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The automatic identification of multiship encounter is a vital criterion for ship collision avoidance and intelligent maritime safety
surveillance. However, the parameters of ship encounter identification in the existing studies are fixed, and the methods are weak
to give an automatic and visual performance in the multiship encounter identification. In order to fix the existed gap, this paper
proposed a novel adaptive visual analytics framework for automatic multiship encounter identification based on density-based
spatial clustering of applications with noise (DBSCAN) and visual analytics by adjusting the parameters of ship encounter
adaptively. The DBSCAN clustering method was applied to detect the clusters of encounter ships and filter out the nonencounter
ship, and the distribution and density of the encounter ship had been visualized on the nautical chart to give a better perception of
ships’ behavior with a potentially high navigational risk. The framework had been designed and developed using DBSCAN and
visual analytics, and the effectiveness was evaluated and validated by adjusting different parameters of multiship encounter within
the Southwest waters of Zhoushan Island, China. The results showed that the proposed framework had a good performance in the
visual identification of multiship encounter within confined waters, which could assist the ship collision avoidance and intelligent
maritime surveillance system.

1. Introduction

Maritime transport constitutes the arteries of global trade;
more than 90% of the world trade volume is transported by
sea [1]. The maritime transportation plays a significant role in
the development of international society; it is urgent to ensure
the maritime safety and environment protection [2-5]. The
huge volume of ships challenges the safety and security within
the confined and coastal waters [6]. There are still ship-ship
collisions or grounding accidents occurring inevitably every
year, and the collision accidents bring loss of life, property,
and pollution to the marine environment [7]. In order to
decrease the probability of accidents, optimize the traffic flow,
and coordinate ships’ berthing sequence and protect the
environment, some maritime traffic aids and surveillance
systems have been installed. The surveillance systems are
usually composed of radar, automatic identification system

(AIS), port security system (PSS), vessel traffic service system
(VTS), and video surveillance [8, 9].

The situation of ship encounter is a prerequisite for ship
collision accident, so the multiship encounter identification
is a vital criterion to assess the maritime safety level and give
suggestions about taking proactive collision avoidance ac-
tions to mitigate the possibility of collision accidents [10, 11].
However, exploring, analyzing, detecting, and ranking the
potential ships in collision risk within the surveillance screen
is a complex and challenging task for the operators in the
surveillance systems. Facing the huge volumes of ships
sailing within the surveillance waters (confined or harbor
waters) during the rush hours, the cognitive working load of
limited operators would be overwhelmed and compromised
[12, 13], which will affect the performance and effectiveness
of surveillance system to some extent. The intelligent
maritime surveillance system with visual analytics functions
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would give the operator concrete encountering ships and
reduce operators’ cognitive load when monitoring maritime
traffic, allowing preventive actions before an emergency or
collision accident occurs.

The multiship encounter identification is a key problem
that faces great difficulty and challenge; the main innovative
contribution of this paper is that a novel adaptive visual
analytics framework of the multiship encounter identifica-
tion has been proposed, and the newly developed framework
can contribute to the intelligent maritime traffic surveillance
under number of ships sailing within a port in the visual and
automatic way. Different from the previous work, this paper
designed a novel framework that can adjust the ship en-
counter radius and the minimum number of sailing ships by
introducing visual analytics and get flexible identification
results of multiship encounter. The proposed framework is
composed of AIS data processing and encounter ship de-
tection by DBSCAN and adaptive visual analytics model for
clusters of encounter ships under different specifications,
which could make full use of the excellent performance of
information processing by computer and adaptive visuali-
zation and perception from operators by adjusting the en-
counter radius and minimum number of ships in an
adaptive way. The framework developed had been evaluated
through a case study within the confined waters (Southwest
Zhoushan, China). The results suggested that the proposed
framework can cluster the whole ships into different clusters
of encounter ships and give a visual identification of en-
counter ships.

