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In this paper, we address the problem of online updating of visual object tracker for car sharing services. )e key idea is to adjust
the updating rate adaptively according to the tracking performance of the current frame. Instead of setting a fixed weight for all the
frames in the updating of the object model, we assign the current frame a larger weight if its corresponding tracking result is
relatively accurate and unbroken and a smaller weight on the contrary. To implement it, the current estimated bounding box’s
intersection over union (IOU) is calculated by an IOU predictor which is trained offline on a large number of image pairs and used
as a guidance to adjust the updating weights online. Finally, we imbed the proposed model update strategy in a lightweight
baseline tracker. Experiment results on both traffic and nontraffic datasets verify that though the error of predicted IOU is
inevitable, the proposed method can still improve the accuracy of object tracking compared with the baseline object tracker.

1. Introduction

Car sharing services provide customers access to shared ve-
hicles for short-term use. )ey can reduce inner-city traffic,
trip cost, congestion, and environmental pollution and have
developed rapidly in recent years. To achieve better safety and
operating efficiency, more and more intelligent vehicle tech-
nologies have been utilized in car sharing services [1, 2]. Visual
object tracking is a fundamental component of them, by which
given an object’s initial location in the first frame its locations
in subsequent frames can be estimated continually. Moreover,
the object’s trajectories and velocities can be calculated si-
multaneously from the tracking results and used for aug-
mented or automatic driving of shared vehicles. Compared
with radar tracking, visual tracking technology is cheaper and
can perceive richer semantic information about the traffic
scene. However, its disadvantage is that there exist several
factors such as the real-time variation of illumination, weather
condition, and interaction between traffic elements which may
usually reduce the object tracking performance in complex
traffic scenes. )erefore, there is still huge room for the de-
velopment of visual object tracking for car sharing services.

A typical visual object tracking method consists of five
components, namely, feature extraction, motion model,
appearance model, model updating, and integration process
[3]. Most studies focus on feature extraction and appearance
model. )e features used for object tracking include hand-
craft features such as Color, HOG, LBP, and CN and
autolearned convolution features. )e main appearance
models can be classified to generative and discriminant ones
and receive much attention. By contrast, the model updating
component is less studied. Most object trackers use the
simplest linear weighting for model updating, in which a
new appearance model is obtained by weighting the old one
and the tracking result of the current frame.)e drawback of
this method is that the weight factor of the current frame is
set unchanged and has no connection with the tracking
performance of the current frame during the updating
process. In fact, if the tracking result of the current frame is
reliable and the object is not occluded, a small weight factor
of current tracking result may cause the appearance model
not to be updated adequately. On the contrary, if the
tracking result of the current frame is inaccurate or the
object is occluded, a large weight factor of current tracking
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result may cause the appearance model to be updated im-
properly. Under both situations, some errors may be in-
troduced into the appearance model, and as the updating
proceeds, the errors may accumulate and make the ap-
pearance model drift away from the object. From the above
analysis, we can find that it is necessary to assign a suitable
weight factor according to the evaluation of current tracking
performance. Nonetheless, how to update the tracking
model online based on the analysis of current tracking
performance is still an open problem. )is study tries to
bridge this research gap, and the main contributions are
follows:

(1) Introduce an object-specific IOU predictor which
trained offline on a large number of image pairs to
estimate the performance of current tracking result
for object model updating.

(2) Propose a dynamic updating mechanism based on
IOU prediction. )e updating principle is to assign
the current tracking result a larger weight if it is
relatively accurate and unbroken and a smaller
weight on the contrary.

(3) Integrate the IOU predictor into a lightweight cor-
relation filter tracker and update the tracker online
using the proposed updating mechanism.

)is paper is organized as follows: Section 2 provides a
scan of related works. Section 3 introduces a baseline object
tracker and the IOU predictors used in computer vision and
proposes our visual object tracker with online updating.
Section 4 shows the experimental results and corresponding
analysis. Finally, Section 5 presents the conclusions and
future research directions.

2. Related Work

Asmentioned above, existing visual object tracking methods
can be divided into two categories: generative ones and
discriminant ones. In the generative methods, the appear-
ance model contains only the object’s information and
object tracking is achieved by searching for the optimal
candidate region that best match the appearance model.
Template tracking is the earliest generative tracking method,
which takes the original spatial intensity distribution of the
object region as the template and tracks the object by
template matching. Aiming at the drift problem caused by
inadequate updating of templates in tracking, Matthews
et al. [4] kept the first template around, used it to align the
current template, and finally reduced the possible drift
phenomenon to a certain extent. As another classical gen-
erative tracking method, the mean shift method [5] takes the
object’s kernel histogram in the first frame as the appearance
model and employs a metric which derived from the
Bhattacharyya coefficient as the similarity measure to per-
form the matching. )roughout the whole tracking process
above, the appearance model remained unchanged. To
update the appearance model dynamically, Peng et al. [6]
employed Kalman filter to filter the kernel histogram using
the previous appearance model and current candidate

region. )e modified method could partly keep up with the
changing of object appearance, but the hidden assumption
that the object appearance obeyed the Gaussian distribution
may not hold in many practical situations. Besides the in-
tensity template and the kernel histogram, low-dimensional
linear subspace is also a generative appearance model and
first introduced into object tracking by Hager and Belhu-
meur [7] to handle the object appearance’s variation caused
by illumination. To update the linear subspace model
adaptively, Ross et al. [8] proposed an incremental learning-
based tracking method. It collected the object locations in
previous frames and employed incremental PCA to update
the linear subspace model. )rough the updating operation,
the linear subspace model could adapt to the variation of
object appearance even more.

