Hindawi

Journal of Advanced Transportation
Volume 2021, Article ID 2798351, 15 pages
https://doi.org/10.1155/2021/2798351

Research Article

WILEY

Hindawi

Near-Field Route Optimization-Supported Polar Ice
Navigation via Maritime Radar Videos

Xinwei Lin ®,"? Shengzheng Wang (»,”> Xuesheng Zhang ©,” Tsung-Hsuan Hsieh ©,

Zhen Sun®,? and Tingliu Xu 23

2

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
*Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China

Correspondence should be addressed to Shengzheng Wang; szwang@shmtu.edu.cn

Received 17 August 2021; Accepted 28 October 2021; Published 18 November 2021

Academic Editor: Eneko Osaba

Copyright © 2021 Xinwei Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The accurate design of ship routing plans in arctic areas is not easy, considering that navigation conditions (e.g., weather, visibility,
and ice thickness) may change frequently. A ship’s crew identifies sea ice in arctic channels with the help of radar echoes, and ship
maneuvering decisions are made to avoid navigation interference. Ship officials must manually and consistently change the ship’s
route of travel, which is time-consuming and tedious. To address this issue, we propose a near-field route optimization model for
the purpose of automatically selecting an optimal route with the help of radar echo images. The ship near-field route optimization
model uses a multiobjective optimal strategy considering factors of minimum navigation risk and steaming distance. We verified
the model’s performance with the support of the Xuelong voyage dataset. This research finding can help a ship’s crew to design

more reasonable navigation routes in polar channels.

1. Introduction

The thawing of ice in polar regions is accelerating as the
earth becomes warmer. This enables the further performance
of economic activities and exploitation of polar resources
(e.g., transferring goods between Asia and North America)
[1], and polar shipping and science investigation have
attracted significant attention [2-5]. Studies have suggested
that it is not easy to design accurate sailing plans in polar
areas due to unpredictable weather and ice conditions.
Moreover, the rough ice in Polar Regions significantly de-
creases navigation safety, and ship officials’ sudden dis-
traction may lead to serious maritime accidents. Note that
icebreaker facilities installed on ships may fail to completely
break ice in arctic waters, and maritime accidents are more
probable in ice-covered areas than in open seas [6-10].
Many efficient frameworks have been proposed to en-
hance maritime traffic safety in polar regions, such as the
global Polar Code [11]. Scholars employ multiple data
sources (e.g., satellite images and ice model data) to obtain

ship navigation environment information, which is used to
fine-tune ship voyage plans [12, 13]. Indeed, maritime traffic
safety in polar regions can be significantly improved with the
use of increasing amounts of weather and ice condition
information [14, 15]. Several commercial route optimization
tools have been developed to determine ship routes in polar
areas. Kotovirta et al. presented a greedy optimization al-
gorithm using Powell’s method and developed a prototype
tool based on ice and ship transit modeling for route op-
timization through ice fields [16]. Much attention has been
paid to the optimization of routes, considering such factors
as ice conditions, icebreaker assistance, fuel consumption,
and total cost [17-21]. Choi et al. proposed an uncertainty-
based path planning model to find an optimal route under
time-varying stochastic constraints [22], modeling ship path
planning in ice-covered waters as a dynamic stochastic path
planning problem.

Hui et al. presented a satellite-based sea-ice navigation
system (SatSINS) that employed remote sensing and me-
teorological data to determine optimal maritime
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navigational routes in ice-covered waters [23]. Liu et al.
utilized vector-formatted ice data and navigation codes in
the northern regions to divide ice-covered waters into
navigable and unnavigable areas. A road network-like graph
was built to simulate areas with ice obstacles with Voronoi
diagrams to obtain safe and short routes for different types of
ships between origin-destination (OD) pairs [24]. Studies
have focused on ship speed prediction with numerical and
semiempirical models considering features of ice fields and
ship maneuverability. Montewka et al. introduced proba-
bilistic, data-driven models to predict ship speeds and sit-
uations where a ship is likely to become stuck in ice, based on
the effects of ice features such as thickness and concentration
of level ice, ice ridges, and rafted ice [25]. Kuuliala et al.
analyzed ship maneuvering performance in ice conditions
by fine-tuning the ship resistance magnitude caused by sea-
ice ridge keels [26]. Lehtola et al. presented a route opti-
mization framework to find safe and efficient shipping
routes in ice-covered waters by combining multisource
input data with an A-star-based algorithm [27]. Topaj et al.
considered icebreaker assistance as an integral part of the
overall route optimization problem and employed economic
criteria to optimize both ship routing and icebreaker in-
volvement [28]. Other relevant studies have been published
[14, 29-36].