This paper is organized as follows. Section 2 presents the
necessary backgrounds and related research work regarding
AIS data processing and application, ship encounter and
adaptive visual analytics, and its performance and superi-
ority in the maritime domain. Section 3 states the process of
detecting ship encounter and visual analytics framework for
encounter ships. The practical experimental case study using
AIS data set from Zhoushan of China is described in Section
4. The results are discussed in Section 5, and finally, con-
clusions and future work are given in Section 6.

2. Related Work

2.1. Ship Encounter Identification. Aiming at improving the
efficiency of maritime traffic surveillance, many studies and
techniques are carried out to support intelligent vessel traffic
service systems using computer-aided methods. The re-
search of ship encounter or near-miss situation has been
conducted in many kinds of literature studies [14, 15].
Taking into account the type of research objectives and
methods, the studies published can be categorized into two
groups broadly:

(1) Ship encounter detection

(2) Ship near-miss situation

For the lack of sufficient maritime accident data, the ship
encounter is one of the most common criteria to identify and

assess the maritime traffic safety level in the specific sea area
[16]. The ship encounter is defined as a situation between
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ships where two or above sailing ships are close enough at a
certain distance.

As shown in Figure 1, there are 6 ships sailing within in
certain sea area. If the encounter radius is R, the ship A and
ship B will be detected as a couple of encounter ships.
However, the distance of the ship encounter varies by the
situation between the ships, manipulating ability of the ship,
state of the sea area, metrological conditions, officer’s
navigational experience, and so on [17]. Iperen defined the
encounter as the tracks of two ships which are expected to
pass each other within 3 nautical miles within 20 minutes,
based on their speed and course [15]. Zhang et al. [18] set the
encounter radius as 1500m (0.8 nautical miles) for the
multiship encounter and collision avoidance support.
Moreover, the ship encounter radius is defined as 700 m
when the ship sailed within the sea area of the bay in [19].
Ship encounters were assessed by the way of the predicted
point of collision in [20]. Zhen et al. [21] proposed a
framework of real-time multivessel collision assessment
based on DBSCAN, but the ship encounter radius and
number of ships are fixed in the framework. Actually, the
encounter radius is different for the whole waters. The
detection of near-miss situations is proposed by considering
the ship domain, course difference, and relative speed and
using neuro-fuzzy classification in [17]. Chen et al. [22]
proposed an ensemble framework via the ensemble em-
pirical mode decomposition (EEMD) and artificial neural
network (ANN) to predict the traffic flow under different
time intervals ahead. Liu [23] conducted a topological
analysis model of the ship encounter space using a geo-
graphic information system (GIS) spatial analysis technol-
ogy. By combining the requirements for the light range in
COLREGS and support vector classification to supervise and
learn the actual meeting data, a map of the ship encounter
azimuth division was constructed in [24]. An analytical
model incorporating a Bayesian network is proposed to
estimate the occurrence likelihood of a ship being grounded
and collided in the fluctuating backwater zone in [25]. Ma
et al. [26] proposed a deep learning model for predicting the
sailing intent in the intersection waterway because ship-ship
collisions in such areas mainly occur by incorrectly inter-
preting the intents of other vessels.

On concluding the existing literature on ship encounter
detection, we know that there is no specific distance defined
for ship encounter, but it is closer when the ship sails in
confined waters, while further in open or coastal waters
suggested by navigational experience.

A near miss is an unplanned event that has the potential
to cause but does not actually result in human injury, en-
vironmental or equipment damage, or an interruption to
normal operations, or a near miss is an unintentional in-
cident that could have caused damage, injury, or death but
was narrowly avoided [27]. The term “near miss” is a special
event to be modelled and detected that can be applied to
assess and identify safety operations in many industries and
organizations, such as law enforcement and public safety,
fire-rescue services, healthcare, aviation, railway, and mar-
itime transportation [28]. Compared to other domains, the
application of near-miss situation detection in maritime
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FIGURE 1: Diagram of the ship encounter.

transportation research is a relatively new research topic,
with a pioneering work by Berglund and Huttunen [29]. In
the maritime transportation application, a near-miss situ-
ation between ships can be treated as a subset situation of
ship encounter where the encounter ships would be in a
more urgent unsafe situation. The near-miss situation is
defined by the overlap of the ship domain by Fujii and
Tanaka [30], and in a work by Kim and Jeong [31], as it
shown in Figure 2, if one ship’s domain has been invaded by
another’s, a near miss could be formed. A fuzzy logic method
is proposed to add vessel collision avoidance capability to
VTS in [32]. Zhang et al. [33] proposed a method to detect
possible near-miss ship-ship collisions from AIS data.

