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In order to accurately analyse the impact of the rainy environment on the characteristics of highway traffic flow, a short-term
traffic flow speed prediction model based on gate recurrent unit (GRU) and adaptive nonlinear inertia weight particle swarm
optimization (APSO) was proposed. Firstly, the rainfall and highway traffic flow data were cleaned, and then they are matched
according to the spatiotemporal relationship. Secondly, through the method of multivariate analysis of variance, the significance
of the impact of potential factors on traffic flow speed was explored. Then, a GRU-based traffic flow speed prediction model in
rainy environment is proposed, and the actual road sections under different rainfall scenarios were verified. After that, in view of
the problem that the prediction accuracy of the GRU model was low in the continuous rainfall scenario, the APSO algorithm was
used to optimize the parameters of the GRU network, and the APSO-GRU prediction model was constructed and verifications
under the same road section and rain scene were carried out. The results show that the APSO-GRU model has significantly
improved prediction stability than the GRU model and can better extract rainfall features during continuous rainfall, with an

average prediction accuracy rate of 96.74%.

1. Introduction

Rainfall is the most frequently occurring severe weather,
which brings serious impact to highway traffic safety. It is
important to study the traffic flow characteristics of
highways under rainy environment and grasp the regu-
larities of rainfall on traffic flow, making stable prediction
and analysis of traffic flow to implement effective traffic
control [1-4].

In terms of the impact of adverse weather on traffic flow
characteristics, with the improvement of the highway
system and the continuous development of information
observation and collection technology, scholars at home
and abroad have conducted continuous research [5-8]. At
present, the data analysis and modelling system for the

impact of weather factors on highway traffic flow is well
established. In 1994, Ibrahim and Hall [9] studied the
impact of adverse weather on the flow-occupancy and
speed-flow relationships through regression analysis and
showed that heavy rain and snow caused a 10-20% and
30%-48% reduction in maximum highway flow, respec-
tively. In 2005, Agarwal et al. [10] used years of traffic flow
data and contemporaneous weather data of the Northern
United States to quantify the effects of adverse weather
conditions and roadway conditions on highway traffic flow.
The results showed that heavy rain, snow, and low visibility
resulted in a 10%-17%, 19%-27%, and 12% of reduction in
capacity, respectively, and a reduction of vehicle speed by
4%-7%, 11%-15%, and 10%-12%, respectively. In 2015, Li
[11] derived the mean values of vehicle speeds of different
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rainfall intensities on highways based on statistical analysis
of data, used standard deviations to measure the dispersion
of vehicle speeds, and investigated the variability of vehicle
speed on different lane locations, vehicle types, and time
periods during rainfall.

In terms of traffic flow prediction models, they are
mainly divided into prediction models based on statistical
theory analysis, nonlinear theory prediction models, ma-
chine learning prediction models, and combined predic-
tion models [12]. However, nonlinear theoretical model
related theories are very complex, especially in terms of
mathematical processing. The model has a high degree of
complexity and a large amount of calculation, which is
suitable for more complicated emergency transportation
systems. With the rise of artificial intelligence, machine
learning has been more often applied to the field of traffic
flow prediction, and related prediction algorithms have
emerged. They are mainly divided into support vector
machines, artificial neural networks, and deep learning
[13]. In 2009, Castro-Neto et al. [14] proposed a supervised
online SVR statistical learning model, which optimized the
problem of limited applicability of general models in
atypical cases. The developed model outperformed models
such as Gaussian maximum likelihood, Holt exponential
smoothing, and artificial neural networks in typical and
atypical traffic flow prediction. In 2013, Jeong et al. [15]
proposed an online learning weighted SVR model
(OLWSVR) for short-term traffic flow prediction, which
outperformed prediction models such as locally weighted
regression, conventional SVR, and online learning SVR.
Smith and Demetsky [16] analysed short-term traffic flow
prediction models based on neural network and non-
parametric regression. Cai et al. [17] proposed a neural
network based on improved cuckoo algorithm with opti-
mized radial basis function (CS-RBF) for highway traffic
flow prediction under heavy rainfall, and the study showed
that the algorithm has better prediction accuracy and
convergence speed. In 2015, Lv et al. [18] proposed traffic
flow feature learning using a stacked autoencoder model
and trained it with greedy hierarchical unsupervised
learning deep learning model. Zhang and Wang [19] built
an urban trunk road travel time prediction model based on
GRU network and simulated it using real road network
data. In 2020, Wang et al. [20] proposed an LSTM travel
time prediction model considering rainfall data, and the
results showed that the prediction results with the inclusion
of rainfall features were more accurate than when the
rainfall features were not included. Meng proposed the
LSTM-GRU combined model to predict the short-term
traffic flow speed of highways in rainy days. This model is
well adapted to the uncertainty and sudden change of traffic
flow speed in rainy days [21].

