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Path planning is one of the hotspots in the research of automotive engineering. Aiming at the issue of robot path planning with the
goal of finding a collision-free optimal motion path in an environment with barriers, this study proposes an adaptive parallel
arithmetic optimization algorithm (APAOA) with a novel parallel communication strategy. Comparisons with other popular
algorithms on 18 benchmark functions are committed. Experimental results show that the proposed algorithm performs better in
terms of solution accuracy and convergence speed, and the proposed strategy can prevent the algorithm from falling into a local
optimal solution. Finally, we apply APAOA to solve the problem of robot path planning.

1. Introduction

In recent years, automotive engineering has been an
emerging area. Among it, the automotive robots have been
widely employed in industry and social life and played an
important role, especially during the pandemic of COVID-
19. .e existing literatures have explored issues on robot
path planning. For example, Sarabu et al. [1] proposed the
method of using dual robotic arms to collaboratively pick
apples in an unstructured orchard environment. Sehestedt
et al. [2] utilized a path planning algorithm based on
probabilistic routes to sample Hidden Markov models
through robots learning humanmotion patterns. Tiseni et al.
[3]conducted an evaluation about measuring the energy
dose delivered by a robot-basedmoving source of Ultraviolet
type-C irradiation (UV-C) radiation at different locations in
an indoor environment with genetic algorithm (GA).

In summary, robot path planning has become one of the
key problems in the domain of robot automatic control. At
present, there are three kinds of popular algorithms
employed in path planning:

(1) Based on searching: Dijkstra algorithm [4] and A∗
algorithm [5]

(2) Based on probability: rapidly exploring Random
Trees (RRT) [6] and rapidly exploring Random
Trees∗ (RRT∗) [7]

(3) Based on metaheuristic algorithm: particle swarm
optimization (PSO) [8]

In this study, a metaheuristic algorithm is employed to
optimize the robot path planning. Compared with other
algorithms, a metaheuristic algorithm can achieve a stable
convergence and avoid trapping into a local optimal solu-
tion, especially when facing a complex environment.

In the past few decades, metaheuristic algorithms have
been regarded as an effective way to address optimization
issues in various fields and have been widely used to improve
the performance of real-world problems. Some popular
metaheuristic algorithms are ant colony optimization al-
gorithm (ACO) [9], ant lion optimizer (ALO) [10], moth-
flame optimization algorithm (MFO) [11], multiverse op-
timizer (MVO) [12], sine cosine algorithm (SCA) [13], whale
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optimization algorithm (WOA) [14], dragonfly algorithm
(DA) [15], cat swarm optimization (CSO) [16], and so on.
.ese algorithms have been successfully applied to different
fields of medical industry [17], image processing [18],
transportation [19], and the like. However, according to the
No Free Lunch .eorem (NFL) [20], there is no meta-
heuristic algorithm suitable for handling all types of opti-
mization problems. .erefore, researchers have
continuously proposed new metaheuristic algorithms in
recent years and have continuously improved them to deal
with increasing complexities in the real world.

Currently, there are existing researches using metaheuristic
algorithm for path planning. Zhang et al. [21] proposed a new
improved artificial fish swarm algorithm (IAFSA) to process
themobile robot path planning problem in a real environment.
Qin et al. [22] proposed an improved PSO with mutation
operator to get the optimal path. Li et al. [23] proposed an
improved GA, which integrated a fuzzy logic control algorithm
to self-adaptively adjust the probabilities of crossover and
mutation in GA. Wang et al. [24] presented a new weighted
adjacency matrix to determine the walking direction, and the
best ant and the worst ant are introduced for the adjustment of
pheromone to facilitate the searching process. .e proposed
algorithm guarantees that robots are able to find an optimal
path. Zhang et al. [25] proposed hybrid method with simulated
annealing algorithm and ant colony algorithm to apply to robot
path planning. Huang and Tsai [26] combined GAwith PSO in
evolving new solutions by applying crossover and mutation
operators on solutions constructed by particles, which avoids
the premature convergence and time complexity. Aiming at the
problems of slow response speed, long planning path, unsafe
factors, and a large number of turns in the traditional path
planning algorithm, Dao et al. [27] proposed a novel multi-
objectivemethod for optimalmobile robot path planning based
on WOA.

Usually, the original algorithm is improved and then
applied to path planning. .e types of algorithm im-
provement are roughly divided into three categories: im-
provements on parameters, hybrid algorithm, and
multiobjective algorithms.

.e arithmetic optimization algorithm (AOA) [28] is
proposed in 2021, with the characteristics of simplicity,
fewer control parameters, and stronger output performance.
It has been proved that AOA performs well on welded beam
design problem, tension/compression spring design prob-
lem, pressure vessel design problem, and the like. However,
there is still seldom research on the improvement of AOA
and its application on robot path planning. .e algorithm is
relatively new; therefore, there are relatively few improve-
ments on it [29, 30], which deserves further improvement in
certain areas. Parallel strategy is an effective algorithm
optimization method, which can communicate and ex-
change information among groups. Some parallel algo-
rithms are parallel SCA [31], parallel GA [32], parallel MVO
[18], parallel WOA [33], parallel SCO [34], and parallel
GWO [35]. However, there is still a lack of improvements on
parallel strategies for AOA. Although AOA has superiority
in some aspects over some other algorithms, there are still
defects of converging slowly in complex environments or

high-dimensional problems and is prone to fall into local
optimal. Aiming at the algorithm defects, we propose an
adaptive parallel AOA. Adaptive parameters can balance the
capabilities of exploration and exploitation. Parallel strategy
refers to strengthening the communication among groups
and reducing the defects of the original AOA, such as
premature convergence, search stagnation, and easy to fall
into the local optimal search space. .e main contributions
of this article are summarized as follows:

(1) We propose a novel parameter adaptive equation to
control the AOA sensitive parameter α, which can
balance the capabilities of exploration and
exploitation

(2) We propose a novel parallel communication strategy
and apply it to AOA, which can strengthen the
communication and information exchange among
groups and avoid falling into the local optimal
solution

(3) .e improved AOA is applied to an optimization
problem of 2D robot path planning

.e rest of the article is organized as follows. Section 2
describes the principle of the original AOA and robot path
planning. Section 3 introduces the improved AOA about
self-adaption and parallel strategy. .e performance of the
proposed algorithm is tested, and the results of different
algorithms are shown and analysed in Section 4. Section 5
introduces the application of the proposed algorithm in
robot path planning. Finally, conclusions are delivered in
Section 6.

2. Related Works

2.1.OriginalAOA. .eAOA is inspired by the application of
arithmetic operators in solving arithmetic problems [28],
using simple arithmetic operators, such as addition, sub-
traction, multiplication, and division as mathematical op-
timization, to search for the optimal solution that meets the
standards from a set of candidate solutions. Like MVO [12],
AOA is also divided into the phrases of exploration and
exploitation. Exploration refers to finding a range of
promising optimal solutions in a broad search space, and
exploitation refers to quickly finding the optimal solution
within the range of promising solutions and converging.

Before running, the search phase of AOA should be
confirmed..erefore, a coefficient calculated by equation (1)
is employed for choosing the phrase of exploration or ex-
ploitation, which is Math Optimizer Accelerated (MOA)
function. Another coefficient defined by equation (2) isMath
Optimizer Probability (MOP), which is employed for con-
trolling the range of candidate solutions in the phase of
exploring or exploiting.

MOA(t) � Min + t ×
Max − Min

T
􏼒 􏼓 , (1)

MOP(t) � 1 −
t

T
􏼒 􏼓

1/α
, (2)
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where MOP(t) andMOA(t) are values at tth iteration, and t

and T represent the current iteration and the maximum
iteration, respectively. Max and Min represent, respectively,
the maximum and minimum values of the accelerated
function, and α is a sensitive parameter and represents the
accuracy of exploitation in the whole iterative process.

In the stage of exploration, the division (D) and the
multiplication (M) have high dispersion that probably leads
to divergence. However, the communication between op-
erators is increased to support the search in the exploration
phase after several iterations. .e position updates in the
exploring phase are defined as

xi,j(t + 1) �
best xj􏼐 􏼑÷(MOP + ε) × UBj − LBj􏼐 􏼑 × μ + LBj􏽨 􏽩, r2 < 0.5,

best xj􏼐 􏼑 × MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏽨 􏽩, otherwise,

⎧⎪⎨

⎪⎩
(3)

where xi,j(t) represents the jth position of the ith solution at
current iteration, best(xj) is the best-obtained solution in
the jth position so far, ε is a small integer number, UBj and
LBj represent the upper value and lower bound value, re-
spectively, in the jth position, μ is a control parameter to

adjust search process and is set equal to 0.499, and r2 is a
random number between 0 and 1.

In the stage of exploiting, the subtraction (S) or addition
(A) has low dispersion, which helps them approach the
optimal solution. .e position updating equations are
proposed for the exploitation parts as

xi,j(t + 1) �
best xj􏼐 􏼑 − MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏽨 􏽩, r3 < 0.5

best xj􏼐 􏼑 + MOP × UBj − LBj􏼐 􏼑 × μ + LBj􏽨 􏽩, otherwise,

⎧⎪⎨

⎪⎩
(4)

where r3 is a random number between 0 and 1 and other
parameters are set as in equation (3).

2.2. Robot Path Planning. Autonomous navigation is one of
the most important issues of intelligence. Robot path
planning is designed for the target of avoiding barriers in the
procedure of navigation. .e navigation consists of four
essential requirements known as perception, localization,
cognition, and planning. Motion control in path planning is
the most important part [36]. Normally, there are many
feasible paths for a robot to reach the target from the starting
position. However, in actual situations, the best feasible path
is selected based on the shortest distance, path smoothness,
minimum energy consumption, and the like [37] .e path
planning strategy of mobile robots can be categorised as
classical methods and heuristic methods. However, classical
methods do not always find the optimal path and are often
locked in some local optimum. In addition, in the presence
of multiple barriers or dynamic environments, some of them
may not provide suitable solutions. To avoid the limitations
of classical methods, heuristic methods is employed [38].

In this article, the improved AOA is applied to the robot
path planning based on the position of static barriers. .e
mathematical model of robot path planning will be intro-
duced in Section 5.1.

