’s acceleration for different car-following types. (a)
Type 1; (b) Type 2; (c) Type 3; and (d) Type 4.
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Figure 12: Speed variation during the following process. (a) Speed variation of CAV follower. (b) Speed variation of HDV follower.
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4. Modeling Car-Following Behavior Based on
Prospect Theory

In this section, the cooperation between drivers is measured
based on the driver’s response to the motion state of the front
vehicle, and the cooperation is divided into two levels. A
driver’s cooperation decision for the state change of the front
vehicle (e.g., “leader slowing down”) is a classic case of a de-
cision under risk. Decision-making under risk is oftenmodeled
by prospect theory (PT) or expected utility theory (EUT). In
this paper, PTis used tomodel the cooperation between drivers
because it can describe rational and irrational driving behaviors
realistically and consistently, while EUT is best suited for
modeling rational decision-makers [14].

4.1. Prospect 8eory. Prospect theory, proposed by Daniel
Kahneman and Amos Tversky [33], applies psychological
research to economics and has made outstanding contri-
butions to the study of human judgment and decision-
making under uncertainty. In PT, the decision-maker relates
the perceived utility of each available choice and selects the
most significant perceived utility. In transportation engi-
neering, PT is mainly used to model route choice behavior
and is rarely used to model car-following behavior, except
for the work by Anshuman et al. [14]. *is study uses PT to
model driver’s compliance in a connected environment. To
our knowledge, PT has not been applied to model the co-
operation behavior between drivers in a connected and
autonomous driving environment.

*e options given to the decision-maker are called
prospects in PT. *e prospects are first formulated to
simulate the decision-maker’s choices.*en, the utility value
of each prospect is calculated. *e prospect with the highest
utility describes the decision-maker’s final choice. A simple
prospect includes two outcomes: Gain or Loss expressed by x
and Neutral expressed by 0. Gain means that there are some
positive or beneficial supplements to the status of the de-
cision-maker. Loss means that there are some unfavorable
supplements to the current status of the decision-maker, and
Neutral means that the status of the decision-maker has not
changed. *e utility related to a simple prospect represented
by U(x, p) is the product of the value related to x and p:

U(x, p) � v(x) · w(p). (1)

*e value function v(x) and weight function w(p) can
be expressed by equations (2) and (3) [14]:

v(x) �
x
α
, x> 0,

−λ(−x)
β
, x≤ 0,

⎧⎪⎨

⎪⎩
(2)

w(p) �
p

c

p
c

+(1 − p)
c

( 
1/c, (3)

where the functions v(x) and w(p) are the values and
weights related to the outcome x and probability p. *e
parameters α, λ, and c control the shape of the PT curve.
When the value of α is less than 1, the value function v(x)

will have a concave shape in the gain part and a convex shape
in the loss part. When λ> 1, the loss part of the curve is
steeper than the gain part, implying that decision-makers are
more sensitive to losses. *e value of c determines how
decision-makers perceive the probability. More specially,
when c is equal to 1, the weight function w(p) becomes
linear.

As mentioned by Anshuman et al. in their study, PT has
four basic properties, including diminishing sensitivity,
reference dependence, loss aversion, and probability
weighting. *e first three properties are related to the value
function, and the last one is related to the weight function.
Usually, the sensitivity of decision-makers to gains and
losses decreases as the value increases, especially for some
large values where the sensitivity value is low. Reference
dependence refers to the fact that most people’s judgments
of gains and losses are often determined by a reference point
rather than an absolute value. For example, in a choice
between “someone else earns $50,000 a year and you earn
$60,000 a year” and “someone else earns $80,000 a year and
you earn $70,000 a year,” most people will choose the
former. Loss aversion shows that decision-makers are more
sensitive to loss, which is characterized by making the loss
part of the value function steeper than the gain part. For
example, the pleasure associated with gaining $100 cannot
offset the pain associated with losing $100. Finally, proba-
bility weighting shows the characteristics of decision-
makers’ perceptions in response to probabilities and is
quantified by equation (3). For example, in the face of small
probability events, human beings have an ambivalent atti-
tude toward risk. One can be a risk-lover or a risk-averse
person, and events with low probability tend to be given high
weight by decision-makers.