Reviewing the above literature, we can find the following
research trends regarding the influence of rainy weather
environment on traffic flow characteristics and traffic flow
prediction. (1) For the research on the influence of rainy
weather environment on traffic flow characteristics, most
domestic and foreign scholars divide the rainfall intensity
into levels [22]. Using the traffic flow data and rainfall data of
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the actual road section, the changes of the macro traffic flow
parameter values of the road section under different levels of
unfavorable weather are given. However, there is a lack of
comprehensive consideration of the impact of multiple
factors on traffic flow. (2) In terms of traffic flow prediction,
various prediction models have different principles. Cur-
rently, machine learning and deep learning models have
become the mainstream of research in the field of traffic flow
prediction. Throughout the many previous studies on traffic
flow prediction, there are fewer studies on traffic flow
prediction under rainy environment, and more related
studies only add the verification of rainy weather scenarios
on the traditional prediction.

Therefore, in this paper, we consider the influence of
various factors to carry out the research on traffic flow
characteristics of highways under rainy environment. Also,
we add rainfall features to the deep learning model to carry
out the prediction of highway traffic flow speed under rainy
environment. In view of the fact that the PSO algorithm can
adjust the hyperparameters of the deep learning model and
bring better prediction performance, this article will build
the APSO-GRU model.

2. Data Preprocessing

2.1. Preprocessing of Traffic Flow Data. The data in this
article come from the floating car data of Beijing-Harbin
Highway (JingHa Highway), Beijing-Tianjin Highway
(JingJin Highway), Beijing-Taipei Highway (JingTai High-
way), and Beijing-Kaifeng Highway (JingKai Highway). By
fusing multisource floating car data and combining the
original data with relevant geographic information through
the MapInfo interface, the space-time matching of traffic flow
data is completed. After data preprocessing, the proportion of
abnormal data accounts for 5% of the total original data.

The raw traffic flow data are recorded in 5-minute in-
tervals, spanning a total of six months from June 1 to August
31,2018, and June 1 to August 31, 2019. The raw data include
information such as highway section ID, section direction,
average vehicle speed, and traffic flow. The data format is
shown in Table 1.

In the table, the first 13 digits of Section_id indicate the
number of a section of the highway, and the last digit in-
dicates the direction of vehicle travel on the section, with 1
representing upward and 0 representing downward; Spee-
d_avg indicates the average speed of all vehicles passing the
section during the collection time; volume indicates the
traffic volume of the section during the collection time.

The data cleaning is divided into two parts: rejection of
erroneous data and repair of missing data. For the rejection
of erroneous data, a “rule rejection method” is used, which
integrates the threshold method and the basic theory of
traffic flow [23]. For the missing original data [24] of traffic
flow, a simple nearest neighbor mean fill method is used to
fill the data, which combines the mean filling method of
replacing the missing data with the mean of the existing data
and the nearest neighbor interpolation method using the
observation values near the missing value to replace the
missing value. The nearest neighbor interpolation method of
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missing values is combined. Then, we take the average value
of the valid data adjacent to the missing data as filling, as in
the following equation:

(H,_, +Hy,y)

, (1)
2

H, =
where H, represents the missing traffic flow data of the ¢
cycle, including V and Q, and H,_,, H,,, are traffic flow data
of the two adjacent cycles of the " cycle.

2.2. Preprocessing of Rainfall Data. The rainfall data were
obtained from Beijing Nanjiao Observatory Station (No.
54511), Tongzhou Station (No. 54431), and Daxing Station
(No. 54594). In this paper, only hourly rainfall data and their
corresponding dates and times are extracted. A total of 4397
meteorological data from Daxing District and 4401 mete-
orological data from Tongzhou District were extracted, and
the format of rainfall data is shown in Table 2. The time item
indicates the end moment of the data collection time, and
the rainfall amount is the accumulated rainfall amount
within the data collection time.