3. Improved AOA

3.1. AdaptiveAOA. .ere are two hyperparameters in AOA:
α and μ, where μ controls the absolute step size of the al-
gorithm position update. Under a given objective function, it
is a fixed value and will not change with the number of

iterations. However, α is used to calculate MOP, andMOP is
used to control the magnitude of the change of AOA in the
iterative process. Experiments have shown that different α
values will affect MOP and thus the performance of the
algorithm [28]. .rough experimental comparison, the re-
sults show that when α< 1, MOP is a convex function, which
is conducive to the full exploration of the algorithm in the
early stage, rather than quickly converging to a local area.
Based on these findings, we propose an adaptive change of α.
A small value of αmay cause the algorithm falling into a local
optimum, and a large value of α may lead to insufficient
search and even cannot find the optimal solution, which will
affect the algorithm’s efficiency. .erefore, it is useful to
introduce an adaptively changed α to improve the balance
between the exploration phase and exploitation phase’s
search capabilities of the algorithm. In this article, we change
the size of α according to the fitness value and proposes a
formula such as equations (5) and (6).

α′(t) �

αmin + αmax − αmin( 􏼁 ×
f − fmin

favg − fmin
, f≤favg,

αmin + αmax − αmin( 􏼁 ×
fmax − f

fmax − favg
, f>favg,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

α(t) � 1 − α′(t) + ε, (6)

where α(t) is the value of α at the tth iteration, αmin and αmax
are the minimum value and the maximum value of α
according to the experience value, respectively; f, fmin,

fmax, favg are the fitness value, the minimum fitness value,
the maximum fitness value, and the average fitness value, at
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the current iteration, respectively; and ε is a very small
positive integer. .e value of α′ is related to the value of α,
which is inversely proportional, and the values of
f − fmin/favg − fmin and fmax − f/fmax − favg are pro-
portional to α′. It is better for the values of f − fmin/favg −

fmin and fmax − f/fmax − favg be closer to 1. .erefore, we
replace fmax − fmin with favg − fmin and fmax − favg in
equations (5) and (6).

3.2. Parallel Strategy. In order to improve computing speed
and solve large and complex problems, parallel strategy is
widely used, such as Data Mining [39] and Deep Learning
[40]. In the field of intelligent algorithms, GA is one of the
earliest algorithms employed parallel strategy [32]. Experi-
ments have proved that adding a parallel strategy can im-
plement multipoint parallel search in space, which increases
the communication between populations. Due to the use of
multiple CPUs, the search speed is accelerated. .erefore,
the algorithm with the parallel strategy performs better than
the original algorithm [31–35]. With the increment of data, a
single communication strategy is usually not adequate.
.erefore, Roddick [41] expanded the single communication
strategy into three communication strategies and applied
them to PSO. Experiments proved that the three commu-
nication strategies successfully increased the efficiency of
PSO. .en, many researchers improve the parallel method
based on Chang’s theory. For example, Yang et al. [31] and
Zhu et al. [19] proposed a parallel strategy of multiple groups
and multiple strategies. Each population will update
according to its own communication strategy. When a
certain number of iterations are reached, the populations
communicate with each other and exchange information.
.eir final update methods are the same, which use the
optimal value of one group instead of the worst value of
another group. Nasrabadi et al. [35] adopted the parallel
strategy of multiple groups of the same strategy. At the
beginning, each group used the same strategy to evolve
independently. .e populations reach a certain number of
iterations and began to exchange information.

In this article, we add randomness to the communication
strategy and use different strategies in local search and global
search, which can help groups fully communicate, as shown
in Figure 1. Specifically, for the local: two groups are ar-
bitrarily selected, and one group of particles with the best
fitness is substituted for the other group of particles with the
worst fitness every T iteration. For the global, the global best
particle replaces the worst particle in the group every 2T
iterations. .e purpose of using these two strategies is to
enhance the randomness of the algorithm, strengthen the
communication between populations, and avoid premature
convergence of the algorithm, thereby improving the ro-
bustness of the algorithm.

Following to the above introduction, Figure 2 shows the
model of adaptive parallel AOA (APAOA) search process. It
can be seen that the optimal solution of the algorithm is first
updated by the multiplication and division operator in the
exploration stage, then updated by the addition and sub-
traction operator in the exploitation stage and finally find the

global optimal solution. .e pseudocode of the APAOA
algorithm is shown in Algorithm 1.

4. Experimental Analysis of the Algorithm

In this section, the experimental research will be committed.
Section 4.1 introduces 18 benchmark functions provided by
[42], including unimodal functions, multimodal function,
and fixed-dimensional multimodal functions. Section 4.2
tests APAOA and original AOA in 30 dimensions (30D).
Section 4.3 compares APAOA with other popular intelligent
algorithms on 100 dimensions (100D).

.e algorithms are compared using mean, standard
deviation, and Friedman ranking (Rank) test. .ese are
popular evaluation indexes in algorithm comparisons.

4.1. Benchmark Functions. In this article, 18 benchmark
functions are employed as one of the main methods to test
the performance of intelligent algorithms. Benchmark
functions are shown in Tables 1–3.

4.2. Comparison with the Original AOA and APAOA with
30D. To verify the performance of the APAOA algorithm, it
is compared with the original AOA on unimodal functions,
multimodal functions, and fixed-dimensional multimodal
function. AOA is proved to perform the best on 30D in the
study by Abualigah et al. [28]. .e dimensions in this ex-
periment are set to 30, the number of populations is set to 40,
the maximum number of iterations is 500, and populations
in APAOA with parallel strategy are divided into four
groups, and each algorithm is run independently for 30
times. In Tables 4–6, the Ave represents the mean value, the
Std indicates the standard deviation, and the Best represents
the optimal value..e bold part of the tables indicate victory.