4.2. Cooperation Modeling Using Prospect 8eory. We as-
sumed that all changes in driving behavior due to CAVs
technologies are attributable to the cooperative urgency of
the driver’s current state. Zero cooperation does not lead to a
change in the following behavior. In addition, the driver’s
choice of the level of cooperation is usually dependent on the
distance headway when the information is obtained from the
vehicle in front. *e distance headway reflects the driver’s
intuitive experience better than the time headway. As the
distance headway decreases, the more urgent and easier it is
for the driver to cooperate with the vehicle in front, and vice
versa. *us, the cooperation willingness of a driver in re-
sponse to the change of leader’s moving state can be cate-
gorized as two levels: low cooperation level and high
cooperation level.

*e two cooperation levels can be regarded as two
prospects, and we use PTto simulate the prospects chosen by
the driver. Both prospects are currently treated as simple
prospects. In the car-following process, any level of coop-
eration in response to perceptually obtained information
about changes in the driving state of the front vehicle in-
dicates a gain for the driver. In contrast, a complete lack of
cooperation suggests a loss. *erefore, we can consider that
both prospects consist of gains. Based on the utility formula
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of simple prospect, as shown in equation (1), we define the
cooperation level utility as the product of urgency and
weight, as shown in equation (4). Urgency indicates the
willingness of drivers to cooperate when the state of the front
vehicle changes, while weight indicates how drivers perceive
different levels of cooperation. *e urgency value function is
used to calculate the urgency value, and the weighting
function is used to calculate the weight.

Cooperation utility � urgency × weight. (4)

Since the cooperation utility is proportional to the urgency,
the greater the urgency, the higher the driver’s willingness to
cooperate. We assume that the urgency and the observed dis-
tance headway have the same inverse relationship as the co-
operation. When the driver perceives a change in the motion
state of the front vehicle, the smaller the observed distance
headway at that time, the greater the driver’s willingness to
operate collaboratively, and vice versa. In addition, the logistic
function is selected formodeling. Considering the nature of PT’s
urgency function, the urgency value function is expressed by

V dhobs(  �
1

1 + e
λ α·dhobs− 1( )

, (5)

where dhobs is the observed distance headway, and α and λ
are the parameters to be calibrated.

*e inversely proportional relationship between the
urgency value and the observed distance headway is shown
in Figure 14. For small and large distance headways, the
sensitivity of urgency values decreases (flatter at both ends of
the curve), which is consistent with the diminishing sen-
sitivity of PT. In addition, the urgency value function can be
used to estimate the distance headway when the urgency
value is close to zero and one. When the urgency value is
one, it is very urgent, and when the urgency value is zero, it is
not necessary to cooperate with the front vehicle. *e es-
timated minimum and maximum distance headway will be
used to calculate the weight function.

We assume that each driver has a distance headway range
corresponding to each cooperation level.*e value of theweight
at a particular cooperation level is determined by the probability
that the observed distance headway falls within that level dis-
tance headway range. *erefore, the weight is higher for this
distance headway at high cooperation levels and lower at low
cooperation levels. *e weighting functions for low and high
levels of driver cooperation are also formulated in this way. In
addition, the functions reflect the PT properties of probability
weighting, i.e., higher weighting for small probability events and
lower weighting for significant probability events. Referring to
Anshuman et al.’s study [14], the weighting functions are shown
as follows.

*e low cooperation weighting function is given by
equations (6) and (7):

WLC PLC(  �
P

c

LC

P
c

LC + 1 − PLC( 
c

( 
1−c

, (6)

PLC � min
dhobs

dhmax
, 1 . (7)

*e high cooperation weighting function is given by
equations (8) and (9):

WHC PHC(  �
P

c

HC

P
c

HC + 1 − PHC( 
c

( 
1−c

, (8)

PHC � min
dhmin

dhobs
, 1 , (9)

where WLC(PLC) and WHC(PHC) are the low cooperation
weighting function and high cooperation weighting func-
tion, respectively. PLC and PHCare the probabilities that an
observed distance headway falls in a driver’s low and high
cooperation ranges. dhmax and dhmin are the distance
headways when the values of V(dhobs) are close to zero and
one, respectively. c is the shape parameter.