Only a small amount of rainfall data was found to be
missing through inspection. According to the method of
traffic flow data filling, the average value of rainfall in the
adjacent hours of the missing data was used to fill in the
missing data.

2.3. Spatial and Temporal Matching. The recording period
of traffic flow data is 5 minutes, while the recording period of
rainfall data is 1 hour. It is necessary to match two data from
time granularity. High-precision rainfall data are currently
not available, and it is difficult to decompose long-period
data into short-period data. In addition, the time accuracy of
the floating car data acquisition system needs to be im-
proved. Even if high-precision rainfall data are obtained, the
time-space error of the two data matching is difficult to
evaluate. So, it is more reasonable to combine the traffic flow
data from 5-minute recording period to 1-hour recording
period, and the combination rule is expressed as follows:

1 (2)

o 12 ViCi
V=2 o
L 1=

where C represents traffic flow on the section in one hour
(veh/h); C; represents traffic flow on the section in 5 minutes
(veh/5min); V represents the average speed of vehicles on
the section in one hour (km/h); and V; represents the av-
erage vehicle speed on the section in 5 minutes (km/h).

Based on the weighted average method, the average
vehicle speed time series and traffic flow time series of each
highway are calculated. The weight of the road section is the
proportion of its length in the whole highway. The calcu-
lation method is shown in the following equation:

TABLE 1: Format of raw traffic flow data.

Section_id Speed_avg (km/h) Volume (veh/5 min)
59565500000081 86.52 267
59565500000090 85.57 238
59565500000101 86.34 314
59565500000221 85.61 284
59565500000231 85.82 329
59565600000010 85.66 283
TaBLE 2: Rainfall data format.
Station ID Date Time Rainfall
54594 20190615 22:00 0
54594 20190615 23:00 0.2
54594 20190615 24:00 1.0
54594 20190616 1:00 1.7
. K —
V_ -L
V — n 1’!’
2
n=1
« (3)
K =
C. -L
C — n Vl,

where V represents the average speed of vehicles on the
highway (km/h); V,, represents the average vehicle speed of the
road section (km/h); L, represents the length of the road
section (m); L represents the length of highway (m); K rep-
resents the total number of sections of the highway; C rep-
resents the overall traffic volume of the highway (veh/h); and
C,, represents the traffic volume of the road section (veh/h).

The traffic flow time series and the rainfall time series in
the region are integrated according to the corresponding
time to complete the spatiotemporal matching, and the
format of the matched data is shown in Table 3. In the table,
Date_hour indicates the date and time; precipitation indi-
cates the rainfall amount in mm/h; Volume_sum indicates
the traffic flow in veh/h; and Speed_avg indicates the average
vehicle speed in km/h.

3. Analysis of the Influence of Rainy Weather on
Traffic Flow Speed of Highway

3.1. Analysis of the Factors Influencing the Traffic Flow Speed.
The traffic flow speed of highway is affected by many factors.
Four potential factors, such as rainfall intensity, date cate-
gory, time period, and number of lanes, are selected to
explore whether these factors affect the traffic flow speed of
highway by multivariate analysis of variance. According to
the statistical analysis of the characteristics of highway traffic
flow, it can be seen that the “morning peak hour” of highway
is relatively lagging behind that of urban roads. Before the
arrival of the peaking hour, it can be clearly seen that both
traffic flow speed and traffic flow have experienced two
processes of first decreasing and then increasing. Through
observation, it is found that it is more reasonable to divide
every four hours as a time period, as shown in Table 4.
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TaBLE 3: Data format after spatiotemporal matching.
Highway Date_hour Precipitation Volume_sum Speed_avg
Beijing-Harbin Highway 20190706_09 0 1106 89.61
Beijing-Harbin Highway 20190706_10 9 1051 85.34
Beijing-Harbin Highway 20190706_11 2.8 1137 87.74
Beijing-Harbin Highway 20190706_12 21 963 87.93
Beijing-Harbin Highway 20190706_13 1.5 897 88.57

TaBLE 4: The division of different periods of the day.