Generally speaking, ship encounter and near-miss sit-
uation are nonaccidental traffic situations that should be
identified for further investigation to take proactive and
evasive actions and reduce the risk from the maritime
surveillance.

2.2. Adaptive Visual Analytics for Maritime Surveillance.
The maritime surveillance system always integrates a huge
amount of data; exploring and analyzing the vast volumes
of data is becoming increasingly difficult. However, in-
formation visualization, visual data mining, and visual
analysis can help to deal with the flood of information.
Visual analysis is a set of techniques for combining the
computational power of computers with the perceptive and
cognitive capabilities of humans, in order to extract
knowledge from large and complex datasets. The tech-
niques rely heavily on user interaction and the human
visual system and exist in the intersection between visual
analytics and big data [34]. The visual analytics has been
applied well to the maritime domain. An adaptive, visual
knowledge discovery tool for supporting the detection and
identification of anomalous behavior in maritime traffic
data (VISAD) is proposed by Riveiro [35], which are a
series of pioneering research studies integrating the
preparation of the system, establishment of the normal
picture, and the actual detection of maritime anomaly
events. Chen et al. identify and visualize the cumulative
activity patterns for ship groups derived from mass ship
trajectories contained in AIS data and provide a clearer
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FiGUre 2: Concepts of the near-miss event using an elliptical
domain.

interpretation of shifting space-use patterns within strait
corridors [36]. A normal model of vessel behavior is
quantified and visualized by the Gaussian mixture model
(GMM), and the model is applied in the maritime anomaly
detection application in [37]. The maritime traffic route and
density map is visualized by using AIS data along the
Atlantic coast of the US for offshore wind energy areas
planning by Breithaupt et al. [38]. Jin et al. [39] explored
the characteristics of vessel behavior by means of inte-
grating data mining with visual analytics, a human-com-
puter interaction controlling model, which combines
human insight with enormous storage and processing
capacities of computers to gain insight into vessel behavior.
The studies above are mostly about visualization of ship
behavior expressed by AIS data; the process is not inter-
active and adaptive, so the visual analytics should be in-
troduced in the following research.

The existing studies about ship encounter detection
mainly focus on models of the encounter between two
ships, and the ship encounter radius and minimum
number of ships are fixed. The previous work cannot meet
the requirements of multiship encounter detection when
there are a large number of ships sailing in confined waters.
Visual analytics and its application in maritime have
carried out research mainly on maritime anomaly detec-
tion and visualization of the density map. This paper
proposes an adaptive visual analytics framework that in-
corporates multiship encounter detection by DBSCAN and
clusters of encounter ships visualized and displayed
adaptively on the nautical chart under the flexible pa-
rameter combination of encounter radius, minimal
number of encounter ships, and diameter of cluster given
by the operator in the surveillance center. The newly
proposed framework can make full use of machine learning
and visual analytics, which can contribute to the intelligent
maritime surveillance system.