Two limitations significantly impede ice navigation
safety: (1) the map spatiotemporal resolution for sea-ice
concentration is too low and cannot meet ship navigation
requirements; (2) sea-ice concentration maps are considered
as a stationary environment, which is not always the case in
the real world. Specifically, sea ice can melt or move with
unpredicted trajectories due to weather and ocean currents.
Hence, well-trained navigators are needed for navigation in
near-field ice-covered areas to enhance maritime traffic
safety. Indeed, polar ice navigation is a path optimization
problem with multiple-target constraints (i.e., ice, wind,
wave, and current). We can observe real-time ice navigation
situations with the support of various data sources (such as
satellite images, ice model data, weather observations and
forecasts, and radar data). Shipborne navigators fine-tune
(and optimize) travel routes by identifying both navigable
and unnavigable areas with the support of radar echoes,
which they must carefully check to recognize ice magni-
tudes, ridges, and categories (rafted or floating ice), con-
sidering that ice feature details in maritime images are too
trivial to be identified.

We present a ship routing optimization model consid-
ering multiobjective constraints (e.g., navigation risk and
minimum travel time) via ice condition recognition. Pre-
vious studies have suggested that evolutionary algorithms
perform satisfactorily on multiobjective optimization
problems [37, 38]. Multiobjective evolutionary algorithms
(MOEAs) probabilistically process a population of solutions,
which enables a global search with little knowledge about the
objectives, and the efficient approach of a Pareto set with a
single simulation run [39-42]. Thus, we employ an MOEA to
solve the proposed near-field route optimization problem. In
addition, we present a macro- and microscale route opti-
mization system that provides optimal global routes for
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ships sailing in ice areas in terms of maps of sea-ice con-
centration. Our contributions can be summarized as follows:

(i) We address the problem of designing ship routing
plan automatic in arctic areas with sea-ice data and
radar video

(ii) We propose an ice-condition model using radar
echoes to recognize ship near-field ice conditions

(iii) We develop a near-field route optimization method
and employ MOEAs to find optimal ship near-field
routes to ensure the safety and reliability of the voyage

The rest of this paper is organized as follows. The ship
near-field ice condition model based on real-time radar echo
images is presented in Section 2. The near-field route op-
timization problem is detailed in Section 3, and ship route
optimization in polar ice-covered waters is discussed in
Section 4. Section 5 relates our conclusions.

2. Radar Echo-Supported Ice
Recognition Model

Numerous irregular echoes can be found in a typical radar
echo image of a polar ice area, which are indeed sea ice (see
Figure 1). The ship navigator must recognize sea ice from the
radar echo range, shape, and size and devise a reasonable
routing strategy. To address this issue, we establish an ice
recognition model based on the radar imaging features of sea
ice. Radars currently equipped on ships start in a pulse
scanning mode that involves 9 GHz X-band radar and 3 GHz
S-band radar. Assuming that the antenna radiation intensity
evenly distributes at power points, the received echo power
(echo intensity) for a ship target is formulated as