According to the results in Table 4, compared with AOA,
APAOA has advantages in 5 of the 7 unimodal functions.
Among them, APAOA is not as good as AOA in terms of
mean value or optimal value in test functions F5 and F6, but
the gap between the two algorithms is close, and APAOA is
better than AOA in standard deviation in test function F5.
.is shows that the dispersion degree of solution accuracy of
APAOA on F5 tends to be stable.

Figure 3 shows the convergence speed and accuracy of
the two algorithms on the test function F1–F7. APAOA is
better than AOA on the whole, except for the poor opti-
mization ability of F5 and F6. In the unimodal test function
of AOA, only F4 and F7 can converge. However, APAOA
can converge quickly and find better values than AOA on the
other six test functions except test function F5.

On the six multimodal test functions, APAOA is better
than AOA on F8, F9, F10, and F12, and the solution accuracy
is 10 times higher than the original, such as F9 and F10.
APAOA is only worse than AOA on F11. On the test function
F13, the two algorithms are almost the same in mean,
standard deviation, and optimal value; the value of AOA is
more stable than that of APAOA, and APAOA can find a
better solution than AOA. .e test results are shown in
Table 5.
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According to Figure 4 and Table 5, on F13, neither al-
gorithm can converge. On the other five test functions,
APAOA can converge quickly and find the better solution.
However, APAOA is not as good as AOA in all aspects on
F11. .is shows that APAOA still has the problem of in-
sufficient accuracy of solution.

.e benchmark functions F14–F18 are fixed-dimen-
sional multimodal functions and low dimensional. It can be
found that the performance of the two algorithms is close
according to the results in Table 6. APAOA has superior
performance on F14 and F18, whereas the performance on
F15 and F17 is not as good as AOA. On F16, the performance
of the two algorithms is almost the same. From Figure 5,
both algorithms can converge, but the convergence speed of
APAOA is still faster than that of AOA on the whole, except
for F15.

To sum up, the APAOA we proposed, which adaptively
changes the parameter α, can make algorithm jump out of
the local optimal solution such as F5 and F13, and the

advantage of parallel strategy is that the algorithm can
quickly converge and find the better solution in the face of
complex and high-dimensional environment, such as F1–F4.
However, it also performs not good in some functions such
as F11 and F15.

4.3. Comparisons with Popular Algorithm. In Section 4.2,
APAOA has been compared with AOA in unimodal
function, multimodal function, and fixed-dimensional
multimodal function. Because the dimension of test
function F14–F18 is fixed, the dimension of F1–F13 can be
expanded. In this section, in order to further evaluate the
ability of APAOA to solve high-dimensional problems,
the APAOA was compared with popular optimization
algorithms on F1–F13. Table 7 shows popular algorithms
and their parameter settings. To achieve a fair compari-
son, all algorithms are tested on 100D, and the common
parameters settings are the same as those in section 4.2.
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.e experimental results in Table 8 show that the
APAOA has achieved good results on the test functions
F1–F13, in which the dimension is set to 100, and it is in the
first place in the Friedman ranking test. On F1–F13, APAOA
achieved the best performance except that F6 and F11 did
not perform as expected. .e performance of APAOA on F6
is second only to SSA, but there is a large gap between them.
APAOA only performed not good in F11. In the whole,
APAOA outperforms other popular algorithm on most
functions.

Next, the convergence and search ability of different
algorithms are evaluated, and the results are shown in
Figure 6. According to Table 8, it is found that there is a big
gap between the search ability of other popular algorithms
and APAOA. If all convergence curves are drawn on one
graph, the convergence curve of APAOA will be seen like a
straight line. .erefore, the convergence curve of APAOA

is drawn separately (right of Figure 6) in this article.
Among the 13 test functions, APAOA has poor conver-
gence ability only on F8, F11 and F13, but its ability to
search the optimal solution is stronger than other algo-
rithms. On F2 and F4, APAOA converges extremely well
and can find better solutions than other algorithms. On F2,
the search capabilities of all algorithms differ greatly,
causing the algorithm’s convergence curve to become a
straight line.

5. Application in Robot Path Planning

5.1. Robot Path Planning Mathematical Model. .e robot
path planning problem generally include three aspects:
environment modelling, path searching, and path
smoothing.

Initialize the AOA parameters μ, groups;
Initialize the candidate solutions randomly (candidate solutions: i� 1, . . ., N);
while (t<T)
Calculate the fitness function for the given solutions;
Find the best solution so far;
for g � 1: groups
if rand <0.5
Perform parallel communication strategy 1 every T iteration;

else
Perform parallel communication strategy 2 every 2T iteration;

end if
Update the α value using equations (5) and (6);
Update the MOA value using equation (1);
Update the MOP value using equation (2);
for i� 1: N
for j� 1: dimensions

Generate random values between [0, 1];
if r1<MOA//enter in exploration phase

Update the solutions by equation (3);
else//enter in exploiting phase
Update the solutions by equation (4);

end if
end for

end for
end for
t� t+ 1;

end while
Return the best solution.

ALGORITHM 1: Pseudocode of APAOA.

Table 1: Unimodal test functions.

Name Function Dim Range fmin
F1 f(x) � 􏽐

n
i�1 x2

i 30 [−100, 100] 0
F2 f(x) � 􏽐

n
i�0 |xi| + 􏽑

n
i�0 |xi| 30 [−10, 10] 0

F3 f(x) � 􏽐
d
i�1 (􏽐

i
j�1 xj)

2 30 [−100, 100] 0
F4 f(x) � maxi |xi|, 1≤ i≤ n􏼈 􏼉 30 [−100, 100] 0
F5 f(x) � 􏽐

n−1
i�1 [100(x2

i − xi+1)
2 + (1 − xi)

2] 30 [−30, 30] 0
F6 f(x) � 􏽐

n
i�1 ([xi + 0.5])2 30 [−100, 100] 0

F7 f(x) � 􏽐
n
i�0 ix4

i + random[0, 1) 30 [−128, 128] 0

6 Journal of Advanced Transportation



Ta
bl

e
2:

M
ul
tim

od
al

te
st

fu
nc
tio

ns
.

N
am

e
Fu

nc
tio

n
D
im

Ra
ng

e
f
m
in

F8
f

(
x

)
�

􏽐
n i�
1[

−
x

i
sin

(
�

��
|x

i|
􏽰

)]
30

[−
50
0,

50
0]

−
41
8.
98
29

×
n

F9
f

(
x

)
�

􏽐
n i�
1[

x
2 i

−
10

co
s(
2π

x
i)

+
10

]
30

[−
5.
12
,

5.
12
]

0

F1
0

f
(

x
)

�
−
20

ex
p(

−
0.
2

�
�

�
�

�
�

�
��

1/
n

􏽐
n i�
1

x
2 i

􏽱
−
ex
p
1/

n
􏽐

n i�
1
co
s(
2π

x
i)

+
20

+
e)

30
[−
32
,3

2]
0

F1
1

f
(

x
)

�
1

+
1/
40
00

􏽐
n i�
1

x
2 i

−
􏽑

n i�
1
co
s

x
i � i

√
30

[−
60
0,

60
0]

0

F1
2

f
(

x
)

�
x
/n

10
sin

(
πy

1)
􏼈

􏼉
+

􏽐
n

−
1

i�
1

(
y

i
−
1)

2 [1
+
10

sin
2 (
πy

i+
1)

+
􏽐

n i�
1

u
(

x
i,
10

,1
00

,4
)]

,
w
he
re

y
i

�
1

+
x

i
+
1/
4,

u
(

x
i,

a
,k

,m
)

K
(

x
i
−

a
)m

,
if

x
i
>

a
,

0,
−

a
≤

x
i
≥

a
,

K
(

−
x

i
−

a
)m

,
−

a
≤

x
i

⎧⎪ ⎨ ⎪ ⎩

30
[−
50
,5

0]
0

F1
3

f
(

x
)

�
0.
1(
sin

2 (
3π

x
1)

+
􏽐

n i�
1

(
x

i
−
1)

2 [1
+

sin
2 (
3π

x
i
+
1)

]
+

(
x

n
−
1)

2 1
+

sin
2 (
2π

x
n
))

+
􏽐

n i�
1

u
(

x
i,
5,
10
0,
4)

30
[−
50
,5

0]
0

Journal of Advanced Transportation 7



Ta
bl

e
3:

Fi
xe
d-
di
m
en
sio

n
m
ul
tim

od
al

te
st

fu
nc
tio

n.

N
am

e
Fu

nc
tio

n
D
im

Ra
ng

e
f
m
in

F1
4

f
(

x
)

�
[1
/5
00

+
􏽐

25 j�
11
/j

+
􏽐

2 i�
1(

x
i
−

a
ij

)]
−
1

2
[−
65
,6

5]
1

F1
5

f
(

x
)

�
􏽐

11 i�
1[

a
i
−

x
1

(
b
2 i

+
b

ix
2)
/b

2 i
+

b
ix

3
+

x
4

]2
4

[−
5,

5]
0.
00
03
0

F1
6

f
(

x
)

�
4x

2 1
−
2.
1x

4 1
+
1/
3x

6 1
+

x
1x

2
−
4x

2 2
+
4x

4 2
2

[−
5,

5]
−
1.
03
16

F1
7

f
(

x
)

�
(

x
2

−
5.
1/
4π

2 x
2 1

+
5/
πx

1
−
6)

2
+
10

(
1

−
1/
8π

)c
os

x
1

+
10

2
[−
5,

5]
0.
39
8

F1
8

f
(

x
)

�
[1

+
(

x
1

+
x
2

+
1)

2 (
19

−
14

x
1

+
3x

2 1
−
14

x
2

+
6x

1x
2

+
3x

2 2)
]

×
[3
0

+
(
2x

1
−
3x

2)
2

×
(
18

−
32

x
i
+
12

x
2 1

+
48

x
2

−
36

x
1x

2
+
27

x
2 2)

]
2

[−
2,

2]
3

8 Journal of Advanced Transportation



5.1.1. Environment Modelling. In an actual working envi-
ronment, a robot has to face the complexity and quick
change. To regularize the experimental environment, we use
a grid-like method for modelling. Figure 7 shows the robot
workplace model. .e robot path planning problem is
transformed into the use of algorithms to make the robot
walk from the source to target, avoiding collisions with
barriers during the procedure and finding an optimal col-
lision-free path.

5.1.2. Path Searching. On the basis of environmental
modelling, the issue of finding an optimal path is transferred
into the issue of an objective function obtaining the optimal
value. Assuming that in an ideal state, the robot is a straight
collision-free path from the source to the target, and the
objective function is shown as

D �

������������������

xs − xt( 􏼁
2

+ ys − yt( 􏼁
2

􏽱

, (7)

where D represents the distance between the source and the
target, (xs, ys) represents the source, and (xt, yt) represents
the target. However, in the actual working environment, the
robot will encounter barriers to prevent it from moving
forward. Firstly, for the robot workplace model, a Cartesian
coordinate system is constructed, and the horizontal axis

and vertical axis of the two-dimensional plane are equi-
distantly divided to form a set of intersections
Node � (xi, yi), i � 1, 2, 3, . . . , n􏼈 􏼉, the sum of the dis-
tances between the particles randomly generated by the
algorithm is L and is given as:

L � 􏽘
k

j�1

����������������������

xj+1 − xj􏼐 􏼑
2

+ yj+1 − yj􏼐 􏼑
2

􏽱

, (k< n). (8)

Secondly, we use equation (9) to search for points in the
barriers on the working path of the robot. If any point on the
path is within the barrier, the penalty function equation (10)
is added to the objective function.

d �

������������������

xi − xb( 􏼁
2

+ yi − yb( 􏼁
2

􏽱

rb

− 1,

d> 0, not in barrier,

d< 0, in barrier,

⎧⎪⎨

⎪⎩

(9)

where (xb, yb) is the coordinate of the centre point of the
obstacle b, rb is the radius of the obstacle, and b � 1, 2, 3, . . ..

Penal � Penal + mean(min(d, 0)), (10)

where Penal is the penalty function.

Table 4: Unimodal function test on 30D.

Algorithm AOA APAOA
F Ave Std Best Ave Std Best
F1 2.95e− 06 1.10e− 06 1.53e− 06 3.72e− 07 2.52e− 07 4.74e− 09
F2 1.29e− 03 1.38e− 03 2.83e− 05 5.84e− 04 2.81e− 03 8.05e− 06
F3 6.07e− 04 5.38e− 04 1.24e− 05 2.05e− 04 4.25e− 04 1.26e− 07
F4 1.42e− 02 1.04e− 02 0.30e− 02 1.33e− 02 3.31e− 02 1.03e− 05
F5 2.77e+ 01 2.47e− 01 2.81e+ 01 2.87 + 01 1.35e− 01 2.85 + 01
F6 2.56e+ 00 2.10e− 01 2.34e+ 00 3.81e+ 00 1.22e+ 00 2.64e− 01
F7 5.89e− 05 5.87e− 05 9.58e− 05 7.38e− 06 8.00e− 06 3.32e− 06

Table 5: Multimodal function test on 30D.

Algorithm AOA APAOA
F Ave Std Best Ave Std Best
F8 −5.49e+ 03 3.26e + 02 −5.35 + 03 −5.25e+ 03 1.72e+ 02 −8.22e+ 03
F9 8.15e− 07 7.52e− 07 1.46e− 06 1.91e− 09 9.18e− 08 2.26e− 10
F10 2.92e− 04 1.65e− 04 4.23e− 04 4.29e− 05 7.51e− 05 1.27e− 05
F11 1.25e− 03 4.69e− 03 2.09e− 05 4.81e+ 01 1.24e+ 01 1.60e+ 02
F12 6.89e− 01 2.86e− 02 0.71e+ 00 5.10e− 01 3.40e− 01 0.51e+ 00
F13 2.96e+ 00 2.63e− 02 2.97e+ 00 2.96e+ 00 2.67e− 02 2.87e+ 00

Table 6: Fixed-dimensional multimodal function test.

Algorithm AOA APAOA
F Ave Std Best Ave Std Best
F14 1.05e+ 01 3.50e+ 00 5.93e+ 00 1.00e+ 01 5.82e+ 00 9.98e− 01
F15 7.02e− 03 1.03e− 02 1.31e− 02 1.22e− 02 1.27e− 02 1.10e− 03
F16 −1.03e+ 00 2.25e – 11 −1.03e+ 00 −1.03e+ 00 1.33e – 02 −1.03e+ 00
F17 3.98e− 01 2.05e – 06 4.00e− 01 4.76e− 01 1.67e− 01 4.00e− 01
F18 9.30e+ 00 1.16e+ 01 3.00e+ 00 3.00e+ 00 2.03e− 03 3.00e+ 00
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Figure 3: Continued.
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F7 : Convergence curve
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Figure 3: Comparison of convergence curves between APAOA and AOA in F1–F7.
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F12 : Convergence curve
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Figure 4: Comparison of convergence curves between APAOA and AOA in F8–F13.
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F18 : Convergence curve
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Figure 5: Comparison of convergence curves between APAOA and AOA in F14–F18.

Table 7: Parameter settings for algorithms.

Algorithm Parameter value
ALO None
MVO WEPMax � 1; WEPMin � 0.2; p � 6
SCA a � 2
MFO b � 1, a � [−2, −1] (linearly decrease)
DA r, ε max � (ub − lb)/10; (ub, lb) is maximum and minimum boundary
SSA c1 � [0, 2] (linearly reduce)
MTDE [43] F � 0.5; CR � 0.8
APAOA μ � 0.499; αmax � 1; αmin � 0.1
PSO c1 � c2 � 1.5, w � 1
GA pc � 0.8, pm � 0.2
ACO α � 1, β � 7, Rho � 0.2, Q � 1
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F5 : Convergence curve

100 200 300 400 5000
Iteration

0

2

4

6

8

10

12

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

MTDE
APAOA
ALO
SCA

MFO
MVO
SSA
DA

×108

(i)

F5 : Convergence curve

115

120

125

130

135

140

145

150

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

0 200 300 400 500100
Iteration

APAOA

(j)

3
F6 : Convergence curve

0

0.5

1

1.5

2

2.5

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

100 200 300 400 5000
Iteration

MTDE
APAOA
ALO
SCA

MFO
MVO
SSA
DA

×105

(k)

27
F6 : Convergence curve

17
18
19
20
21
22
23
24
25
26

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

100 200 300 400 5000
Iteration

APAOA

(l)

F7 : Convergence curve

0

500

1000

1500

2000

2500

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

100 200 300 400 5000
Iteration

MTDE
APAOA
ALO
SCA

MFO
MVO
SSA
DA

(m)

F7 : Convergence curve×10–3

0

1

2

3

4

5

6

7

Fi
tn

es
s f

un
ct

io
n 

va
lu

e

100 200 300 400 5000
Iteration

APAOA

(n)

Figure 6: Continued.

Journal of Advanced Transportation 15



F9 : Convergence curve
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In summary, the objective function of path planning is
shown as equation (11), and the purpose is to use the penalty
function to avoid barriers and achieve the shortest path,
which is the optimal value.

Rp � L∗ (1 + ω∗Penal), (11)

where ω is a penalty factor, which is verified by experiments
that 10 is a suitable value..erefore, it is set to 10 in this article.

5.1.3. Path Smoothing. Finally, because the connection be-
tween points is a straight line, and the path that the algorithm
planned is not a feasible path, so we use Spline interpolation to
smooth the solution to achieve a better accuracy.

5.2. Simulation Research. For the robot path planning
mentioned in Section 5.1, we have meshed the environment
andmodelled the barriers.We set the two-dimensional space
to be 6 × 6. .e source coordinates and target coordinates of
the two scenes are the same, which are (0, 0) and (4, 6).

To further verify the performance of the APAOA, we
choose the classical algorithms, such as PSO, ACO, and GA
to compare with APAOA and AOA. During the simulation,
the algorithm parameters are shown in Table 7, and each
algorithm runs independently 30 times. To compare the
performances of the algorithms in different environments,
two test environments are committed, with the number of
barriers being 4 and 7..e experimental results are shown in
Figures 8 and 9 and Tables 9 and 10. Tables 9 and 10 show
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Figure 6: Comparison results of convergence performance of popular optimization algorithms.
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that the APAOA can find a shorter path than other algo-
rithms, and the APAOA execution effect is more stable.
Compared with AOA, the improved effect of APAOA is
significant.

From the two path planning diagrams (Figures 8 and 9),
it can be seen intuitively that the APAOA can always find the
best path, while the other algorithms are not, and the
convergence graph proves that the APAOA can find the

Table 8: Comparison results of popular algorithms in F1–F13.

F
ALO SSA MVO

Ave Std Rank Ave Std Rank Ave Std Rank
F1 1.26e+ 03 6.29e+ 02 4 3.66e+ 00 1.69e+ 00 2 1.20e+ 02 2.38e+ 01 3
F2 2.89e+ 02 1.86e+ 02 6 1.14e+ 01 2.76e+ 00 3 5.65e+ 22 3.02e+ 23 7
F3 5.93e+ 04 2.17e+ 04 3 9.40e+ 03 3.66e+ 03 2 5.69e+ 04 5.91e+ 04 4
F4 3.13e+ 01 4.59e+ 00 3 1.26e+ 01 1.32e+ 00 2 5.46e+ 01 5.87e+ 00 5
F5 3.02e+ 05 2.23e+ 05 4 1.16e+ 03 1.14e+ 03 2 7.01e+ 03 7.12e+ 03 3
F6 1.68e+ 03 5.16e+ 02 4 3.22e+ 00 1.45e+ 00 1 1.15e+ 02 1.99e+ 01 3
F7 3.30e+ 00 1.02e+ 00 4 4.00e− 01 8.23e− 02 2 5.06e− 01 1.05e− 01 3
F8 −1.81e+ 04 3.83e− 12 8 −2.43e+ 04 1.699e+ 03 2 −2.33e+ 04 1.32e+ 03 4
F9 2.98e+ 02 5.35e+ 01 4 9.69e+ 01 2.74e+ 01 2 6.77e+ 02 6.71e+ 01 5
F10 1.28e+ 01 1.44e+ 00 5 4.36e+ 00 6.58e− 01 2 8.22e+ 00 6.69e+ 00 3
F11 1.43e+ 01 6.34e+ 00 3 7.76e− 01 1.97e− 01 1 2.07e+ 00 1.75e− 01 2
F12 1.45e+ 02 2.70e+ 02 4 5.16e+ 00 1.45e+ 00 3 1.81e+ 00 5.79e+ 00 2
F13 1.63e+ 04 3.03e+ 04 4 1.32e+ 02 2.08e+ 01 2 1.47e+ 02 2.78e+ 01 3
Mean 4.31 2.00 3.62
Rank 4 2 3

F SCA MFO DA
Ave Std Rank Ave Std Rank Ave Std Rank

F1 9.25e+ 03 5.25e+ 03 5 5.91e+ 04 1.54e+ 04 7 1.49e+ 04 1.07e+ 04 6
F2 8.01e+ 00 7.18e+ 00 2 2.45e+ 02 4.07e+ 01 5 5.36e+ 01 2.01e+ 01 4
F3 2.29e+ 05 4.42e+ 04 6 2.38e+ 05 6.24e+ 04 7 2.05e+ 05 7.48e+ 04 5
F4 8.85e+ 01 2.83e+ 00 6 9.25e+ 01 2.01e+ 00 7 5.27e+ 01 8.55e+ 01 4
F5 1.13e+ 08 6.02e+ 07 6 1.52e+ 08 7.33e+ 07 7 2.39e+ 07 2.10e+ 07 5
F6 1.22e+ 04 6.01e+ 03 5 5.46e+ 04 1.29e+ 04 7 1.55e+ 04 8.96e+ 03 6
F7 1.19e+ 02 6.64e+ 01 6 2.30e+ 02 1.30e+ 02 7 3.51e+ 01 3.67e+ 01 5
F8 −7.23e+ 03 6.41e+ 02 6 −2.38e+ 04 2.36e+ 03 3 −1.03e+ 04 9.74e+ 02 7
F9 2.57e+ 02 1.05e+ 02 3 8.28e+ 02 8.29e+ 01 7 7.51e+ 02 1.17e+ 02 6
F10 1.95e+ 01 2.86e+ 00 6 1.98e+ 01 1.94e− 01 7 1.21e+ 01 2.47 + 00 4
F11 9.57e+ 01 3.69e+ 01 5 5.19e+ 02 1.25e+ 02 6 6.03e+ 01 4.28e+ 01 4
F12 2.56e+ 08 1.41e+ 08 7 2.55e+ 08 2.15e+ 08 6 1.39e+ 07 2.02e+ 07 5
F13 4.71e+ 08 2.49e+ 08 7 4.57e+ 08 2.20e+ 08 6 2.39e+ 07 1.69e+ 07 5
Mean 5.38 6.31 5.08
Rank 6 7 5

F APAOA MTDE
Ave Std Rank Ave Std Rank

F1 1.24e− 01 1.00e− 01 1 4.00e+ 05 0.00e+ 00 8
F2 1.43e− 01 3.02e− 02 1 3.99e+ 62 3.68e+ 62 8
F3 8.92e− 01 3.69e− 01 1 2.21e+ 08 0.00e+ 00 8
F4 1.82e− 01 1.47e− 02 1 1.00e+ 02 0.00e+ 00 8
F5 9.98e+ 01 1.19e+ 00 1 5.59e+ 10 2.62e+ 09 8
F6 1.85e+ 01 2.74e+ 00 2 4.04e+ 05 0.00e+ 00 8
F7 6.15e− 06 4.27e− 06 1 6.63e+ 09 8.03e+ 08 8
F8 −5.91e+ 03 1.46e+ 03 1 −5.97e+ 03 2.18e+ 02 5
F9 3.90e− 02 4.75e− 02 1 8.66e+ 04 3.88e+ 02 8
F10 5.18e− 02 2.59e− 02 1 2.13e+ 01 9.05e− 02 8
F11 2.13e+ 03 5.96e+ 02 8 9.70e+ 02 3.81e+ 01 7
F12 9.00e− 01 2.10e− 01 1 6.06e+ 10 3.63e+ 09 8
F13 1.01e+ 01 2.38e− 01 1 8.24e+ 10 4.28e+ 09 8
Mean 1.62 7.69
Rank 1 8
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optimal path, and the convergence speed is fast. In summary,
we propose the APAOA, which can better deal with the
problem of robot path planning. However, there is still some

problems such as insufficient accuracy and so on, which
needs to be improved in the future to obtain better
performance.
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Figure 8: Path planning diagram (a) and convergence curve (b) of environment 1.
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Figure 7: Robot workplace model.
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6. Conclusions

In this article, an adaptive parallel AOA is proposed and ap-
plied to solve the problem of robot path planning. First of all,
the adaptive equation proposed is established based on the
fitness value of the particles. .e benefits of the adaptive
equation can enable the algorithm to better balance the search
capabilities of the development and exploration phases and
effectively avoid falling into local optimal solutions. .e steps
for the algorithm to enter the exploration and exploitation stage
are adjusted. Experiments have shown that the algorithm
performs better after the adjustment, and the solution accuracy

is improved. .en, we also introduce a novel parallel strategy
into the AOA algorithm to strengthen the communication
among particles. By adopting the rule of “survival of the fittest,”
leaving elite individuals, it increases the robustness of the al-
gorithm and achieves a significant improvement compared
with the original algorithm. Finally, the robot path planning
problem proposed in this article is used to further evaluate the
performance of the algorithm. Compared with other algo-
rithms, APAOA achieved better performance.
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