*us, the cooperation utility functions for low and high
cooperation levels can be defined by equations (10) and (11),
and the final cooperation utility value U is the larger of the
low and high utility values, as shown in equation (12):

ULC dbobs, PLC(  � V dbobs(  · WLC PLC( , (10)

UHC dbobs, PHC(  � V dbobs(  · WHC PHC( , (11)

U � max ULC, UHC( . (12)

4.3. Modeling Car-Following Behavior Considering Cooper-
ation between Drivers. A car-following model is a mathe-
matical description of the influence of the driving
environment on driving behavior. *e classical car-fol-
lowing model originates from driving dynamics and uses
vehicle acceleration to reflect the car-following decision.
Based on the classic car-following model of PATH Labo-
ratory, this section models car-following behavior in mixed
traffic with HDVs and CAVs from the perspective of co-
operation between drivers.

Scholars from the PATH Laboratory at the University of
California, Berkeley, have conducted a long-term study on
the ACC/CACC car-following model [34]. In the proposed
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car-following model, the acceleration of the following ve-
hicle depends on three components: the acceleration of the
front vehicle, the speed difference between the front and rear
vehicles, and the error term between the actual distance
headway and the desired distance headway. *e structure of
the car-following model by PATH Laboratory can be
expressed as follows:

ai � k0ai−1 + k1e + k2 vi−1 − vi( , (13)

e � xi−1 − xi − Tvi, (14)

where ai and ai−1 represent the acceleration of the rear and
front vehicles. xi and xi−1 represent the position of the rear
and front vehicles. vi and vi−1 represent the speed of the rear
and front vehicles, respectively. Moreover, e is the difference
between the actual distance headway and the desired dis-
tance headway. T is the desired time headway. k0, k1, and k2
are the weights to be calibrated.

Based on the cooperation analysis for car-following
behavior in mixed traffic, the car-following behavior of
CAVs and HDVs are different. First, CAVs and HDVs have
different acceleration, speed, and distance headway distri-
butions. *e distributions of acceleration and distance
headway for CAVs fluctuate more, and the speed distri-
bution of CAVs also concentrates in the high-speed region.
In addition, the cooperative phenomenon between vehicles
is more evident when the follower is a CAV than an HDV.
Still, the speed and acceleration are more turbulent when the
follower is a CAV, probably, because CAVs are more re-
sponsive to the front vehicle’s state changes than HDVs.*is
different cooperative nature exhibited by different vehicle
types can be characterized by PT, see Section 4.2. In this
paper, the extended car-following model in mixed traffic is
developed considering the acceleration of the front vehicle,
the speed difference between the front and rear vehicles, and
the distance headway between the front and rear vehicles.
Also, the cooperation willingness of different vehicle types in
response to the state changes of the leader is described using
PT. Equations (15)–(17) present the mathematical formu-
lations of the proposed model:

an(t) � δ · an−1(t) + η · Sn(t) − S
∗
n (t) 

+ θ · Vn−1(t) − Vn(t) ,

(15)

Sn(t) � Yn−1(t) − Yn(t), (16)

S
∗
n (t) � S0 + 1 + U dhobs(   · TVn(t) +

Vn(t) · ΔVn(t)

2
��
ab

√ ,

(17)

where an(t) and an−1(t) are the accelerations of the nth and
(n− 1)th vehicles at moment t. Sn(t) is the distance headway
of the nth vehicle at moment t. S∗n (t) is the desired distance
headway of the nth vehicle at moment t. Vn(t) and Vn−1(t)

are the speeds of the nth and (n− 1)th vehicles at moment t.
Yn(t) and Yn−1(t) are the positions of the nth and (n− 1)th
vehicles at moment t. Moreover, S0, T, a, b, Vn(t), and

U(dhobs) are the standstill distance, desired time headway,
maximum acceleration, desired deceleration, speed differ-
ence between vehicles, and cooperation utility value, re-
spectively. δ, η, and θ are the parameters to be calibrated.