B P,G’\Vo

=t 1
(471)3R4’ =

r

where P, is the antenna transmission power, G is the antenna
gain, R is the distance between the antenna and target, o is the
effective scattering cross section of the target, and A is the
wavelength. We note that the radar surveillance range is
affected by inherent radar parameters (e.g., wavelength,
transmit power, and antenna gain), target distance, and ef-
fective scattering cross section. For a given radar range (i.e., A,
P,, and G are constant), the radar echo intensity is positively
proportional to the effective scattering cross-sectional area of
the maritime target and negatively proportional to the fourth
power of the target distance. Radar equipment performance is
mainly constrained to the effective scattering cross-sectional
area ¢ and target distance r of the radar target when the radar
is in good condition. Note that maritime target echo in radar
images is proportional to the effective reflection area of the
radar and the target size. Figure 2(a) demonstrates the re-
lationship between target size variation in the real world and
echoes in radar images, and Figure 2(b) presents the target
echo imaging variation tendency at different distances.
Therefore, sea ice in the polar ice area shows quite similar
reflection features. Specifically, the size and distance of the
radar echo demonstrate effective scattering of the cross-
sectional area of the target, and the target size is obtained as
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FIGURE 2: Ice echoes in radar images in various conditions.

S, = (r,0), (2)

where S, is the target size, r is the target echo distance, § is
the target echo size for a given range, and O is the radar echo
imaging mapping function obtained by radar testing and
observation. It is essential to preprocess radar videos before
determining the target echo size. For instance, we need to
identify the geographic location of the radar scanning center
based on the GPS position (¢, ,) and set up an origin for
the Cartesian plane coordinate system. Maritime regulation
standards suggest that the diameter of the radar operational
area is 320 mm, and the display range of the radar is R. The
radar display has a resolution of 96 DPI, and thus the
equivalent distance of pixels 7 = 3.066 * R/nm meters per
pixel. The radar video can be decomposed into monochrome
images, and thus we employ a median filter to segment the
background and target (see Figure 3). We can obtain the
processed radar target echoes by marking out both echo
center positions and sizes (see equation (3)).

sl b (3)

where E is the set of radar target echoes and e, stands for the
nth radar target echo.

E={ee,,...

3. Near-Field Route Optimization Problem for
Ship Navigation in Polar Ice-Covered Waters

Ship officials are supposed to consistently change the ship
heading angle to avoid potential thick sea ice in polar
channels for the purpose of maritime traffic safety. It is noted
that ice floes may randomly drift under the influence of
wind. Therefore, ship crew must minimize the navigational
risk by avoiding potential areas of sea ice with the minimum
travel distance (i.e., low cost and short time). It is found that
the objectives of the minimum sailing distance and a smaller
risk level cannot be easily achieved (i.e., a shorter distance
may be associated with a more dangerous ship route in the
real world). Specifically, a ship may detour its routes in ice
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FIGURE 3: Preprocessing and recognition of ice radar images. (a) Segment the background and targets. (b) Label the targets.

areas to steer clear of navigational obstacles (e.g., sea ice and
submerged reefs). Hence, a ship’s travel distance and esti-
mated time of arrival (ETA) may exceed those anticipated,
which can lead to significant additional cost.

Figure 4 shows a typical ship voyage in polar areas with
complex ice navigation conditions. The ship sails among the
floating ice in the channel and is required to pass turning
point py, p,, ..., p,; from the current position p, to the
target position p,,. The ship sailing distance is obtained as

n-1
D, = Z L(pj> pin)> (4)
i=0

where L(p;, p;,;) represents the distance between turning
points p; and p;,,. The vectors of each leg-line of the route
are V,,V,,...,V,. The equation of the straight line in the
Cartesian coordinate system of each leg-line is

i=1,2,... (5)

and the minimum distance from the radar target echo to the
leg-line is

w;x; +r; =0, > 1,

B |wixi+rl-|_A

ST %
o]

d (6)

where d, = /S,/7 is the distance between the radar scanning
center and the target.
In that way, we can obtain the minimum distance from
the route to the sea-ice echo:
dpin = min{d,, d,, . ..

s A} (7)

The overall risk of navigation is minimized by obtaining
the maximum distance between the route and the sea ice:

min

)dn}>

maxd
d

in = in{d,,d,, ...
min mdax mln{ 1> ™2 (8)

and the navigation risk minimization problem can be
expressed as

. 1
= min ———,
p d, . +

min T €

min f, (p)

subjectto p; € R? i=12...,n

9)
Vi -Vi

=)< 1,
[Via] ||Vi||>

-1<9<a; = arcc0s<

€>0.
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FIGURE 4: Ship path exploitation with complicated ice navigation conditions.