3. Adaptive Visual Analytics Model for
Multiship Encounter

3.1. DBSCAN for Multiship Encounter. The DBSCAN re-
quires two parameters: ¢ (eps) and the minimum number of
points required to form a dense region (minPts). It starts
with an arbitrary starting point that has not been visited.
This point’s e-neighbourhood is retrieved, and if it contains
sufficiently many points, a cluster is started. Otherwise, the
point is treated as noise. Note that this point might later be
found in a sufficiently sized e-environment of a different
point and hence be made part of a cluster. If a point is found
to be a dense part of a cluster, its e-neighbourhood is also
part of that cluster. Hence, all points that are found within
the e-neighbourhood are added, as is their own e-neigh-
bourhood when they are also dense. This process continues
until the density-connected cluster is completely found.
Then, a new unvisited point is retrieved and processed,
leading to the discovery of a further cluster or noise. The
DBSCAN can be used with any distance function (as well as
similarity functions or other predicates). The algorithm of
DBSCAN (Algorithm 1) can be expressed in pseudocode as
follows [40].

RangeQuery can be implemented using a database index
for better performance, or using a slow linear scan (Algo-
rithm 2) [40].

As the ship encounter is defined as a situation between
ships where two or more sailing ships are close enough at
certain distance in Figure 1, so the detection of encounter
ships can be taken as a spatial clustering process for ships’
position data shown in Figure 3.

As shown in Figure 3, the encounter ships are con-
centrated in the dense spatial sea area where the non-
encounter ships do not have any ship around them within
the encounter radius. Hence, the algorithm of DBSCAN in
data mining is a quite suitable method to cluster ships’
position data from the semantical meaning of ship en-
counter, and the result of DBSCAN is the different clusters of
the encounter ships and the noise data of clustering result is
nonencounter ships.

There are quite important criteria in the clustering
process in the distance calculation between ships. In the
nautical domain, the distance between the ships is calculated
from the AIS data using the Mercator method which is more
accurate and suitable than the Euclidean distance. The unit
of distance is a nautical mile. Assume that there are two
vessels: V,, (Long,, Lat,, Sog,, Cog,) and V; (Long;, Lat, Sog;,
Cog,). The distance and bearing calculated from V, to V, are
computed using the following equations:

Dif_Long = Long, — Long,,
(1)
Dif_Lat = Lat, — Lat,, (2)

Lat\ (1 - e sin(Lat) "
MP = 7915.70447 log tan(z+i) 1-esin(Laty =)
4 2 1 + e sin(Lat)

(3)
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DMP = MP, - MP,,, (4)
Dif_L
bearing = arctan(liong) (5)
DMP
Dif _Lat
distance = 172,1, (6)
cos (bearing)

where Dif Long and Dif Lat are the differences of longitude
and latitude and MP is the meridional parts at the specific
latitude calculated by equation (3). DMP is the differences of
MP of V, and V; in equation (4); then the bearing and
distance are calculated using equations (5)~(6).

Before the process of multiship encounter detection
using DBSCAN, two parameters should be specified, and the
principle of parameter specification is discussed as follows.

3.1.1. Encounter Radius. It is always affected by the type of
waters and weather condition (larger value when it is a rel-
atively open waters under poor visibility, otherwise smaller
value within confined water under good visibility, vice versa).

3.1.2. Minimum Number of Ships Involving Multiship
Encounter. Aiming at the detection of multiship encounter,
the number of ships involving the multiship encounter
should be above two or more. The encounter radius cor-
responds to the parameter eps and the number of ships
involving multiship encounter corresponds to the parameter
minPts in the DBSCAN algorithm. The two parameters for
the multiship encounter detection discussed above can be
specified in an adaptive way based on the operator’s cog-
nitive perception and the computation process in the fol-
lowing framework.

3.2. Adaptive Visualization of Encounter Ships Using Visual
Analytics. After each spatial clustering for ships, there
would be several clusters of encounter ships generated. In
order to distinguish the different clusters clearly, we in-
troduce a circle with the center of each cluster and certain
diameter to cover the clusters of encounter ships, which
could benefit the focus on each cluster of encounter ships.
Consider that the results of clustering are determined by the
specification of minPts and eps before the implementation of
DBSCAN, and assume that m clusters will be generated and
there are n ships in the m™ cluster. Hence, the center po-
sition of the m™ cluster can be calculated as follows:

1 n
Long (m,n) = . ZIZLonm,-, (7)

1 n
Lat, (m,n) = " leLatmi. (8)

The diameter can be set after the results of the multiship
encounter detection by DBSCAN. The diameter value
should be specified according to the size of encountering
ship clusters, so as to ensure that the clusters can be covered
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{C:=0

if |N| < minPts then {
label (P): =Noise
continue}

C=C+1

label (P):=C

SeedSet S:=N\ {P}

label (Q):=C

if |N| > minPts then {
S:=S U N}

for each point P in database DB {
if label (P) # undefined then continue
Neighbors N: = RangeQuery (DB, distFunc, P, eps)

for each point Q in S {
if label (Q) = Noise then label (Q):=C
if label (Q) # undefined then continue

Neighbors N: = RangeQuery (DB, distFunc, Q, eps)

ArGgoriTHM 1: DBSCAN (DB, distFunc, eps, minPts).

}

return N

}

{Neighbors N: = empty list
for each point P in database DB {
if distFunc (Q, P) <eps
then {N:=N U {P}}

ALGorITHM 2: RangeQuery (DB, distFunc, Q, eps).

. ‘v"'.' .
&9
Cluster of encounter ship
L
Cluster of éhééﬁnter ship
[ [
®

Nonencounter ship

FIGURE 3: Multiship encounter detection based on DBSCAN.

by circle clearly and assist the operators to distinguish the
clusters of encounter ships.

3.3. Visual Analytics Process for Multiship Encounter
Identification. Visual analysis (VA) is a set of techniques for
combining the computational power of computers with the
perceptive and cognitive capabilities of humans, in order to
extract knowledge from large and complex datasets. An

abstract and general overview of the different stages and
their transitions in the visual analytics process is shown in
Figure 3, which is adapted from the study of Keim et al. [41].
The first step is often to preprocess and transform the data
and derive different representations for further exploration.
Other typical preprocess tasks include data cleaning, nor-
malization, grouping, or integration of heterogeneous data
sources. After the transformation, the analyst may choose
between applying visual or automatic analysis methods. If an
automated analysis is used first, data mining methods are
applied to generate models of the original data. Once a
model is created, the analyst has to evaluate and refine the
model, which can best be done by interacting with the data.
Visualizations allow the analysts to interact with automatic
methods by modifying parameters or selecting other analysis
algorithms. Model visualization can then be used to evaluate
the findings of the generated models. Alternating between
visual and automatic methods is characteristic for the visual
analytics process and leads to continuous refinement and
verification of preliminary results. By using the visual an-
alytics visual findings process, knowledge can be gained
from visualization, automatic analysis, as well as the pre-
ceding interactions between visualizations, models, and the
human analysts [42], and the overview of visual analytics is
shown in Figure 4.

According to the general process of visual analytics
discussed above and the algorithm of multiship encounter
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FIGURE 4: Overview of visual analytics.

detection designed based on DBSCAN, we design the fol-
lowing framework of adaptive visual analytics model for the
multiship encounter identification, as shown in Figure 5.

The modules of adaptive visual analytics framework of
multiship encounter detection are designed and shown in
Figure 6, considering the requirement of multiship en-
counter detection. There are four main modules designed to
fulfil the functions in the visual analytics framework.

3.3.1. Specification of Parameters for the Multiship Encounter.
The parameters include the encounter radius (ER), the
minimum number of encounter ships (MS) specified before
the clustering process, and the diameter of a circle that
covers clusters of encountering ships after the clustering
process and before the identification of encountering ships’
distribution. All the specified parameters would be assigned
to the DBSCAN algorithm, and clusters of encounter ships
would be plotted on the nautical chart adaptively.

3.3.2. Clustering Action for Encounter Detection. After the
two parameters specified, the clustering process can be
performed on ships’ position contained by AIS data, and the
outputs are identifiers of ships: identifiers of encounter ships
or nonencounter ships.

3.3.3. Visual Display of Encounter Ships. The live AIS data
can be loaded, updated, and displayed on maps. Then the
clusters of encounter ships and nearest distance of ships be-
tween each encounter cluster can be visually displayed in this
module. At the same time, the visual results should be assessed
and the cognitive feedback of clustering detection of multiship
encounter should be given to respecify the parameters of
clustering process and identification of encounter ships and
gain better performance between computation in computer
and perceptive and cognitive capabilities of humans.

3.3.4. Multiship Encounter Monitor. This module displays
the number of encounter ship clusters, encounter ships’
percentage of the whole ships, and MMSI list of encounter

ships. The adaptive framework of multiship encounter de-
tection is shown in Figure 5; here, we develop the com-
ponents in a graphical user interface (GUI) to form a user-
friendly and practical framework to validate its effectiveness.

4. Experimental Case Study

In order to evaluate the proposed adaptive visual analytics
framework designed in Section 3, we develop a visual an-
alytics framework to validate its practical effectiveness in the
identification and visualization of multiship encounter for
maritime surveillance application. The framework loads ship
AIS data within a relatively confined harbor waters
(Southwest waters of Zhoushan Island, China), where there
always be a high density of vessel traffic flow, and the live AIS
data are displayed in first graph of the framework in Figure 7.

4.1. Function Description for Visual Analytics Framework.
To fulfil the functional requirement of adaptive visual an-
alytics for multiship encounter detection, the framework is
composed of four main modules shown specifically in
Figure 7.

In order to ensure a better performance of multiship
encounter in the high-dense sea area, the framework sup-
ports different levels of interactions between operators’
cognition and computation capability. The specific functions
of each module are presented as follows.

4.1.1. Encounter Parameter Set Module. Three parameters
can be set in this module. The operators can specify the MS,
whose value is more than 2, because the encounter must be
formed by at least two ships in pairwise encounter, or
multiship encounter compose of 3 or more ships. The en-
counter radius (ER) defines the distance between encounter
ships. In order to get a good performance, the value of ER
should be adjusted according to the navigational environ-
ment, and the ER should be set at a larger value when ships
sail within open waters, whereas it should be set at a smaller
value when ships sail within confined or complex waters. The
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third parameter is the radius that is applied to generate a
circle to cover each cluster of encounter ships; the centers of
circle are calculated by using equations (7) and (8).

4.1.2. Calculation Action Module. This module includes
actions for loading and displaying AIS data, clustering to
generate clusters of encounter ships and nonencounter
ships, identification of encounter ships covered by circle,
respectively, and the density of each cluster expressed by the
average distance between ships in each cluster and extraction
of MMSI for encounter ships.

4.1.3. Clustering Results Monitor Module. After the clus-
tering process, the total number of encounters, the per-
centage of encounter ships, and MMSI list of encounter
ships can be shown in this module.

4.1.4. Geographical Display Module. The results of each
action would be visually displayed on the map in this
module. There are main four axes that are utilized to
display live AIS data, clustering results, clusters of en-
counter ships, and visual display of the density of each
encounter cluster.

4.2. Experiment Evaluation. We carry out several tests on the
adaptive visual analytics framework to validate its practical
application in multiship encounter detection. Here two
representative cases are presented as follows.

As shown in Figure 7, when the MS is 3 and ER is 2 n
mile, there are 5 clusters of encounter ships and 52% (29/56)
of encounter ships out of whole sailing ships displayed in
clustering results monitor module. And the clusters of en-
counter ships covered by a circle, the nearest couple of ships
in each cluster, and the density of each cluster are displayed
on the geographical display module interactively.

As shown in Figure 8, when the MS is 2 and ER is 1 n
mile, there are 7 clusters of encounter ships and 32% (18/56)
of encounter ships out of whole sailing ships displayed in
clustering results monitor module. Other results are dis-
played in the geographical display module. The visual an-
alytics provide a more interactive and adaptive way to detect
the encounter ship, in which, the operators can adjust the
parameters according to last detection results.

In addition to the cases described above, we have carried
out several tests with the different specifications of the
encounter radius and minPts, and the number of clusters is
shown in Figure 9 and Table 1. As we can see from Figure 9
and Table 1, with the increase of the radius and minPts, the
number of clusters becomes smaller, so the parameters
should be adjusted according to the navigational environ-
ment and characteristics.

During the period of research, we made a survey from
the captains and operators who work in the maritime
surveillance of Maritime Safety Authority in Zhoushan, and
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they suggested that the encounter radius of 1 n mile is a
better choice in the present traffic situation and 7 clusters of
encounter ships are appropriate to detect the potential
navigational risk in the present situation. However, the
encounter parameters should be adjusted according the
distribution and change of ship traffic, and our work offer a
flexible framework to adjust the parameters.

The encounter radius and the minimum number of ships
are two important parameters in the multiship encounter
identification, the cases in the experiment are just for vali-
dating the effectiveness of proposed framework, and the
operators should adjust the value in different situations and
get a suitable performance. Through the experimental cases
presented above, it is demonstrated that the adaptive visual
analytics framework can identify the potential high risky
clusters of encounter ships out of the whole sailing ships
within the surveillance sea area, based on the adaptive visual
specification of multiship encounter parameters. The pro-
posed framework could provide a visual method to identify
encounter ships with high potential collision risk, which
decrease the cognitive working load and increase the working
efficiency of operators in maritime surveillance.

5. Discussion

The specifications of the encounter radius and the minimum
number of ships are very important to obtain a good per-
formance of detecting clusters of encounter ships. In the real
application of the maritime surveillance scenario within a
different type of sea area, the operators can set and assess
different specifications of the encounter radius and mini-
mum number of ships in the encounter parameter set
module according to some impact factors, such as the
distribution of sailing ship, the type of surveillance sea area,
weather condition, judgement, and experience from mari-
time experts, to gain a better performance of obtaining
clusters encounter ships and filter out the safe ships.

The DBSCAN clustering method is quite suitable to
process the ship position data expressed by AIS, and the
parameters of the multiship encounter are just appropriate
for corresponding to the input of DBSCAN; other methods
of K-means or hierarchical clustering need the users to give
the number of clusters, but we just care about the encounter
ships that are in very close distance within the surveillance
waters, and the DBSCAN is the most suitable method to
detect encounter ships. Compared to the work [21], this
paper provides a more flexible framework by combining
DBSCAN and visual analytics, and the framework has a
better performance by introducing visual analytics.

Actually, the AIS data are discontinuous, the ships’
position and density are changing all the time, and therefore,
the whole process of DBSCAN for clustering encounter
ships should be implemented at a periodical time to get
better performance in the real maritime surveillance
application.
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6. Conclusions

The maritime surveillance system always integrates a huge
amount of data, so exploring and analyzing the vast
volumes of data is becoming increasingly difficult; how-
ever, visual analysis can help to deal with the flood of
maritime traffic information. We propose an adaptive
visual analytics framework for multiship encounter
identification-based DBSCAN and visual analytics. The
incorporation of visual analytics and DBSCAN can
contribute to adjust the encounter parameters for efficient
detection of multiship encounters. The framework has
been developed, and there are four main modules which
are composed of the encounter parameter set module,
clustering results monitor module, visual display of en-
counter ships, and geographical display module in the
framework. The developed framework has been evaluated
by experiments on AIS data within Southwest waters of
Zhoushan Island, China. The results show that the pro-
posed framework is effective and efficient to detect the
clusters of encounter ships by a combination of the op-
erator’s adaptive specification of the multiship encounter,
spatial data clustering method, and visual display of
distribution of ship encounter clusters. At the same time,
we have conducted a comparative analysis about different
specifications of ship encounter parameters and have
showed the quantitative impact of parameter specification
on the final results. The proposed framework provides a
new method to identify encounter ships with high po-
tential collision risk based on adaptive data visualization
and clustering analysis. The proposed method has valu-
able contribution to maritime surveillance. We will carry
out the multiship encounter identification based on visual
analytics; the quantized collision risk for multiship will be
considered in the future work.
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