Period number Time span Characteristic

1 0:00-4:00 During the low period in the morning, the speed and flow decrease slowly

2 4:00-8:00 During the rising period, the speed and flow increase rapidly

3 8:00-12:00 In the morning peak, the speed and flow are high

4 12:00-16:00 In the afternoon, the peak was flat, and the speed and flow decreased smoothly and slowly
5 16:00-20:00 In the evening peak, the flow reaches the peak again, and the speed decreases gradually
6 20:00-24:00 In the low period of night, the speed and flow decrease rapidly

SPSS software was used for multivariate analysis of
variance, and the output of SPSS is shown in Figure 1. The
results show that the four factors have significant influence
on the traffic flow speed. In addition, the interaction of date
category, time period, and number of lanes has a significant
impact on traffic flow speed. The combination of other
factors has no significant effect on traffic flow speed.

3.2. Influence of Rainfall on Traffic Flow Speed of Highway

3.2.1. Distribution Characteristics of Traffic Flow Speed under
Different Rainfall Intensities. Considering the different
levels of date categories and number of lanes, the distri-
bution statistics of standard traffic flow speed under different
rainfall intensities are carried out, which are divided into
Tongzhou District and Daxing District, as shown in Figure 2.
It can be seen that the standard speed of highway vehicles
in rainy days decreases with the increase of rainfall intensity.
In terms of date category, weekend is more vulnerable to
rainfall than working day. The slope of “rainfall intensity
standard speed” of the four-lane highway in the two areas is
greater than that of the three-lane highway, which indicates
that the four-lane highway is more vulnerable to rainfall.

3.2.2. Speed Distribution Characteristics of Traffic Flow in
Different Periods. Considering the different levels of rainfall
intensity, date category, and number of lanes, the distri-
bution statistics of the standard speed of vehicles in different
periods of each highway are carried out, as shown in
Figure 3.

It can be seen from Figure 3 that the standard speed of
four-lane highway is generally lower than that of three-lane
highway when other factors are the same, which indicates
that its traffic flow speed is more easily affected. The same
rainfall intensity has different influence on the traffic flow
speed in different periods of the day, and the morning peak
and evening peak are more easily affected by rainfall.
Similarly, the speed of traffic flow in the first period, the
second period, and the sixth period is relatively less

susceptible to rainfall. With the increase of rainfall intensity,
the above differences will be more obvious.

4. The Establishment of the Prediction Model of
the Traffic Flow Speed of APSO-GRU

4.1. Design of Traffic Flow Speed Prediction Model Based on
GRU. The proposed GRU model is composed of three
sections, i.e., input layer, hidden layer, and output layer. The
output layer is a fully connected dense layer. Adam algo-
rithm is selected as the weight optimizer to optimize the
internal weight of the model. The structure of the prediction
model is shown in Figure 4 [25].

The input of the model is a time series matrix composed
of traffic flow speed, traffic flow, and rainfall, the output is
traffic flow speed, and the loss function is MAE. MSE is more
affected by outliers, while MAE is more stable. After actual
data validation, the parameters of the GRU prediction model
are set as follows: the number of hidden layer nodes is 15,
dropout parameter is 0.3, batch size is 200, epoch is 180, and
learning rate is 0.004. And the training set and test set are
divided in a ratio of 4:1.

4.2. PSO Algorithm. Part of the parameters of the GRU
model is automatically adjusted by the model, and the other
part of the parameters needs to be set artificially, which are
called superparameters, including the number of hidden
layers, the number of hidden layer nodes, the number of
iterations, etc., and the rationality of superparameter setting
directly affects the convergence speed of model calculation
and the accuracy of prediction. Therefore, this section uses
PSO algorithm to optimize the GRU model.