5. Calibration and Verification Methodology

In this paper, RMSPE of distance headway, mentioned by
many studies [13, 35], is used as the objective function for
parameter calibration:

RMSPE �

�����������������

1
n

·


n
i�1 s

sim
i − s

act
i 

2


n
i�1 s

act
i 

2




, (18)

where RMSPE of distance headway as the measure of model
performance denotes the objective function, n is the number
of observations, and ssimi and sacti are the ith simulated dis-
tance headway and actual distance headway, respectively.

*e genetic algorithm (GA) is used to solve the objective
function, and each parameter of GA is set as follows: the
population size, the maximum number of generations, the
number of stall generations, and the function tolerance are
set to 100, 300, 100, and 1e− 6. If the change is less than the
function tolerance, the algorithm will stop, and the algo-
rithm finds a different solution in each optimization run.*e
optimization is repeated ten times for each driver to obtain a
solution closer to the global optimum, and the set of pa-
rameters with the smallest RMSPE is selected. In addition, to
improve the computational tractability of the genetic al-
gorithm optimization process, the paper sets the upper and
lower bounds for the parameters of the extended car-fol-
lowing model, as shown in Table 1.

In the parameter calibration, the performance of the pro-
posed model calibration method is tested using the so-called
“synthetic data” generated from each driver’s trajectory data, as
suggested by Punzo et al. [36]. For example, the parameters in
the extended car-following model are set to α� 0.3, λ� 5.5,
c � 0.55, δ � 2.5, η� 2.5, θ� 2.5, S0 � 0.55, T � 2.5, a � 2.5, and
b � 2.5, and synthetic car-following data are generated. *en, a
calibration process is implemented to derive the best model
parameters based on the set calibration accuracy.

As mentioned earlier, there are four car-following types
in mixed traffic. In particular, the car-following behavior
changes significantly whether the rear vehicle is a CAV or an
HDV. *erefore, the paper performs model calibration and
verification for the rear vehicle as a CAV or as an HDV. We
select twenty leader-follower pairs from the data set, in-
cluding ten pairs of CAV followers and ten pairs of HDV
followers. Nine out of ten pairs in each group are used for
calibration, and the remaining one is used for calibration. In
addition, in order to retain generality, twenty groups of
initial parameter data are selected for each leader-follower
pair.

6. Results and Discussions

Table 2 shows the results of the parameter calibration for a
leader-follower pair, and it only offers the calibration
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results corresponding to the minimum error in each set of
initial values. *e minimum calibration error of 1.92% is
obtained for the 6th set of initial values, which is also the
final calibration error for this leader-follower pair. Fig-
ure 15 shows the distribution of the parameter calibration
errors.

Figure 16 shows the distributions of the calibrated pa-
rameter values in the cooperation utility. *e figure also
shows that, for CAVs, the value of c is larger than that for
HDVs. c is the parameter in the weighting function, and the
larger value means that the willingness of the follower to
cooperate is stronger when the driving state of a leader
changes.

*e distributions of the calibrated parameter values in
the desired distance headway appear in Figure 17. *e
figure shows that the distributions of the maximum ac-
celeration and desired time gap are significantly different.
Compared with HDVs, the maximum acceleration value
of CAVs is larger. At the same time, the desired time gap is
smaller, which leads to a shorter desired distance headway
of the CAV, indicating that the CAV is more willing to
maintain a smaller distance headway with the vehicle in
front.

Figure 18 presents the distributions of the calibrated
parameter values of δ, η, θ, which respectively represent
the weight of the speed difference, the distance headway,
and the leader’s acceleration. *e figure reveals that the
value of η is larger for CAVs compared with HDVs. A
larger value of η means that the CAV’s acceleration is
more influenced by the distance headway compared with
the HDV. In particular, the difference in parameters is

attributed to the heterogeneity of CAVs and HDVs. *e
traffic behavior of CAVs and HDVs in mixed traffic is
very different due to the different levels of CAV tech-
nology and the involvement of human factors. After
determining the optimal values of each parameter, the
proposed car-following model is used to calculate the
traffic state parameters of the follower. Figure 19
presents the variation of the follower’s speed and the
variation of the difference between the actual and
simulated follower’s speed. As shown in Figure 19, the
proposed model can well characterize the car-following
behavior of the follower, whether it is a CAV or an HDV
as a rear vehicle.