Different from the generative object tracking methods,
the discriminant methods consider not only the objects’
information but also the backgrounds’ information for
tracking. )ey take object tracking as a binary classification
problem, train a classifier to separate the object from the
background, and have attracted more attention due to their
strength to deal with the objects under complex environ-
ments. Most traditional tracking-by-detectionmethods train
their binary classifiers online to update the appearance
model, and the updating process always has two steps: (i) the
generation and labelling of samples based on the estimated
object locations in previous frames and (ii) the online
updating of the classifiers [9]. However, the generated
samples’ labels are often noisy. To increase the classifier’
robustness to the poorly labelled samples, several im-
provements such as robust loss functions [10, 11], semi-
supervised learning [12, 13], and multiple instance learning
[14, 15] have been proposed.

With the fast development of deep learning, modern
visual object trackers such as correlation filtering-based
trackers and siamese trackers generally use deep features to
build their appearance models, and the corresponding
model updating mechanisms have also been studied.
MOSSE filter [16] the first correlation filtering-based tracker
updates the object model by weighting the current estimated
object region and the previous object model linearly, and the
linear weighting method has been also used in many other
correlation filtering-based trackers [17–20]. Siamese tracker
is another kind of modern object tracker, whose basic
principle is to learn a similarity metric offline and search
online for an optimal candidate region which best matches
the object appearance template. SiamFC is the original si-
amese tracker, in which the object template is initialized in
the first frame and then kept fixed during the remainder of
the video [21]. Most siamese trackers [22–24] implement the
same model updating strategy as the one in MOSSE, and
there are two problems in the updating of these trackers.
First, the weight factors of current frame are set fixed and
cannot change adaptively in the updating process. Second,
only the object information is updated, and the updating of
the background information is ignored. Aiming at the
second limitation, Huang et al. [25] modeled the context
between the object and its surroundings by an object-aware
weight vector and took the spatial-temporal context into
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account in the updating process. Besides the above, there are
some learning-based model updating methods. Taking the
initial template, the accumulated template, and the template
of the current frame as inputs, Zhang et al. [26] utilized a
convolutional neural network to learn the optimal template
of the next frame in an offline way. Li et al. [27] learned a
RNN-based model updater on offline videos by metal-
earning. In general, to make the learned mechanism adapt to
arbitrary targets, a large number of samples with different
kinds of appearance variation are needed for these learning-
based model updating methods.

To consider the feedback from tracking results in object
model updating, Wang et al. [28] used the response map’s
peak value and average peak-to-correlation energy (APCE)
to measure the confidence of current tracking result. )e
object model was only updated if these indexes were greater
than certain thresholds and remained unchanged if not.
Similar to the above method, Sun et al. [29] calculated peak-
to-sidelobe ratio (PSR) of response map to evaluate the
quality of tracking result in each frame and used it to update
the template of a siamese tracker. In addition, Zhu et al. [30]
took peak-versus-noise ratio (PNR) as an evaluation index.
When the PNR and the max value of response map exceeded
certain thresholds simultaneously, one-step stochastic gra-
dient descent with a small learning rate was used to update
the object model.

In summary, most modern object trackers update their
appearance models without considering whether the esti-
mated object location is accurate or not. Actually, once the
object is estimated inaccurately, severely occluded, or totally
missing in the current frame, the object model will be updated
improperly, and the impact will accumulate continually
during the whole tracking. Few research studies used APCE,
PSR, or PNR to measure the confidence of current tracking
result. )ese rule-based indicators can be calculated from the
response map easily and rapidly, but a lot of information in
raw images is thrown away in the calculation. )erefore, they
are limited in the evaluation of tracking performance. Dif-
ferent from them, in this paper, we introduce a data-based
method to evaluate the performance of tracking results and
use it as a guidance to update the object model online. For the
reader’s reference, Table 1 summarizes some main symbols
and their corresponding descriptions used in the following.

3. Object Tracking with Online Updating
Guided by IOU

3.1. Base Object Tracker. )e features used in traditional
discriminant correlation filtering-based object tracking
methods are either hand-crafted features like HOG, LBP,
and CN or convolutional features trained independently in
other visual tasks like image classification and object de-
tection. )e separation between feature learning and cor-
relation tracking makes the achieved tracking performance
not be optimal. Aiming at this problem, Wang et al. [20]
proposed DCFNet which is an end-to-end lightweight
network architecture to learn the convolutional features and
perform the correlation tracking process simultaneously.

Because of its high efficiency and performance, we use it as
the base object tracker in this work.

In DCFNet, φ(xt, θ) ∈ RM×N×D denotes the convolu-
tional feature of object region xt, where φ is the convolu-
tional network used for feature extraction with parameter θ.
y ∈ RM×N is the correlation filer’s ideal response which is
generated by a Gaussian function and peaked at the object
region’s center. Given the feature extraction network φ, the
desired filterwp at time p can be obtained by minimizing the
accumulated ridge loss ε as follows:
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where the parameter βt ≥ 0 is the updating rate which ex-
presses the impact of object region xt, D is the channel
number of extracted feature, and λ is the regularization
coefficient. )e closed-form solution of the optimization
problem in equation (1) can be formulated in an incremental
mode as follows:
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Here, hat y denotes the discrete Fourier transform F(y),
∗ represents the complex conjugate of a complex number,
and ