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*e introduction of customized bus (CB) service intends to expand and elevate existing transit service, which offers an efficient
and sustainable alternative to serve commuters. A probabilistic model is proposed to optimize CB service with mixed vehicle sizes
in an urban setting considering stochastic bus arrival time and spatiotemporal demand, which minimizes total cost subject to bus
capacity and time window constraints.*e studied optimization problem is combinatorial with many decision variables including
vehicle assignment, bus routes, timetables, and fleet size. A heuristic algorithm is developed, which integrates a hybrid genetic
algorithm (HGA) and adaptive destroy-and-repair (ADAR) method. *e efficiency of HGA-ADAR is demonstrated through
numerical comparisons to the solutions obtained by LINGO and HGA. Numerical instances are carried out, and the results
suggested that the probabilistic model considering stochastic bus arrival time is valuable and can dramatically reduce the total cost
and early and late arrival penalties. A case study is conducted in which the proposed model is applied to optimize a real-world CB
service in Xi’an, China. *e relationship between decision variables and model parameters is explored. *e impacts of time
window and variance of bus arrival time, which significantly affect service reliability, are analysed.

1. Introduction

Public transportation agencies are experimenting with on-
demand and shared technologies to augment traditional
fixed-route bus services, such as flexible-route bus services
[1], demand responsive transit (DRT) [2], ridesharing,
microtransit [3], and customized bus (CB) service [4]. *ese
new, flexible transit solutions have tremendous potential to
expand agencies’ service areas, attract new riders, fill
transportation gaps, and provide more effective and sus-
tainable ways to reach low-density communities and other
traditionally hard-to-serve situations.

As an emerging transportation mode, CB is similar to
microtransit, which offers another option between the pricey
convenience of taxis and slow, cheaper public transit. CB
service is focused on providing commuters with fast and
comfortable commuting buses in morning and evening rush
hours. It allows commuters to make reservations for trips by
submitting the information related to spatiotemporal

demand (i.e., origination and destination (OD) and desired
arrival time) and arranges buses to serve the shared com-
muters. *e service plan is updated on a short-term basis
subject to the passenger demand change. To ensure service
quality, CB does not take walk-in riders without reservation
[5].

*e major challenges that need to be addressed by
operators are the following problems: how many buses to be
used and how to determine bus types, assignments, routes,
and timetables to serve passengers. To comprehensively
assess the feasibility and cost-effectiveness of CB service, the
operators need to take a holistic approach that can jointly
determine vehicle assignment, routes, timetables, and fleet
size with the spatiotemporal passenger demand.

In addition, bus travel time on the route as well as bus
arrival time at the stop is affected by recurring and non-
recurring congestion in urban settings. Optimizing service
planning with deterministic travel time might underestimate
the cost and result in an unexpected level of service.
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Moreover, the CB customers would expect to arrive at
destinations within the acceptable time windows, which
makes it challenging for optimizing bus routing, scheduling,
and timetabling.

*is paper aims to optimize the CB service with a mixed
bus fleet to minimize total cost, considering stochastic bus
arrival time, which is known to be an NP-hard problem. A
hybrid heuristic algorithm that integrates the features of genetic
algorithm (GA), simulated annealing (SA), and adaptive de-
stroy-and-repair (ADAR) is proposed to efficiently search for
the approximate optimal solution. *e HGA hybridizing GA
and SA [5] performs well in global exploration but spends
much time converging to the optimal solution. In contrast,
local search methods, such as ADAR, can find the optimal
solution quickly. So, we develop an HGA-ADAR algorithm by
incorporating ADAR into HGA to improve its performance to
reach the optimal solution in the region of convergence.

In summary, the main contributions of this study are as
follows:

(1) An important consideration of CB service planning
is addressed and integrated in our model, namely,
stochastic bus arrival time. Furthermore, some
practical issues, such as mixed fleet size and multi-
terminal, are also considered. *e proposed model
can optimize bus assignment, routes and timetables,
and mixed fleet size simultaneously.

(2) A hybrid heuristic algorithm that integrates the
features of GA, SA, and ADAR is proposed to effi-
ciently search for the approximate optimal solution.

(3) *e relationship between model parameters and
decision variables is explored, which may provide
some decisions and strategy supports for operating
CB service in the future.

*e rest of this paper is structured as follows. Section 2
summarizes an overview of related existing literature. Section 3
describes the developed probabilistic model, including the
objective function and associated constraints. *e developed
HGA-ADAR is discussed in Section 4, while the model and
algorithm performance and efficiency are assessed in Section 5.
Section 6 presents a case study, in which the applicability of the
developed model is presented, and the optimized results are
discussed. *e relationship between decision variables and
model parameters is explored in the results of sensitivity
analysis. Finally, the research findings with a future study are
presented in Section 7.

2. Literature Review

*e discussion of the literature review covers previous
studies in transit planning with deterministic bus arrival
time, vehicle routing problem with stochastic travel time,
bus arrival time distribution, and feasible solution
algorithms.

2.1. Transit Planning with Deterministic Bus Arrival Time.
Considering deterministic bus arrival time, Chien [6] op-
timized route choice, headway, and bus capacity for a feeder

bus system, which minimized total cost. Ulusoy et al. [7] and
Ulusoy and Chien [8] optimized the integration of all-stop,
short-turn, and express service considering heterogeneous
demand. Later, Qu et al. [9] enhanced the model by taking
time-dependent demand into account. Chowdhury and
Chien [10] optimized fare and headway considering demand
elasticity that maximized total profit. Chen et al. [11] si-
multaneously optimized bus routing, operating frequency,
wireless power device locations, and battery capacity for a
multi-route bus network, which minimized total cost.

Several previous studies focusing on optimizing CB
service considered deterministic bus arrival time. Tong et al.
[12] optimized passenger assignment and routes considering
spatiotemporal windows that maximized ridership. Guo
et al. [13] proposed a model for optimizing passenger as-
signment and routing that minimized the total cost, and later
they enhanced the model by considering time window [14]
and time-dependent bus arrival time and path flexibility
between stops [15]. Lyu et al. [16] introduced a planning
framework to optimize stop location, routing, timetabling,
and passengers’ probability of choosing CB simultaneously,
which maximized total profit. Huang et al. [17] modelled the
decision-making process for CB service and optimized
passenger assignment and bus routing that maximized total
profit. Sun et al. [5] optimized trip assignment, routing,
timetabling, and bus fleet size for CB service considering the
mixed fleet size and multi-terminal, which minimized total
cost.

In summary, to the best of our knowledge, the opti-
mization of CB service considering stochastic bus arrival
time has not been studied in the above studies. *is variant
constitutes an important extension to the classical CB service
planning that has not been investigated in the literature for
which we believe it is worth exploring.

2.2. Vehicle Routing Problem with Stochastic Travel Time.
In the field of operational research, the optimization of CB
service considering stochastic bus arrival time is an exten-
sion of stochastic vehicle routing problem (SVRP) [18, 19].
Gendreau et al. [20, 21] presented some comprehensive
surveys on SVRP and made a classification of the articles
relying on different stochastic parameters. *e authors ar-
gued that the common stochastic parameters considered are
stochastic demand, stochastic customer, and stochastic
travel time. In this paper, we focus on the consideration of
stochastic travel time. *us, we reviewed the literature re-
lated to vehicle routing problem with stochastic travel time
(VRPSTT) emphatically.

Kenyon and Morton [18] optimized VRPSTT consid-
ering two objectives: minimizing the expected completion
time that all vehicles will return to the depot andmaximizing
the probability that the trip is complete on or before a
prespecified deadline. Li et al. [19] optimized an VRPSTT,
which minimized total transportation cost. It was found that
evaluating the objective function of stochastic problems
would consume lots of computation time. Adulyasak and
Jaillet [22] studied an VRPSTT with soft time windows,
where the service at each customer should be within a
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predetermined time window or a violation occurs. *e
problem aimed to construct the routes to minimize the sum
of probability of time window violations. Errico et al. [23]
solved an VRPSTTwith hard time windows, where a penalty
is paid whenever the service at a customer is skipped. *e
objective function was to minimize the total expected travel
cost and penalty cost.

*e optimization of CB service is a more complex
problem than the conventional VRP because it incorporates
several specificmodel constraints, such as time windows, bus
capacity, pairing, and precedence [24]. However, previous
models discussed above focused on general VRPSTT, which
are not suitable for CB service. Besides, the trade-off between
operator cost and user cost is the main consideration in CB
service, which is different from general VRPSTT.

2.3. Bus Arrival Time Distribution. Bus arrival time inher-
ently fluctuates due to various interruptions caused by traffic
signals, accidents, unplanned road works, and adverse
weather [25–27]. *e distributions of bus arrival time were
investigated and assumed that they follow normal
[18, 19, 22, 28–30], log-normal [31–33], and gamma [34, 35]
distributions.

Assuming normally distributed bus arrival time, Chen
et al. [36] optimized limited-stop bus service (i.e., stop-
skipping), whichminimized total cost. Results found that the
randomness of bus arrival time should not be ignored for
transit planning. Xiao et al. [37] optimized scheduled arrival
time and slack time for a transfer hub of a bus transit
considering the probabilistic bus travel time and walking
speed, which minimized total system cost.

Considering log-normally distributed bus arrival time,
Chien et al. [31] proposed a probabilistic model for opti-
mizing disseminated bus arrival time for pretrip passengers,
which minimized total wait time. Prakash [32] studied on
determining the most reliable routes on the stochastic and
time-dependent network, which maximized on-time arrival
probability.

Taş et al. [34] developed a model for optimizing an
SVRPSTT with soft time windows considering bus arrival
time following a gamma distribution, which minimized the
sum of transportation and service costs. Later, they en-
hanced that model, considering time-dependent stochastic
bus arrival time [38].

2.4. Solution Algorithm. As discussed above, the studied CB
optimization problem is an extension of VRP. *us, it be-
longs to the NP-hard problem. An efficient algorithm is
desired to search for the optimal or approximate optimal
solution. Genetic algorithm (GA) is generally employed to
deal with the NP-hard problem [5, 39]. Sun et al. [5] used a
hybrid GA to optimize the routing and scheduling for a CB
service. Chen et al. [11] developed a nested GA for planning
an electric feeder system. GA has a great ability of global
search in solution space, but it does not employ a local search
and spends much time to converge to the optimal solution.
So, it needs some modifications to improve the convergence
and reduce the computation time.

*e neighbourhood search method, such as ADAR,
which is a local search-based strategy, has shown excellent
performance in solving routing problems [40] and finds the
optimal solution very quickly. Kitjacharoenchai et al. [41]
developed an ADAR method that employs three destroy
operators and three repair operators to solve a VRP. Dong
et al. [42] optimized stop plans and timetables for commuter
railways with an ADAR method by employing multiple
destroy and repair operators. It was found that the local
search-based strategy is easy to integrate with other algo-
rithms to effectively find the optimal solution [43–45]. Soto
et al. [43] proposed a local search hybridized with a tabu
search (TS) to deal with a multi-depot VRP. Moshref-Javadi
et al. [45] proposed a metaheuristic algorithm, in which
several local search strategies were used to improve the
solution obtained by SA, and it was proved to be able to solve
VRP efficiently. Masmoudi et al. [46] introduced a hybrid
GA to deal with a DARP by integrating local search. Belhaiza
[44] designed a heuristic that integrated GA and ADAR to
solve a DARP. Baniamerian et al. [47] proposed a hybrid
heuristic algorithm based on variable neighbourhood search
(VNS) and GA.

Based on the above literature review, we proposed a
probabilistic optimization model to assist a transit agency in
planning a CB service in the context of the stochastic en-
vironment. To the best of our knowledge, there are no
studies on CB service optimization problems considering
stochastic bus arrival times. Table 1 presents a comparison of
our study with previous studies. It is found that the studied
optimization problem is combinatorial with many decision
variables including vehicle assignment, bus routes, timeta-
bles, and fleet size. Unlike previous studies, some practical
issues, such as mixed fleet, multi-terminal, time window, and
stochastic bus arrival time, are also considered. None of the
previous research has covered all the above issues.*erefore,
this study will fill the gap in comprehensive optimization for
CB service and provide a significant basis for new areas of
research to explore in the future.

3. Methodology

In this paper, a probabilistic model is formulated to optimize
a CB service (i.e., vehicle assignment, routing, scheduling,
and mixed fleet size) considering stochastic bus arrival time,
which minimizes the total cost including operator cost, user
cost, and early and late arrival penalties subject to some
practical constraints. It is worth noting that the passengers
need to be classified into groups before the CB service is
optimized, and we adopt the passenger partition approach
given in Sun et al. [5]. In the research of Sun et al., the
authors partitioned passengers into groups based on the
information submitted by passengers (i.e., OD information
and desired arrival time) and a prespecified time interval.

3.1. Assumptions. To formulate the developed model, the
following assumptions were made:

(1) *e spatiotemporal passenger demand of the study
area is known.
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(2) Bus sizes and associated information are given (i.e.,
capacity and operating cost).

(3) Buses are dispatched from a terminal and return to a
different one after finishing a trip.

(4) In the advent of real-time information of bus ar-
rivals, passengers’ wait time at pick-up stops can be
ignored.

*e model is described on a complete graph G, which
consists of a set of nodes denoted as N and a set of links
denoted as A.N consists of a set of terminals denoted as W, a
set of pick-up stops denoted asN+, and a set of drop-off stops
denoted asN−. W,N+, andN− are mutually exclusive. Table 2
lists the parameters and variables used to formulate the
proposed model.

3.2. Objective Function. *e objective function minimizes
total cost denoted as ZT which consists of operator cost
denoted as ZO, user in-vehicle cost denoted as ZU, and early
and late arrival penalties caused by stochastic bus arrival
time at drop-off stops denoted as ZP. *us,

min ZT � ZO + ZU + ZP. (1)

ZO consists of variable cost denoted as ZV and fixed cost
denoted as ZF. ZV is the product of average variable cost per
bus-hour υb and travel time i∈Nj∈Nb∈Btijxijb, while ZF is
the product of fixed cost per bus-hour fb, number of buses
used w∈Wj∈Nb∈Bxwjb, and service time horizon o.

ZO � ZV + ZF

� 
i∈N


j∈N


b∈B

υbtijxijb + o 
w∈W


j∈N


b∈B

fbxwjb, (2)

where xijb is a binary variable, and xijb � 1 if a bus of type b
serves link (i, j); otherwise, xijb � 0.

ZU is the product of value of time λ3, in-vehicle time, and
the number of passengers served qij. *e in-vehicle time
from pick-up stop i to drop-off stop j by a bus of type b is
denoted as (Tjb − Tib).

ZU � λ3 
i∈N+


j∈N−


b∈B

Tjb − Tib qijyibyjb, (3)

where yib is a binary variable, and yib � 1 if stop i is served by
a bus of type b; otherwise, yib � 0. Tjb is the arrival time of a
bus of type b at stop j, which follows a probability distri-
bution (i.e., f(Tjb)), as shown in Figure 1.

It is assumed that the expected bus arrival time at stop j is
Tj
′, and the acceptable arrival time window is tw.*e earliest

and latest arrival times within the time window are ej and lj,
respectively (i.e., ej � Tj

′− tw/2, lj � Tj
′+ tw/2). Figure 1 shows

a probability distribution of arrival time for a bus of type b at
stop j (i.e., f(Tjb)). Bus arrivals outside the time window are
classified into (1) early arrival represented by area I where
the bus arrives before the start of time window ej (e.g.,
Tjb < ej) and (2) late arrival represented by area II where the
bus arrives after the end of time window lj (e.g., Tjb > lj).

*e penalty incurred by early and late bus arrivals is
denoted as ZP that can be determined based on the prob-
ability of bus arrival time at drop-off stops. For example,
penalty caused by the early arrival of a bus of type b at stop j,
denoted as PEjb, is the product of unit penalty for early
arrival λ1, number of passengers alighting from stop j
denoted as |Qjb|, the probability of early arrival


ej

0 f(Tjb)d(Tjb), and early arrival time. *e early arrival
time is the elapsed time from the actual arrival time to the
start of the time window denoted as (ej − Tjb). *us,

Table 1: Comparison of this study with previous studies.

Reference Problem Objective
Decision
variables Constraints

Solution algorithm
R S V F TW PP MT MB VC ST

Li et al. [19] VRP Min. operator
cost √ √ √ √ √ √ Tabu search (TB)

Taş et al. [34] VRP Min. total cost √ √ √ √ √ √ TB
Chen et al. [36] PT Min. total cost √ √ √ √ Hybrid artificial bee colony (ABC)
Tong et al. [12] CB Max. ridership √ √ √ √ √ √ √ Lagrangian decomposition
Han et al. [48] CB Min. total cost √ √ √ √ √ Branch and bound (B&B)
Chen et al. [11] PT Min. total cost √ √ √ Nested genetic algorithm (NGA)
Huang et al.
[17] CB Max. profit √ √ √ √ √ √ √ B&B

Han et al. [49] CB Min. travel
distance √ √ √ √ √ √ √ √ Branch-and-price

Dou et al. [50] CB Max. profit √ √ √ √ √ √ √ √ Branch-and-price

Guo et al. [15] CB Min. total cost √ √ √ √ √ √ √ Tabu search-variable neighbourhood search
(TS-VNS)

Shen et al. [51] CB Min. total cost √ √ √ √ √ √ √ Column generation algorithm
*is study
(2021) CB Min. total cost √ √ √ √ √ √ √ √ √ √ HGA-ADAR

Note. R: route; S: schedule; V: vehicle assignment; F: fleet size; TW: time window; PP: pairing and precedence; MT: multi-terminal; MB: mixed bus fleet; VC:
vehicle capacity; ST: stochastic bus arrival time.
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PEjb � λ1 Qjb



 
ej

0
ej − Tjb f Tjb d Tjb . (4)

Similarly, the penalty for late arrival of a bus of type b at
stop j denoted as PLjb is formulated as

PLjb � λ2 Qjb



 
∞

lj

Tjb − lj f Tjb d Tjb , (5)

where λ2 is the unit penalty for late arrival.
Finally, ZP represents the total early and late arrival

penalties. *us,

ZP � 
j∈N−


b∈B

PEjb + 
j∈N−


b∈B

PLjb

� λ1 
j∈N−


b∈B

Qjb



 
ej

0
ej − Tjb f Tjb d Tjb 

+ λ2 
j∈N−


b∈B

Qjb



 
∞

lj

Tjb − lj f Tjb d Tjb .

(6)

To minimize ZT, several constraints (e.g., vehicle as-
signment, routing, scheduling, and bus capacity) are taken
into account. Vehicle assignment constraints are formulated
in equations (7)–(9). Equation (7) states that each stopmight
be served by at least one bus, while equations (8) and (9)
ensure that the dispatched bus of type bmust be linked to at
most one start (and end) terminal.


b∈B

yib ≥ 1, ∀i ∈ N
+ ∪N

−
, (7)


w∈W

Swb ≤ 1, ∀b ∈ B, (8)


w∈W

Ewb ≤ 1, ∀b ∈ B. (9)

Bus routing constraints are stated in equations (10)–(12).
Equations (10) and (11) make sure that each route begins
from and ends at a terminal. Equation (12) represents a route
continuity constraint.


j∈N

xwjb � Swb, ∀w ∈W, b ∈ B, (10)


j∈N

xjwb � Ewb, ∀w ∈W, b ∈ B, (11)


j∈N
j≠i

xijb � 
j∈N
j≠i

xjib � yib, ∀i ∈ N
+ ∪N

−
, b ∈ B.

(12)

Equation (13) is subtour elimination constraint. uib and
ujb are auxiliary variables, while n represents the number of
all stops. If stop j is an immediate downstream stop of stop i
served by a bus of type b, xijb is equal to 1, which implies that
ujb≥ uib+ 1> uib. A subtour (i, j, . . ., i) without a terminal
will be prevented by uib> · · · > ujb> uib.

uib − ujb + nxijb ≤ n − 1, ∀i, j ∈ N
+ ∪N

−
, i≠ j, b ∈ B.

(13)

Bus capacity constraints are defined in equations
(14)–(17). Equation (14) represents that number of in-ve-
hicle passengers is zero as the bus departs from a terminal.
Qjb in equation (15) is positive if stop j is a pick-up stop;
otherwise, negative if stop j is a drop-off stop. Equation (16)
tracks the number of in-vehicle passengers according to the
sequence of the visited stops and the number of passengers
boarding/alighting at each stop. Equation (17) makes sure
that the number of in-vehicle passengers shall not exceed bus
capacity.

Lwb � 0, ∀w ∈W, b ∈ B, (14)

Qjb �


i∈N−

qjiyibyjb, j ∈ N
+
, b ∈ B,

(−1) 
i∈N+

qijyibyjb, j ∈ N
−
, b ∈ B,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Ljb ≥ Lib + Qjb  − M 1 − xijb ,

∀i ∈ N, j ∈ N
+ ∪N

−
, b ∈ B,

(16)

0≤ Lib ≤Cbyib, ∀i ∈ N, b ∈ B. (17)

Equation (18) restricts that bus arrival time at node j
must greater than that at the previous node i, while equation
(19) ensures that each pick-up and drop-off stop pair is
served by the same bus and the pick-up stop is visited before
its drop-off stop.

Tjb ≥ Tib + tib + tij − M 1 − xijb , ∀i ∈ N, j ∈ N, b ∈ B,

(18)

Tjb − Tib qijyibyjb ≥ 0, ∀i ∈ N
+
, j ∈ N

−
, b ∈ B. (19)

Finally, decision variables on routing and scheduling are
defined in equations (20)–(22).

xijb ∈ 0, 1{ }, ∀i, j ∈ N, b ∈ B, (20)

yib ∈ 0, 1{ }, ∀i ∈ N, b ∈ B, (21)

Tib ≥ 0, ∀i ∈ N, b ∈ B. (22)

4. Solution Algorithm

*e studied CB problem is an extension of VRP. *us, it
belongs to the NP-hard problem which is difficult to solve by
exact algorithms, especially for large networks. An HGA-
ADAR algorithm is developed, which starts with an initial
solution generated by HGA followed by performing the
developed ADAR to effectively find the solution.

Genetic algorithm (GA) has been widely and successfully
applied to solve various vehicle routing and scheduling
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problems, which is an important stochastic global search
algorithm but suffers some issues with premature conver-
gence and local optimum. Simulated annealing (SA) is a
metaheuristic to approximate global optimization in a large
discrete space (e.g., VRP), which can be integrated with GA,
called HGA [5], to improve the performance for searching
the optimal solution. However, the computation time

consumed by the HGA significantly escalates in a trans-
portation network considering stochastic travel time. *e
adaptive destroy-and-repair (ADAR) method is a local
search-based method, employing destroy and repair oper-
ators that satisfy both diversify and intensify searching for
the optimal solution, which can find the optimal solution
very quickly. *e advantage of hybridizing global search in
form of HGA with local search in form of ADAR is the
improvement in the convergence speed to the optimal or
near-optimal solution [47].

4.1. Solution Evaluation. A fitness function F (S) is con-
sidered to evaluate a solution S, which is formulated as the
sum of the objective total cost as equation (1) and the penalty
of bus capacity violation, denoted as ZT (S) and PC (S),
respectively. *us,

F(S) � ZT(S) + PC(S). (23)

Note that if solution Smeets the bus capacity constraint,
PC (S) is equal to 0.

4.2. Chromosome Encoding. Chromosome is used to rep-
resent the solution, which is an integer string, consisting of a
set of substrings. Each substring is a sequence of nodes

Table 2: Notations.

Set Definition Unit
A Set of links —
B Set of bus types —
N+ Set of pick-up stops —
N− Set of drop-off stops —
N Set of all nodes —
W Set of terminals —

Parameter
Cb Capacity of a bus of type b seat/veh
ei Start of time window at drop-off stop i hh:mm
fb Fixed cost of a bus of type b per hour $/veh-hr
li End of time window at drop-off stop i hh:mm
M A large positive number —
n No. of all stops stops
o Service time horizon hr
qij Passenger demand from stop i to j Pass/day
tib Dwell time of a bus of type b at stop i hr
tij Travel time from stop i to j hr
Ti
′ Expected bus arrival time at stop i hh:mm

υb Average variable cost of a bus of type b per hour $/veh-hr
λ1 Unit penalty for early arrival $/pass-hr
λ2 Unit penalty for late arrival $/pass-hr
λ3 Value of passengers’ travel time $/pass-hr

Variable
Ewb Binary var. Ewb � 1, a bus of type b ends at terminal w; Ewb � 0, otherwise —
Lib No. of passengers in a bus of type b leaving from node i Pass
Qib No. of passengers boarding/alighting of a bus of type b at stop i Pass
Swb Binary var. Swb � 1, a bus of type b begins from terminal w; Swb � 0, otherwise —
uib Auxiliary variable —
xijb Binary var. xijb � 1, a bus of type b serves link (i, j); xijb � 0, otherwise —
yib Binary var. yib � 1, stop i is served by a bus of type b; yib � 0, otherwise —
Tib Arrival time of a bus of type b at node i hh:mm

Time

Pr
ob

ab
ili

ty

Start of time window ej

Area II : Late arrival
Area I : Early arrival

End of time window lj

I II

Expected bus arrival time Tj'

Figure 1: Probability distribution of arrival time for bus b at stop j.
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visited by a bus. For example, for a solution with 2 routes and
5 pick-up and drop-off stop pairs (PD pairs), the chro-
mosome coding is as follows: 0-2+-4+-2−-4−-0-1+-1−-3+-5+-
5−-3−-0, where 1+, 2+, 3+, 4+, and 5+ represent pick-up stops,
while 1−, 2−, 3−, 4−, and 5− represent drop-off stops. 0
represents a terminal, which divides the chromosome into
multiple routes.*e start and end terminals are, respectively,
contingent on the proximity of the nearest terminals to the
first stop and the last stop. Note that the chromosome is
randomly generated in this study.

4.3. Simulated Annealing (SA). SA is integrated to prevent
HGA-ADAR from getting trapped into a local optimum,
which conditionally accepts a slightly worse solution based
on a probability, denoted as P, estimated by

P �

1, F(S)≥F S″( ,

exp −
F S″(  − F(S)

cT
 , otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

where F (S) and F (S″) are the fitness values of current
solution S and new solution S″, respectively. Note that cT
represents the current temperature, the product of tem-
perature in the previous iteration (T) and temperature
change rate (c) (i.e., 0< c< 1). Note that the probability of
accepting a worse solution decreases as the temperature
decreases at a rate of c.

4.4. Destroy Operator. A set of three destroy operators,
denoted as D, are applied in ADAR. Destroy operator I
removes a number of requests (i.e., PD pairs) denoted as φ1,
which are randomly selected from the current solution S.
*e idea of randomly selecting requests helps to diversify the
search space. Destroy operator II randomly removes one
route, consisting of multi-PD pairs, from S.*is idea helps to
reduce the number of buses used to decrease the operator
cost. Destroy operator III removes φ2 requests resulting in
greatest early and late arrival penalties. *e idea is to prevent
great deviations between excepted bus arrival time and
actual arrival time. Note that the removed requests are
placed in a destroy list, denoted as L.

*e process of destroy operation is shown in Figure 2
using a simplified scenario. Two requests (i.e., the 2nd and
5th requests) are chosen and removed from the incumbent
solution S. *en, the two requests are stored in the destroy
list L and a temporary solution S′ is produced.

4.5. Repair Operator. In this study, a set of two repair op-
erators is employed by ADAR, which is denoted as R. Repair
operator I (as shown in Figure 3) sequentially removes the
requests one by one from the destroy list L (i.e., the first is the
2nd request and then the 5th request) and inserts them into
the best positions of the existing routes. *e best position is
the one that incurs the least increase of fitness value (i.e., the
positions marked in orange).

*e illustration of repair operator II is shown in Figure 4.
In each iteration, this operator repeatedly inserts every re-
quest in destroy list L (i.e., the 2nd and 5th requests) into the
best position (i.e., the position marked in orange) of the
existing routes. For each request, an increase in fitness value
(calculated by equation (23)) is obtained. *e request that
causes the least increase in fitness value is chosen (i.e., the
5th request) and inserted into the best position of the
existing routes.*is process continues until the destroy list L
is exhausted.

4.6. Operator Weight. Let ωd (d ∈D) and ωr (r ∈R) be
weights of destroy and repair operators d and r, respectively,
which are initially set equal to 1. In each iteration, operators
d and r are randomly chosen according to the associated
weights to produce new solution S″ based on current so-
lution S. Note that ωd and ωr are justified iteratively with
respect to reaction factor ρ ∈ [0, 1] and scores of the oper-
ators denoted as ψd and ψr.

ωd � ρωd +(1 − ρ)ψd,

ωr � ρωr +(1 − ρ)ψr.
(25)

ψd and ψr are determined by equations (26) and (27),
which increase by σµ. *us,

ψd � ψd + σμ, (26)

ψr � ψr + σμ. (27)

If F (S″) is the least fitness value found in previous it-
erations, μ� 1. If F (S″)< F (S), μ� 2. If F (S″)> F (S) but S″
is accepted by SA, μ� 3. Note that σμ varies within 0 and 1,
and σ1 + σ2 + σ3 �1.

4.7. HGA-ADAR. Based on an initial population with GA,
three operators (i.e., selection, crossover, and mutation) are
applied to reproduce new solutions iteratively. SA is inte-
grated with GA, called HGA, which permits conditionally
accepting a worse solution. *e HGA process terminates as
the maximum number of generations is yielded, and the
solution obtained is regarded as the initial solution of
ADAR. A detailed procedure about the proposed solution
algorithm HGA-ADAR is discussed and illustrated in
Figure 5.

5. Performance Analysis

*e effectiveness of HGA-ADAR is evaluated using different
numbers of PD pairs in a CB network. *e network scales
range from 4 to 48 PD pairs. *e minimized total cost
yielded by the optimized solution was found by LINGO
(Global Optimal Solver, version 18.0), HGA (MATLAB
R2018b), and HGA-ADAR (MATLAB R2018b) on a per-
sonal laptop (Intel Core i5, 8G, 3.0GHz).

5.1. Distribution of Bus Arrival Time. *e proposed model
and algorithm can virtually be applied to any distribution of
bus arrival time. In this analysis, bus arrival time at stop j
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Figure 2: Process of destroy operation.
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denoted as Tjb follows a gamma distribution with shape
parameter αjb and scale parameter θj [52–54]. *e proba-
bility density function denoted as f(Tjb) is given below:

f Tjb  �
Tjb 

αjb−1
e

− Tjb/θj( 

θj 
αjbΓ αjb 

, (28)

where Γ(αjb) � 
∞
0 e−rrαjb−1dr, (αjb > 0). Based on the the-

ory of gamma distribution, the mean and variance of Tjb

denoted as E(Tjb) and Var(Tjb) are formulated in equations
(29) and (30), respectively.

E Tjb  � αjbθj, (29)

Var Tjb  � αjbθ
2
j . (30)

As is well known, the sum of gamma-distributed vari-
ables that have the same scale parameter leads to a gamma-
distributed variable. To make the problem tractable, we
assume the same scale parameter (i.e., θj) for all stops. In
addition, E(Tjb) can be obtained from the mean of travel
times on links and dwell times at stops covered by the bus
until stop j. *us, αjb and Var(Tjb) can be determined by
equations (29) and (30). *en, αjb and θj are applied in
equation (28) to calculate f(Tjb).

5.2. Parameter Setting. As discussed earlier, φ1 and φ2
represent the number of requests to be destroyed, which are
between 1 and ζH, where ζ is the destroy rate and H is the
number of PD pairs. *e scale parameter θj is set as 1. *e
value of in-vehicle time is 6 $/pass-hr, while the unit penalty
of early arrival and late arrival is 9 and 90 $/pass-hr, re-
spectively. *e parameters of HGA and HGA-ADAR
summarized in Table 3 were tested, which yielded acceptable
solutions with the least computation time.

5.3. Solutions Obtained by LINGO and HGA-ADAR.
LINGO solver is a well-known commercial software pro-
gram, which is applied to optimize CB networks with de-
terministic bus arrival time (deterministic model). On the
other hand, the proposed HGA-ADAR algorithm is applied
to optimize the same CB networks considering both de-
terministic and stochastic bus arrival time (probabilistic
model).

Ten simulation runs per experiment are conducted, and
the results are listed in Table 4; the computation time is
shown in Figure 6. Note that the computation time for
LINGO is limited to 10,800 seconds. Considering deter-
ministic bus arrival time, the difference between the mini-
mized costs found by HGA-ADAR (e.g., F (SA)) and LINGO
(e.g., F (SL)) is denoted as “ε1,” which is calculated by

ε1 �
F SA(  − F SL( 

F SL( 
. (31)

*e results indicate that LINGO can be applied to op-
timize small-scale networks (i.e., 4 and 6 PD pairs) within a
given time limit. As the number of PD pairs increases, the

computation time exponentially escalates and LINGO fails
to find the solution. On the other hand, HGA-ADAR
performs well, which efficiently finds the solutions for dif-
ferent network scales considering deterministic and sto-
chastic bus arrival time. Note that the computation time
consumed by optimizing stochastic cases is significantly
longer.

5.4. SolutionsObtained byHGAandHGA-ADAR. To further
assess the efficiency of HGA-ADAR, HGA and HGA-ADAR
are both applied to optimize the network with stochastic bus
arrival time (probabilistic model). *e results are shown in
Table 5. *e difference between the minimized costs found
by HGA-ADAR (e.g., F (SA)) and HGA (e.g., F (SH)) is
denoted as “ε2,” which is calculated by equation (32). *e
improved computation time after applying ADAR is
recorded in the “CPU3” column, which is calculated by

ε2 �
F SA(  − F SH( 

F SH( 
, (32)

CPU3
� CPU1

− CPU2
, (33)

where CPU1 and CPU2 are computation times of using HGA
and HGA-ADAR, respectively. In addition, the total costs
found by HGA and HGA-ADAR over iterations for 24 PD
pairs are illustrated in Figure 7.

From Table 5, we can see that HGA-ADAR outperforms
HGA in terms of shorter computation time as well as less
minimized total cost. In addition, for the network with 24
PD pairs, the solution found by HGA shown in Figure 7
converges at the 620th generation. After applying the initial
solution produced by HGA at the 100th generation, the
solution found by HGA-ADAR converges at the 300th it-
eration. It indicates that HGA-ADAR increases convergence
speed greatly when compared to HGA.

5.5. Impact of Stochastic Bus Arrival Time. To demonstrate
the performance of the probabilistic model, routing and
scheduling for various sizes of networks with different PD
pairs are optimized considering deterministic (scenario I)
and stochastic (scenario II) bus arrival time. *e minimized
costs summarized in Table 6 are determined based on ten
simulation runs. *e results show that minimized total cost
reduced by 4.5–13.3% for networks with various PD pairs if
stochastic bus arrival time is considered, in which early and
late arrival penalties reduced by 21.5–63.7%, user cost de-
creased by 0–10.2%, and operator cost increased by 0–17%
because of increased fleet size.

6. Case Study

A real-world CB network in Xi’an, China, is employed as a
case study to evaluate the effectiveness and applicability of
the proposed model. *e study network includes 31 stops
and 7 terminals as illustrated in Figure 8. An instance with
275 passenger requests is presented, which is generated
based on the real-world passenger travel data in Xi’an. *e
service time horizon of CB service ranges between 6:00 am
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and 10:00 am. Based on the method described in the paper of
Sun et al. [5], the passengers are partitioned into 35 groups
which are shown in Table 7.

*e fixed and variable costs as well as capacities of
various bus types are shown in Table 8, which are provided

by the transit agency, Xi’an Public Transport Corporation.
Fixed cost per bus-hour fb is determined by the expense on
vehicle depreciation which is purchase cost divided by useful
life. Average variable cost per bus-hour υb is determined by
expenses on fuel/energy, labour, maintenance, management,
and social costs. *e parameters of HGA and HGA-ADAR
are summarized in Table 3.

6.1. Result Analysis. *e results discussed in this section
yield the minimum total costs in ten simulation runs. *e
optimized results under scenario I (deterministic bus arrival
time) and scenario II (stochastic bus arrival time) are
summarized in Table 9, while the associated CB routing and
scheduling under scenario II are listed in Table 10.

In Table 9, the minimized total cost in scenario I is
3,622.7 $, consisting of user cost of 1,090.2 $, operator cost of
1,881.2 $, and early and late arrival penalties of 651.3 $. *e
average passenger travel time is 39.6min, while the average
travel time per bus is 92.3min. 12 buses with different ca-
pacities are employed, in which the numbers of 10-, 15-, 20-,
and 25-seat buses are 1, 1, 4, and 6, respectively. Under
scenario II considering stochastic bus arrival time, the
minimized total cost can be reduced by 8.4% (from 3,622.7 $
to 3,317.4 $). *e user cost reduced by 10.8% (from 1,090.2 $
to 972.6 $), while early and late arrival penalties significantly
reduced by 43.7% (from 651.3 $ to 366.9 $). *e operator

Table 3: HGA and HGA-ADAR parameters.

Parameter HGA-ADAR HGA
Population size 100 100
Crossover probability 0.9 0.9
Mutation probability 0.1 0.1
Maximum HGA generations 50–200 300–1000
Maximum ADAR iterations 500–2000 —
Destroy rate ζ 0.15 —
σ1 0.7 —
σ2 0.2 —
σ3 0.1 —
Reaction factor ρ 0.2 —
Initial annealing temperature 1000 1000
Temperature change rate c 0.95 0.95

Table 4: LINGO and HGA-ADAR results (10 simulation runs).

No. of PD pairs

Deterministic model Probabilistic model

LINGO HGA-ADAR
ε1 (%)

HGA-ADAR
Minimized total

cost ($)
Minimized total

cost ($)
Average

total cost ($)
Standard

deviation ($)
Minimized total

cost ($)
Average

total cost ($)
Standard

deviation ($)
4 199.5 199.5 199.5 0 0 215.2 215.2 0
6 259.7 259.7 259.7 0 0 289.6 290.1 0.4
8 417.4 408.3 410.7 0.9 NA 445.8 448.7 1.8
10 NA 636.6 640 1.8 NA 680 684.1 2.5
16 NA 982.5 987.9 3.3 NA 1,030.5 1,036.3 3.7
24 NA 1,265.5 1,270.8 3.9 NA 1,356.5 1,363.2 4.4
32 NA 1,542.4 1,549.2 4.7 NA 1,639.6 1,647.8 5.6
40 NA 2,803.6 2,815.3 6.2 NA 3,002.3 3,016.5 7.8
48 NA 3,553.1 3,567.1 6.9 NA 3,813.5 3,829.8 8.1
Note. 417.4 $—a feasible solution found at 10,800 seconds; NA—no feasible solution.
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Figure 6: Computation time with LINGO and HGA-ADAR.
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Table 5: HGA and HGA-ADAR results (10 simulation runs; probabilistic model).

No. of
PD
pairs

HGA HGA-ADAR
ε2
(%)

CPU3

(s)Minimized
total cost ($)

Average
total cost ($)

Standard
deviation ($)

CPU1

(s)
Minimized
total cost ($)

Average
total cost ($)

Standard
deviation ($)

CPU2

(s)
4 215.2 215.2 0 617 215.2 215.2 0 331 0 286
6 289.6 291.2 0.7 925 289.6 290.1 0.4 523 0 402
8 446.3 450.2 2.9 1234 445.8 448.7 1.8 815 −0.1 419
10 696.1 700.4 3.3 2571 680 684.1 2.5 986 −2.3 1585
16 1,086.1 1,092.3 6.2 6582 1,030.5 1,036.3 3.7 1765 −5.1 4817
24 1,442.3 1,449.7 6.8 8963 1,356.5 1,363.2 4.4 2832 −5.9 6131
32 1,740.2 1,749.9 8.1 13985 1,639.6 1,647.8 5.6 4274 −5.7 9711
40 3,146.7 3,155.3 8.4 18172 3,002.3 3,016.5 7.8 6171 −4.6 12001
48 4,035.9 4,046.8 10.9 24745 3,813.5 3,829.8 8.1 8428 −5.5 16317
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Figure 7: Total cost yielded by HGA and HGA-ADAR (24 PD pairs).

Table 6: Optimal results under various scenarios and number of PD pairs (HGA-ADAR).

No. of PD pairs Scenario ZT ($) ZU ($) ZO ($) ZP ($) Fleet size (veh)

4 I 225.4 89.8 105.3 30.3 1
II 215.2 89.5 101.9 23.8 1

6 I 314.6 114.2 137.5 62.9 2
II 289.6 116.4 137.7 35.5 2

8 I 503.8 190.9 185.8 127.1 2
II 445.8 177.8 217.4 50.6 3

10 I 779.2 293.2 293.4 192.6 3
II 680 266.2 337.9 75.9 5

16 I 1,188.5 480.2 460.4 247.9 5
II 1,030.5 431.1 509.5 89.9 7

24 I 1,478.2 602.1 600.6 275.5 6
II 1,356.5 551 693.3 112.2 9

32 I 1,793.4 720.8 765.2 307.4 7
II 1,639.6 662.2 794.2 183.2 10

40 I 3,186.9 1,195.5 1,290.2 701.2 11
II 3,002.3 1,101.3 1,432.4 468.6 15

48 I 4,050 1,388.5 1,827.7 833.8 17
II 3,813.5 1,250 1,955.3 608.2 21

Note. ZT—total cost; ZU—user cost; ZO—operator cost; ZP—early and late arrival penalties.
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Figure 8: Stop and terminal locations of CB network in Xi’an.

Table 7: Spatiotemporal passenger PD demand.

No. PD pair Passengers (pass) Expected arrival time window
1 [1, 22] 9 [7:55, 8:05]
2 [2, 21] 9 [8:10, 8:20]
3 [3, 22] 7 [8:25, 8:35]
4 [4, 20] 6 [8:25, 8:35]
5 [5, 21] 9 [8:10, 8:20]
6 [5, 22] 7 [8:25, 8:35]
7 [5, 26] 7 [8:40, 8:50]
8 [6, 20] 13 [8:10, 8:20]
9 [6, 26] 6 [8:40, 8:50]
10 [7, 28] 6 [8:10, 8:20]
11 [7, 21] 8 [8:40, 8:50]
12 [7, 30] 8 [7:25, 7:35]
13 [7, 30] 8 [7:55, 8:05]
14 [8, 28] 6 [8:10, 8:20]
15 [8, 29] 6 [8:25, 8:35]
16 [9, 22] 8 [8:25, 8:35]
17 [9, 27] 8 [7:55, 8:05]
18 [9, 29] 7 [8:55, 9:05]
19 [10, 22] 9 [8:25, 8:35]
20 [10, 29] 14 [8:40, 8:50]
21 [11, 31] 13 [8:25, 8:35]
22 [12, 30] 5 [8:40, 8:50]
23 [13, 30] 6 [8:40, 8:50]
24 [14, 22] 9 [8:40, 8:50]
25 [14, 27] 9 [7:55, 8:05]
26 [14, 30] 8 [8:10, 8:20]
27 [15, 23] 7 [8:10, 8:20]
28 [15, 29] 6 [8:10, 8:20]
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Table 7: Continued.

No. PD pair Passengers (pass) Expected arrival time window
29 [16, 22] 5 [8:25, 8:35]
30 [16, 24] 9 [8:10, 8:20]
31 [16, 30] 9 [8:10, 8:20]
32 [17, 22] 7 [8:25, 8:35]
33 [17, 25] 7 [8:10, 8:20]
34 [18, 26] 8 [8:40, 8:50]
35 [19, 23] 6 [8:55, 9:05]
Note. Stops 1 through 19 represent pick-up stops. Stops 20 through 31 represent drop-off stops.

Table 8: Bus type and associated capacity and cost.

Bus type A B C D
Cb (seat/veh) 10 15 20 25
fb ($/veh-hr) Vehicle depreciation cost 5 6 7 8
υb ($/veh-hr) Fuel/energy/labour/maintenance/management/social cost 54 72 90 108
Note. Cb—bus capacity; fb—fixed cost; υb—variable cost.

Table 9: Optimized results.

Scenario I Scenario II
Minimized total cost ($) 3,622.7 3,317.4
User cost ($) 1,090.2 972.6
Operator cost ($) 1,881.2 1,977.9
Early and late arrival penalties ($) 651.3 366.9
Avg. passenger travel time (min/pass) 39.6 35.4
Avg. bus travel time (min/veh) 92.3 77.6
Fleet size (veh)
10-seat 1 2
15-seat 1 3
20-seat 4 4
25-seat 6 5
Total (fleet size) 12 14

Table 10: Optimal routing/scheduling, vehicle assignment, and early and late arrival penalties (scenario II).

Route
ID

Bus
capacity Bus route and schedule

Number of
passengers
(pass)

Avg.
passenger
travel time

(min)

Early
arrival

penalty ($)

Late
arrival

penalty ($)

1 10 36⟶ 5⟶ 21⟶ 34 9 23 2.97 1.717:41–7:47–8:10–8:16

2 10 32⟶14⟶ 27⟶14⟶ 22⟶ 34 18 28 20.1 9.977:15–7:23–7:44–8:05–8:40–8:46

3 15 32⟶ 7⟶ 30⟶17⟶16⟶ 22⟶ 34 20 46.7 26.13 13.586:21–6:32–7:16–7:32–7:43–8:25–8:31

4 15 36⟶ 5⟶ 3⟶ 22⟶ 34 14 26.5 4.99 3.627:48–7:55–8:02–8:25–8:32

5 15 32⟶ 7⟶ 30⟶ 28⟶ 37 14 53 11.88 6.416:54–7:05–7:49–8:10–8:21

6 20 34⟶ 2⟶1⟶ 21⟶ 22⟶ 7⟶ 21⟶ 34 26 19.5 33.61 9.347:25–7:35–7:42–7:52–7:59–8:15–8:40–8:46

7 20 35⟶ 9⟶10⟶ 22⟶ 34 17 36.7 8.5 5.987:36–7:44–7:52–8:25–8:33

8 20 36⟶ 6⟶ 4⟶ 20⟶ 33 19 34.3 19.05 6.247:20–7:30–7:48–8:10–8:17

9 20 35⟶ 9⟶ 8⟶ 27⟶ 28⟶ 29⟶ 38 20 40.3 14.89 8.037:07–7:15–7:32–7:52–8:04–8:25–8:32
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cost slightly increased mainly due to the increase of fleet size
(from 12 to 14 vehicles).*e results indicate that considering
stochastic bus arrival time shall yield a better solution.

Table 10 illustrates the optimal CB routing and sched-
uling, vehicle assignment, average passenger travel time, and

early and late arrival penalties. *e results suggest 14 routes,
in which route 1 is the shortest one consisting of 2 stops
(excluding terminals), route 14 is the longest one consisting
of 7 stops, and the average number of stops per route is 4.
*e suggested CB service begins at 6:20 am and ends at 9:10

Table 10: Continued.

Route
ID

Bus
capacity Bus route and schedule

Number of
passengers
(pass)

Avg.
passenger
travel time

(min)

Early
arrival

penalty ($)

Late
arrival

penalty ($)

10 25 35⟶ 9⟶10⟶ 29⟶ 38 21 37.3 19.75 9.017:50–7:59–8:06–8:41–8:48

11 25 36⟶ 5⟶ 6⟶18⟶ 26⟶ 37 21 38.8 13.31 8.397:36–7:45–7:55–8:20–8:40–8:54

12 25 35⟶13⟶12⟶11⟶ 31⟶ 30⟶ 38 24 38 23.19 9.087:25–7:38–7:48–7:55–8:25–8:30–8:39

13 25 32⟶15⟶16⟶17⟶ 25⟶ 24⟶ 23⟶ 35 23 31.5 22.69 11.577:07–7:17–7:32–7:53–7:59–8:05–8:12–8:27

14 25 32⟶14⟶15⟶16⟶ 30⟶ 29⟶19⟶ 23⟶ 35 29 37.1 27.98 14.937:00–7:09–7:27–7:40–8:03–8:10–8:25–8:55–9:09
Note. Stops 1 through 19 are pick-up stops. Stops 20 through 31 are drop-off stops. Stops 32 through 38 are terminals.
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Figure 9: Probability distributions of bus arrival time (route 2; time window� 10min; θj � 1).

Table 11: Optimal results under different distributions of bus arrival time.

Gamma Normal Log-normal
Minimized total cost ($) 3,317.4 3,282.7 3,320.6
User cost ($) 972.6 948.3 927.8
Operator cost ($) 1,977.9 1,946.7 1,940.2
Early and late arrival penalties ($) 366.9 387.7 452.6
Fleet size (veh)
10-seat 2 3 3
15-seat 3 3 4
20-seat 4 4 3
25-seat 5 4 4
Total (fleet size) 14 14 14
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am. It is found that the early arrival penalty is always greater
than the late arrival penalty for all bus routes, indicating that
the probability of passengers arrive destinations early is
much greater than late arrivals because of the huge late
arrival penalty. *e probability distributions of bus arrival
time at drop-off stops for route 2 are illustrated in Figure 9.
Route 2 is 32-14-27-14-22-34. *e bus starts from terminal
32, which takes 9 passengers at stop 14, drops them off at

stop 27, then returns back to stop 14, takes 9 passengers,
drops them off at stop 22, and then parks at terminal 34.

Two curves in Figure 9 represent the probability dis-
tributions of bus arrival time at stops 27 and 22. *e
scheduled bus arrival times are 7:44 am and 8:40 am with
variance of 5.5min and 9.2min, respectively. Note that the
shaded areas represent the probability of passengers will
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Figure 11: Early and late arrival penalties vs. time window (θj � 1).
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arrive at the stops within the desired time windows. *e left
and right parts of the shaded area represent the probabilities
of early and late bus arrivals, respectively. *e probabilities
of late arrivals are 0.0005 for stop 27 and 0.1408 for stop 22,
and those for early arrivals are 0.9706 and 0.5144, respec-
tively. *e early (and late) penalty is the product of early
(and late) arrival probability and the number of passengers
alighting from the drop-off stop multiplied by the unit

penalty, which is 15.09 $ (and 0.01 $) at stop 27 and 4.98 $
(and 9.96 $) at stop 22.

6.2. Impact of Distribution of Bus Arrival Time. As discussed
above, the most commonly used distributions of bus arrival
time are normal, log-normal, and gamma distributions. To
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verify the application and rationality of the proposed model
and algorithm, the three distributions of bus arrival time are
applied in the case study. Ten simulation runs per experi-
ment are conducted, and the optimal results under the
different distributions are shown in Table 11. To make the
problem comparable and tractable, we assume that the mean
and variance of bus arrival time with different distributions
are all generated by the same standard. *us, the parameters
(δ and ξ) of the log-normal distribution are calculated as

e
δ+ ξ2/2( ) � E Tjb ,

e
ξ2

− 1 e
2δ+ξ2

� Var Tjb .
(34)

*e probability density function denoted as flogn(Tjb) is
given below:

flogn
Tjb  �

1
���
2π

√
Tjbξ

e
− lnTjb− δ( 

2
/2ξ2 

. (35)

*e parameters (ϕ and κ) of the normal distribution are
calculated as

ϕ � E Tjb ,

κ2 � Var Tjb .
(36)

*e probability density function denoted as fnorm(Tjb)

is given below:

fnorm
Tjb  �

1
���
2π

√
κ
e

− Tjb−ϕ( 
2
/2κ2 

. (37)

From Table 11, we can see that the proposed model and
algorithm can be applied to the three distributions of bus
arrival time, and the difference under different distributions
only lies in the optimal results. It is worth noting that the
optimal results under the three distributions of bus arrival
time are close, indicating that it is reasonable to use gamma
distribution in this paper.

6.3. Sensitivity Analysis. A sensitivity analysis is performed
to explore the relationship between model parameters (i.e.,
time window tw and scale parameter θj) and optimal results
(i.e., fleet size, travel time, and minimized cost).

Figure 10 suggests that as the time window increases
from 5 to 20 minutes, smaller buses (10- and 15-seat) de-
crease from 12 to 5, while larger buses (20- and 25-seat)
increase from 3 to 8. It indicates that a loose time window
could make it more flexible for the operator to arrange the
CB service, and larger buses are preferred to reduce operator
cost. However, the decreased fleet size would increase the
number of stops per route as well as passenger travel time.

Figure 11 suggests that an increased time window may
reduce early and late arrival penalties and increase the prob-
ability of on-time passenger arrival. It is worth noting that the
early arrival penalty is always greater than the late arrival
penalty, indicating that there are more passengers who arrive
earlier than those who arrive later from the desired arrival time,
due to a greater unit penalty for late arrival.

Figure 12 shows that as the time window increases,
minimized total cost consisting of user cost, operator cost,
and early and late arrival penalties decreases. A decrease in
operator cost due to the decreased fleet size would increase
average passenger in-vehicle time and user cost.

Figure 13 indicates that as θj increases (i.e., a greater
variance of bus arrival time), fleet size increases, and
smaller buses are preferable. It is worth noting that the
number of buses is equal to the number of routes.
*erefore, the increased fleet size would increase the
number of routes and decrease the number of stops per
route. *is would result in fewer passengers per route with
less travel time, and smaller buses with lower operation
cost are preferable.

As θj increases as shown in Figure 14, the early and late
arrival penalties increase because of the increasing variance
of bus arrivals at stops and the increasing probability of early
and late arrival.

Figure 15 suggests that as θj increases, minimized total
cost increases. Operator cost is expected to increase because
of increased fleet size. A minor decrease in user cost results
from reduced passenger travel time. *e increased proba-
bility of early and late bus arrivals could increase the early
and late arrival penalties.

7. Conclusions

In this paper, we propose a probabilistic model for opti-
mizing CB service considering stochastic bus arrival time
and some practical conditions, including time window and
capacity in mixed bus fleet. An HGA-ADAR algorithm is
applied to efficiently search for the solution. *e developed
model and algorithm can deal with the impact of proba-
bilistic bus arrival time on the optimization of CB service
planning. *e objective total cost, consisting of user cost,
operator cost, and early and late arrival penalties, is mini-
mized subject to several practical constraints. *e decision
variables include vehicle assignment, bus routing, time-
tabling, and fleet size.

According to the performance analysis, the developed
model and HGA-ADAR have demonstrated themselves
effective in minimizing the total cost with the least com-
putation time. *e reduced total cost is mainly from saving
early and late penalties by elevating on-time passenger ar-
rivals by routing and scheduling a mixed bus fleet. *e
solution suggested by the proposed model with stochastic
bus arrival time is superior to that of the deterministic
model. *e minimized total cost can be reduced by 13.3%,
and early and late penalties can be reduced by 63.7% in
networks with various PD pairs.

*e proposed model is applied to optimize the service for a
CB network in Xi’an, China. *ree distributions of bus arrival
time (i.e., gamma, normal, and log-normal distributions) are
used to verify the application and rationality of the proposed
model and algorithm.*e results of sensitivity analysis suggest
that as the time window increases, minimized total cost de-
creases because of reduced fleet size and operator cost. At this
moment, larger buses shall be employed to meet the demand,
albeit user cost slightly increases due to the increase in
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passenger travel time. Results also suggest that as scale
parameter θj increases, minimized total cost increases because
of increased fleet size. Smaller buses are advisable for operator.
In addition, early and late arrival penalties tend to increase as
the variance of bus arrival time increases, and they decrease as
time window increases.

*e immediate extension of this study will focus on
enhancing the model to deal with time-dependent traffic
conditions which would permit the probabilistic model to be
applied for cost-effective CB operation (e.g., dynamic bus
dispatching and holding control). In the future, it is desirable
to model the problem as a multi-objective optimization one
and compute the Pareto front. *e behaviour of HGA-
ADAR shall be further explored, especially on the sensitivity
of the initial solution and parameters (i.e., numbers and
weights of destroy and repair operators, destroy rate, etc.), to
expedite the converging speed and ensure the quality of the
solution. In addition, the computation for solving the sto-
chastic problem is time consuming, and HGA-ADAR still
has much room for improvement in the computing speed of
solving such stochastic problems.
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routing,” European Journal of Operational Research, vol. 88,
no. 1, pp. 3–12, 1996.

[21] M. Gendreau, O. Jabali, andW. Rei, “50th anniversary invited
article-future research directions in stochastic vehicle rout-
ing,” Transportation Science, vol. 50, no. 4, pp. 1163–1173,
2016.

18 Journal of Advanced Transportation



[22] Y. Adulyasak and P. Jaillet, “Models and algorithms for
stochastic and robust vehicle routing with deadlines,”
Transportation Science, vol. 50, no. 2, pp. 608–626, 2016.

[23] F. Errico, G. Desaulniers, M. Gendreau, W. Rei, and
L. Rousseau, “A priori optimization with recourse for the
vehicle routing problem with hard time windows and sto-
chastic service times,” European Journal of Operational Re-
search, vol. 249, no. 1, pp. 55–66, 2016.

[24] J. F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride
problem,” Operations Research, vol. 54, no. 3, pp. 573–586,
2006.

[25] L. Zhao and S. I. Chien, “Investigating the impact of stochastic
vehicle arrivals to optimal stop spacing and headway for a
feeder bus route,” Journal of Advanced Transportation, vol. 49,
no. 3, pp. 341–357, 2015.

[26] L. Zhao, S. I. Chien, L. N. Spasovic, and X. Liu, “Modeling and
optimizing urban bus transit considering headway variation
for cost and service reliability analysis,” Transportation
Planning and Technology, vol. 41, no. 7, pp. 706–723, 2018.

[27] B. Y. Chen, Y. Wang, D. Wang, and W. H. K. Lam, “Un-
derstanding travel time uncertainty impacts on the equity of
individual accessibility,” Transportation Research Part D:
Transport and Environment, vol. 75, pp. 156–169, 2019.

[28] L. Fu, “Scheduling dial-a-ride paratransit under time-varying,
stochastic congestion,” Transportation Research Part B:
Methodological, vol. 36, no. 6, pp. 485–506, 2002.

[29] T. S. Chang, Y. W. Wan, and W. T. Ooi, “A stochastic dy-
namic traveling salesman problem with hard time windows,”
European Journal of Operational Research, vol. 198, no. 3,
pp. 748–759, 2009.

[30] Y. Shi, T. Boudouh, O. Grunder, and D.Wang, “Modeling and
solving simultaneous delivery and pick-up problem with
stochastic travel and service times in home health care,”
Expert Systems with Applications, vol. 102, pp. 218–233, 2018.

[31] S. Chien, S. K. Daripally, and K. Kim, “Development of a
probabilistic model to optimize disseminated real-time bus
arrival information for pre-trip passengers,” Journal of Ad-
vanced Transportation, vol. 41, pp. 195–215, 2010.

[32] A. Prakash, “Algorithms for most reliable routes on stochastic
and time-dependent networks,” Transportation Research Part
B: Methodological, vol. 138, pp. 202–220, 2020.

[33] K. Chen, L. Yu, and J. Guo, “Characteristics analysis of road
network reliability in beijing based on the data logs from
Taxis,” in Proceedings of the Transportation Research Board
Meeting, Washington DC, USA, January 2007.
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