Particle swarm optimization algorithm is described in
the D-dimensional search space, and N different particles
form a search population. The current position of the i
particle is x; = (x;,X,...,%;p), current speed is
v; = (¥j1, V> --->Vip), and the best location currently
searched by the individual is p; = (p;;» Piz>- - -»> Pip); it is
called individual extremum [26]. The optimal position of the
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Intersubjective effect test
Dependent variable: traffic flow speed
Type Ill sum Degree of
category of squares freedom Mean square F Significance
Revised model 34335.592° 95 361.427 434.476 000
Bias 4594866.533 1 4594866.535 5523544.621 .000
rainfall intensity 11347.833 3 3782.611 4547.122 .000
date category 28.831 1 28.831 34.658 .000
number of lanes 2532.155 1 2532.155 3043.934 .000
time period 13278.496 5 2655.699 3192.448 .000
rainfall intensity” date category 50.508 3 16.836 20.239 .000
rainfall intensity* number of lanes 6.983 3 2.328 2.798 .039
rainfall intensity* time period 31.436 15 2.096 2.519 .001
date category” number of lanes 22.878 1 22.878 27.502 .000
date category™ time period 138.678 5 27.736 33.341 .000
number of lanes™ time period 181.608 5 36.322 43.663 .000
rainfall intensity* date category™ 1.339 3 446 .537 657
number of lanes
rainfall intensity* date category™ 1.971 15 131 .158 1.000
time period
rainfall intensity” number of lanes® 2.142 15 .143 172 1.000
time period
date category™ number of lanes® 35.738 5 7.148 8.592 .000
time period
rainfall intensity™ date category™ 2.787 15 .186 223 999
number of lanes* time period
deviation 625.566 752
total 6023624.627 848
Revised total 34961.157 847
a. R square = .982 (revisedR square = .980)

F1Gure 1: SPSS output.

whole population is called global extremum, and it is
9= (gir>Gir>- - -> Gip)-

The current position of the particle corresponds to a
candidate solution of the optimization problem, and the
flight process is the search process of the individual. Each
particle iterates continuously to update its speed and po-
sition, which are determined by equations (4) and (5),
respectively:

vi(t+1) = v () +c, -1+ (pi (1) = x; (1))

(4)
+eg 1y (g(1) —x; (1),

x;(t+1)=x;(t) +v;(t+1), (5)

where v; (t) represents the velocity of the i particle at time ¢;
x; (t) represents the position of the i particle at time t; CprCy
represent the acceleration coefficients, where ¢, is the
cognitive learning factor and ¢ is the social learning factor,
respectively, representing the self-learning ability of particles

and the ability to learn from the optimal individual of the
group, ¢,, ¢, > 0; 7,7, represent random numbers with (0, 1)
interval uniform distribution; p; () represents the historical
optimal position of the it" particle at time t; and g(t)
represents global optimal position of particle swarm opti-
mization at time ¢.

In order to further optimize the performance of the PSO
algorithm, Shi introduced a new parameter inertia weight
[27] into the particle velocity update formula of the original
PSO algorithm, and equation (4) becomes

vit+ 1) =w-v () +c, 1y (pi () = x; (1))
tey Ty (g () - x; (1))

Inertia weight determines the influence of particle ve-
locity at the previous time on the current velocity, which can
effectively balance the role of global search and local search.
Equation (5) consists of three parts. The first part is inertial
motion, which indicates the degree to which the particle
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maintains its Velocity at the previous moment; the second is
cognitive learning, which means that the particles memorize
their historical optimal position and make them close to the
historical optimal position. Finally, social learning, which
means the information exchange between particles, makes
particles close to the historical optimal position of the
population [28]. It can be seen from equation (4) that
particles have memory, and they move towards the direction
of the optimal particle combined with their own and group
experience. Equations (5) and (6) constitute a new PSO
algorithm called standard PSO algorithm (SPSO).

4.3. Adaptive Nonlinear Inertia Weight PSO. In order to
further improve the problem that PSO algorithm is easy to

fall into local optimal solution and reasonably balance the
ability of local search and global search of PSO algorithm, an
adaptive nonlinear inertia weight method is used to adjust,
as shown in the following equation:

(wmax — wmin) * (fz — fmin)

+ b

farg - fmin

fisfarg’

f i f arg’
(7)
where w,,,,, W,,;, are the maximum and minimum values of

inertia weight; f; represents the adaptation value of particle
i; foin represents the minimum fitness of all current



particles; f .. represents the maximum fitness of all current
particles; and f,,, represents the average fitness value of all
current particles.

4.4. Establishment of APSO-GRU Prediction Model. Based
on the adaptive nonlinear inertia weight PSO algorithm
proposed in the previous section, an APSO-GRU pre-
diction model is proposed, and the parameters of GRU
network are optimized by PSO algorithm. It is finally
determined that the number of hidden layers of the model
is 2, the number of nodes in the first layer is 20, and the
number of nodes in the second layer is 15 through cross
combination test. And the relevant parameters of the
APSO are set as follows: the population number is 20, the
number of iterations is 30, the acceleration coeflicients are
both 2, and the maximum and minimum inertia weights
are 0.9 and 0.1, respectively, [h] min>Pimax) and
[ min> P2 max] DOth are [1,50], [#in> fmax) 1 [0.001,0.01],
and [M,;,, Bmax] 18 [1,500]. The model flow is shown in
Figure 5.

5. Instance Verification

5.1. Experimental Verification Scenario and Evaluation
Indexes. In the field of traffic flow prediction, the most
common loss functions include mean absolute error (MAE),
root mean square error (RMSE), and mean absolute per-
centage error (MAPE) [29]. Their calculations are shown in
equations (8)-(10). RMSE and MAPE are used as error
functions to evaluate the performance of the prediction
model.

1 L
MAE = ; Y () -v,), (8)
1
RMSE = \jf ;(YP (t) - Y(t))z, )
BESLACER (O .

where L represents the total length of time series; Y, (1)
represents prediction value at time #; and Y (¢) represents
true value at time .

Based on the established model of the traffic flow speed
prediction of GRU and APSO-GRU, the traffic flow speed of
Beijing-Harbin Highway, Beijing-Tianjin Highway, Beijing-
Taiwan Highway, and Beijing-Kaifeng Highway in Beijing is
predicted, respectively. At the same time, the support vector
regression (SVR) model is compared with the APSO-LSTM
model on prediction performance.

In order to more comprehensively and accurately
evaluate the performance of the model under different
rainfall scenarios, the rainy environment is divided into two
categories: noncontinuous rainfall and continuous rainfall.
Noncontinuous rainfall is the situation that the rainfall
process is relatively short and sparse in a specific period of
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FIGURE 5: Process of the APSO-GRU prediction model.

time, while continuous rainfall is the situation that the
rainfall process is relatively long and dense in a specific
period of time.

5.2. Analysis of Prediction Results of APSO-GRU

5.2.1. Prediction Results of Noncontinuous Rainfall. The time
span of noncontinuous rainfall in Tongzhou District is the
interval between 0:00 on 9th August (working day) and 24:
00 on 10th August (weekend) in 2019, and the time span of
noncontinuous rainfall in Daxing District is from 0:00 on
11th August (weekend) to 24:00 on 12th August (working
day) in 2019.

Due to article content limitation, this paper only selects
to visualize prediction results of Beijing-Harbin Highway, as
shown in Figure 6. The horizontal axis represents the time,
and the left vertical axis represents the speed, corresponding
to the broken line chart. The right vertical axis represents
precipitation, corresponding to the histogram. This setting is
used in the following.

Under the noncontinuous rainfall scenario, the traffic
flow speed of highway is obviously disturbed during the
rainfall (moderate rain and heavy rain), and the change
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FIGURE 6: Prediction results of traffic flow speed during unsustained rainfall on Beijing-Harbin Highway.
TaBLE 5: Errors in traffic flow speed prediction during unsustained rainfall.
Beijing-Harbin Beijing-Tianjin Beijing-Kaifeng Beijing-Taiwan
Model Highway Highway Highway Highway
MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE
GRU 3.78 291 4.15 3.22 4.04 3.07 4.20 3.13
APSO-GRU 2.84 2.15 3.27 2.76 2.53 1.80 2.71 2.09
APSO-LSTM 3.17 2.68 3.77 2.93 4.23 3.26 3.13 2.75
SVR 6.02 4.63 5.89 4.39 6.21 4.78 4.87 3.89
trend of the predicted value of each model is basically 35
consistent with the real value. The prediction error is shown 10
in Table 5. =
. 125 3
£ | 8
E 20 2
5.2.2. Prediction Results of Continuous Rainfall. The time et .-
span of continuous rainfall in Tongzhou District and Daxing & =
District is from 0:00 on 28th July 2019 (weekend) to 24:00 on 1o £
29th July 2019 (working day). {5
The prediction results of traffic flow speed of Beijing- 0
Harbin Highway during continuous rainfall are shown in 0 4 8 21620 24 2832 36 40 48
Figure 7 Time (B)
It can be seen from the figure that under the continuous —— Actual Data APSO-LSTM
rainfall scenario, the traffic flow speed of highway is greatly — GRU - SVR
—— APSO-GRU B Precipitation

affected, and the operation state continuously fluctuates. In
this unstable situation, the trend of the predicted values of
each model is basically consistent with the real values, but
the prediction accuracy is significantly lower than that of
noncontinuous rainfall. The prediction error is shown in
Table 6.

5.2.3. Comparative Evaluation and Analysis of Prediction
Results. The statistics of the average prediction error of the
traffic flow speed of each model under different rainfall
scenarios on each highway can be seen in Table 7.

In the aspect of traffic flow speed prediction, the pre-
diction accuracy of the APSO-GRU model is better than that
of the GRU model and APSO-LSTM model under the two
rainfall scenarios, and the accuracy of the SVR model is the
lowest, which verifies the performance improvement of the

FIGURE 7: Prediction results of traffic flow speed during sustained
rainfall on Beijing-Harbin Highway.

built deep learning model. The average prediction accuracy
of the GRU model, APSO-GRU model, APSO-LSTM model,
and SVR model is 95.96%, 97.16%, 96.42%, and 94.25%,
respectively. The average prediction accuracy of the APSO-
GRU model is 1.20% higher than that of the GRU model and
0.74% higher than that of the APSO-LSTM model.

The average prediction accuracy of the APSO-GRU
model is 96.75% under the continuous rainfall scenario,
which is 2.38% and 2.22% higher than that of the GRU
model and APSO-LSTM model, respectively. The prediction
accuracy of each model has declined, but the decline of the
APSO-GRU model is not obvious, followed by the GRU
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TaBLE 6: Errors in traffic flow speed prediction during sustained rainfall.
Beijing-Harbin Beijing-Tianjin Beijing-Kaifeng Beijing-Taiwan

Model Highway Highway Highway Highway

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE
GRU 524 3.77 6.19 4.40 5.77 4.12 531 3.86
APSO-GRU 3.52 2.86 3.47 2.83 2.88 217 3.14 2.31
APSO-LSTM 5.63 4.56 4.69 4.16 6.30 5.10 5.24 4.43
SVR 10.37 7.29 11.40 7.71 12.63 8.02 10.71 7.55

TaBLE 7: Error comparison of traffic flow speed prediction results.
Noncontinuous Continuous
Model
MAPE (%) RMSE MAPE (%) RMSE
GRU 4.04 3.08 5.63 4.04
APSO-GRU 2.84 2.20 3.25 2.54
APSO-LSTM 3.58 291 5.47 4.58
SVR 5.75 4.42 11.28 7.64
model. The prediction accuracy of the APSO-LSTM model which fully proves that the prediction performance
and SVR model is lower than that of the former two models. of the deep learning model is better than the tra-
ditional SVR model.
. Conclusion 3.1

S Data Availability

The main conclusions obtained in this paper are as follows:

(1) Based on the results of the multivariate analysis of
variance, rainfall intensity, date category, time of
day, and number of lanes have significant effects on
traffic flow speed. The higher the intensity of rainfall
is, the more the traffic flow is affected. Traffic flow is
more likely to be affected by rainfall on weekends
than weekdays, and it is more likely to be affected by
rainfall during daytime (especially AM peak and PM
peak) than at night.

(2) An APSO-GRU traffic flow speed prediction model
was built for the rainy environment. Under the
noncontinuous rainfall scenario, the average pre-
diction accuracy of the APSO-GRU model reaches
97.33%, which is 1.19% and 0.71% higher than that
of the GRU model and the APSO-LSTM model,
respectively. Under the continuous rainfall sce-
nario, the average prediction accuracy of the APSO-
GRU model reaches 96.74%, which is 2.69% and
2.39% higher than that of the GRU model and the
APSO-LSTM model, respectively. The results show
that the prediction accuracy and stability of the
APSO-GRU model are significantly improved
compared with the APSO-LSTM model under
different rainfall scenarios.

(3) Comparison of the traffic flow speed prediction
results between the machine learning model SVR
and the APSO-LSTM model in deep learning shows
that the prediction accuracy of APSO-LSTM is
higher than that of the SVR model by 2.18% and
5.55% under noncontinuous rainfall and continuous
rainfall scenarios, respectively. It indicates that the
prediction accuracy and stability of the model based
on LSTM are better than those of the SVR model,

The data used to support the findings of this study have not
been made available because of data ownership issues.
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