The problem of minimizing the navigation distance is
further obtained as

n-1
min f,(p) =min ) L(p; Pis1)>
in £ (p ;;(ppl) (10)

subjectto p; € R”,

4. MOEAs for Near-Field Route
Optimization Problem

Ship routing in ice areas is a typical multiobjective opti-
mization problem, which can be considered as a complex
multiobjective, multivariable, and multidynamic constraint
optimization problem. NSGA-II is a fast and effective
method to solve a multiobjective optimization problem,
which can maintain diversity and uniformity of Pareto
solutions, improve the convergence speed and stability, and
obtain more accurate optimal approximation solutions. To
that aim, we propose a dynamic route optimization method
based on NSGA-II to solve the polar region navigation
optimization problem:

I;lgig;: [f1(p), f>(P)], ()
subjectto p € Q,

where f = [f,, f,] is the objective vector defined in the
objective space ® € R?, the waypoint of the optimized route
P =[p1, s> Pyl is the decision vector, and Q € R? is the
feasible decision space.

Note that objectives in the objective space are in dis-
order, and the solution of the multiobjective problem is
obtained on the basis of the Pareto dominance relation. This
is also used to define the concepts of optimality in multi-
objective optimization. For given solutions p and g from Q,
we consider that g determines the p (denoted by p < g) when

Vie{l,2,...,m}: f;(p)< fi(@A,
3j e (L2 ..omp: f;(p) < f;(@).

Individuals p = [p;, py,- .-, p,] are initially composed
of n waypoints with the support of Gray code. The fitness of
each individual of P, is calculated by minimizing the ob-
jective cost function, the solutions are sorted based on fast
nondomination sorting, and each solution is assigned a
fitness weight based on the nondomination level. The binary
tournament selection, recombination, and mutation oper-
ators are used to create a child population Q, of size N.

The main loop of the algorithm is shown as Algo-
rithm 1. A combined population R, = P, UQ), is formed in
the main loop, and a combined population R, is sorted
according to nondomination. The new parent population
P,,, is formed by adding solutions from the first step until
the size is larger than N. The solutions of the last accepted
front are sorted according to >, and the first N points are
obtained. The population size N is used for selection,
crossover, and mutation to create a new population, Q,,;.
The algorithm continues until the population reaches the
maximum number of generations. In this manner, we can
choose appropriate yet user-preferred individuals, trad-
ing off between maritime safety and ship traveling dis-
tance, which are decoded to the waypoints of the optimal
route.

(12)

5. Ice Route Optimization Framework

We propose a macroscale route plan framework based on
sea-ice concentration data with the support of an A*-based
route optimization model, so as to apply a near-field ice
navigation approach in polar ice areas (see Figure 5).
Macroscale route optimization is based on the fusion data
of sea-ice density data and thickness data. It provides a
global route design method for near-field route optimi-
zation to prevent it from falling into local optimization.



Journal of Advanced Transportation

Ensure: min[ f, (p), f, (p)]

F =NonDominatedSorting (P,)
Calc Crowding Distance (F)

Repeat:
R, =P,UQ,
(F),F,,..

Repeat:
Calc Crowding Distance (F;)
Py =Py UF,

Until P,,, >N

Choose the first N elements of
P,,, = Truncate (P,,,, [0: N])

t=t+1
Until t>T
p = Route Decode (Py)

Return p = [py, pss- - -5 Pl

Require: py, p, € Q,E = {e,e;,...,¢,,}
Initialize: P, (a random parent population), T' (maximum generation number)

Compute individual population fitness P, = Fitness (P,)

Sorting in descending order Sort (P, >,)
Create a child population Q, = MakeNewPop (P;)

., F;,...) = NonDominatedSorting (R,)

Sorting in descending order Sort(P,,,,>,)

P,.; = P,,,[0: N] Create a new population Q,,,; = MakeNewPop (P,,,)

ALGORITHM 1: NSGA-II-based near-field route optimization algorithm.

Route Planner

Near-Field Route Optimization

Ship’s Performance
Model

A*-based
Optimization Model

Macro-scale Route

Ice Route Optimization

The proposed
Near-Field Route
Optimization Model

FiGure 5: Framework overview for ship route optimization in polar ice area.

Macroscale route optimization aims to avoid the dense sea-
ice area and provide an initial path for near-field route
optimization.

5.1. Sea-Ice Map-Based Macroscale Route Plan. The sea-ice
concentration data and electronic navigational chart (ENC)
data are used to build the A* grid, and each node is filled
with a value indicating its availability (see Figure 6). The cost
function,

f(n) =g(n)+hn), (13)

is used to evaluate the priority of the eight neighbours of
the node in the A* algorithm, where 7 is the following node
on the path and g (n) is the path cost from the starting node
to n. The heuristic function 4 (n) estimates the shortest path
cost linking nodes »n to the end. The parameter f(n)
represents the overall cost from the beginning node to the
end. The task is to minimize f(n) by traversing the grid
nodes.
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FIGURE 6: Path search space for A* algorithm. (a) Initial path obtained by A* algorithm. (b) Optimized ship path.
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FIGURE 7: Ship route optimization by proposed near-field route optimization model.

A series of adjacent grid nodes, {Wy;, W, - - .}, can be
obtained through the A* algorithm with the above grid data,
and a route is formed by connecting the nodes. But such a
path, if obtained from a discretized grid, may not accurately
describe the operational path, so a relaxation smoothing
algorithm is employed to generate the operational route by
suppressing the redundant nodes (see Figure 6(b)).

5.2. Radar Echo-Based Microscale Route Planner. Sea-ice
concentration data are automatically downloaded from the
NOAA website and superposed on the electrical nautical
chart. Real-time radar echo scanning video is collected from
the ship radar system, and the radar echoes are preprocessed
with the proposed ice condition recognition model. The
radar echoes are overlaid on the electrical nautical charts.
Note that the own-ship position is regarded as the initial ship
position, and the following waypoint is obtained by a
macroscale route designing model based on sea-ice con-
centration data. The proposed near-field route optimization
approach is employed to iteratively optimize the routes (the
model is run 200 times), as shown in Figure 7. It is found that
the optimized routes can be very similar, and the cluster
method is further used to extract a central path, as shown in
Figure 8. The ship will follow the updated yet optimized
course (as the recommended course) when the course de-
viation between the new and original courses exceeds the
threshold 6. The radar echo images will then be updated and

processed in real time, and the ship’s route will be recursively
updated, as shown in Figure 9.

6. Experiments

6.1. Experimental Database. We use the ice density data of
the University of Bremen and the thickness data of NSIDC,
because of their high coverage of sea-ice data in the poles.
We collected raw radar data for near-field route optimiza-
tion from a research-based icebreaker ship, named Xuelong,
and obtained its navigation data during a voyage to
Zhongshan Station in the Antarctic ice area in November
2016. The sea-ice concentration and radar video data were
also collected. We present typical images for sea-ice con-
centration data and radar echoes in Figure 10.

6.2. Experimental Setup. For the purpose of model perfor-
mance evaluation, we used the proposed macroscale route
planner to design an initial route based on the sea-ice
concentration data with the A* algorithm, and a qualitative
analysis was implemented to check the ice-avoidance effi-
ciency via the prespecified sea-ice concentration data. The
radar video data were continuously replayed, and thus the
proposed near-field route optimization route was against the
ship trajectory in the real world in each radar image for the
purpose of model effectiveness verification. Note that the
target ship may not sail exactly on the recommended course.
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(b)

FiGgure 10: Typical images for sea-ice concentration data and radar echoes. (a) Sea-ice concentration data. (b) Radar echo images.