Table 1: Parameter bounds in optimization.

Parameters Definition Bounds
α Parameter of the urgency value function [0.1, 0.5]
λ Parameter of the urgency value function [1, 10]
c Parameter of the weighting function [0.1, 1]
δ Weight of acceleration [0.1, 5]
η Weight of distance headway [0.1, 5]
θ Weight of speed difference [0.1, 5]
S0 Standstill distance [0.1, 10]
T Desired time gap [0.1, 5]
a Maximum acceleration [0.1, 5]
b Desired deceleration [0.1, 5]

Table 2: Parameter calibration results for a leader-follower pair.

α λ c δ η θ S0 T a b RMSPE (%)

0.33 9.18 0.84 3.83 3.80 4.57 0.70 1.38 3.96 4.90 2.17
0.20 3.73 0.67 2.79 1.59 4.96 9.15 3.85 1.15 1.71 2.28
0.49 2.10 0.30 2.40 2.60 3.66 6.72 1.43 4.05 4.92 2.36
0.36 8.01 0.36 3.34 2.28 4.98 2.16 4.18 4.90 3.04 2.10
0.45 5.35 0.45 1.59 0.70 3.11 7.50 2.43 2.53 0.70 2.11
0.18 7.72 0.90 1.41 1.96 4.00 5.13 2.09 1.83 2.11 1.92
0.21 5.92 0.91 2.95 0.71 2.12 6.54 4.20 3.93 2.46 2.02
0.45 1.76 0.69 2.00 2.17 4.99 0.38 0.54 3.79 0.99 2.44
0.48 4.03 0.36 2.13 1.40 3.66 1.86 2.05 2.83 1.74 2.50
0.16 9.63 0.53 2.45 1.54 4.81 4.46 4.54 3.95 1.89 2.38
Bold values represent the optimal value of each parameter and the minimum RMSPE value.
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7. Conclusions and Future Research

*is paper proposes an extended car-followingmodel for mixed
traffic in a connected and autonomous driving environment,
which can characterize the car-following behavior of CAVs and
HDVs in the heterogeneous traffic flow. Using PT, the coop-
eration between drivers, a human factor, is well integrated into
themodel.*eweight and value functions of PTaremodified to
simulate the willingness of the follower to cooperate with the
front vehicle. To specifically overcome the unavailability of
vehicle trajectory data in connected and autonomous vehicle
environment, we design and implement a car-following ex-
periment in the CACC scenario and extract vehicle trajectory
data based on video recognition. Furthermore, the Lagrangian
theory and Kalman filter theory are used to reconstruct the
extracted trajectory data to ensure the accuracy of the data.

*e model calibration and verification results, combined
with the analysis of cooperation for car-following behavior,
reveal that the heterogeneity of CAVs and HDVs in mixed
traffic is manifested in various ways. Compared with HDVs,
CAVs tend to maintain a smaller distance headway with the
vehicle in front and have a greater willingness to cooperate with
the leader. When the distance headway becomes larger, CAVs
are more responsive than HDVs, which is one of the reasons for
the more significant fluctuations in the speed and the acceler-
ation of CAVs. It is worth noting that the results reported in this
paper are obtained from a relative rather than an absolute
perspective. Different results may be obtained depending on the
experimental design and the development of CAV technologies.

*is paper has several limitations that need further
study. One issue is that the experiment is designed without
considering intersection signals. *e experiment can be
improved in the future to study the effect of vehicle-inter-
section interaction on car-following behavior and some
critical traffic flow phenomena, e.g., capacity drop. Another
issue is that, when developing the car-following model, only
the influence of one vehicle in front is considered. In the
future, multiple vehicles in front can be included.
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