To address this issue, we analyzed the ship trajectory with a
small-time interval while considering that the ship sails on
its recommended course. We evaluated the ship displace-
ment according to the playback voyage data with a time

interval of several minutes. We selected three typical sea-ice
navigation scenes for the purpose of verifying model per-
formance, which are referred to as simple, normal, and
complex (see Figure 11).
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FiGUure 13: Performance of proposed model for simple sea-ice scene. (a) Recommended and actual courses for simple sea-ice scene.
(b) Distance error distribution for simple sea-ice scene.
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FIGURE 14: Performance of proposed model for normal sea-ice scene. (a) Recommended and actual courses for normal sea-ice scene.
(b) Distance error distribution for simple sea-ice scene.
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FIGURE 15: Performance of proposed model for complex sea-ice scene. (a) Recommended and actual courses for complex sea-ice scene.
(b) Distance error distribution for complex sea-ice scene.

TaBLE 1: Course and distance error distributions for optimized route.

Optimized Average distance . Variance .Of. Max distance Average COUTSE  yrariance of course Max course deviation

scenes deviation (m) distance deviation deviation (m) deviation deviation (degrees) (degrees)
(m) (degrees)

Simple 72.45 30.04 137.31 9.17 5.64 20.50

Normal 61.66 39.48 153.17 7.62 5.78 21.33

Complex 71.68 41.22 169.63 7.87 5.48 18.93

Average 68.59 37.25 169.63 8.22 5.63 21.33

6.3. Experimental Results. The sea-ice concentration data N

were overlaid on the ENC layer, and an optimized route was -60.9

found by using a macroscale route planner based on the A*

route optimization model (see Figure 12). For the purpose of -61.0

model performance comparison, real-time radar echoes
were loaded into the route optimization system, which was
overlaid on the ENC layer.

Figure 13(a) shows recommended and actual courses at
different evaluation positions under a simple continuous
scene. Note that the average course deviation is 9.17 degrees.
Figure 13(b) shows distance deviations at different evalua- 614
tion positions, whose average is 72.45 meters per 4 minutes. .
Figures 14(a) and 15(a) present the comparison results ~61.5 |
between the recommended and actual courses at different S
positions for normal and complex continuous traffic sce- W 814 816 81.8 820 822 824 826 828 83.0E
narios, respectively. The average course deviations for the Longitude
normal and complex scenes are 7.62 degrees and 7.87 de-
grees, respectively. —— Actual route

Figures 14(b) and 15(b) show the distance deviation in —— Optimized route
different evaluation positions in the normal and complex
continuous scenes, respectively. In the normal and complex
scenes, the average distance deviations are 61.66 meters and
71.68 meters, respectively, per 4 minutes. The experimental Table 1 summarizes distributions for the average dis-
results suggest that recommended optimized courses are  tance deviation, average course deviation, max distance
always close to the actual course, with small course errors.  deviation, and max course deviation. Note that the overall

-61.1

-61.2

Latitude

-61.3

FIGURE 16: Recommended and actual ship sailing trajectories.
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Ficure 17: Difference between predicted and actual routes in some situations.

average course deviation is 8.22 degrees, while the total
average distance deviation is 68.59 m. Table 1 indicates that
an adverse navigation environment (i.e., complicated sea-ice
condition) did not obviously degrade the model perfor-
mance. Figure 16 presents the actual and model-recom-
mended trajectories, which are quite close. Figure 17 shows
that the model-predicted trajectory may differ slightly from
that in the real world in certain traffic situations, mainly
because our model suggested a more reasonable ship travel
route, with a higher maritime traffic safety level and smaller
travel distance.

7. Conclusion

We presented a framework to identify optimal ship routes
in polar areas based on sea-ice concentration and radar
images. A macroscale route planner obtains a potential ship
trajectory based on sea-ice concentration data. The near-
field route planner can dynamically and accurately update
routes according to sea-ice situations. A proposed near-

field route planner further determines the optimal ship
trajectory based on radar echo images. Experimental results
suggested that our proposed framework can provide ac-
curate yet reasonable ship routes in ice areas. In the future,
we can enhance our model’s performance by integrating
additional evolution algorithms (e.g., a genetic algorithm),
and shipborne ice breaker influence on the proposed
model’s performance under typical maritime traffic sce-
narios can be verified.
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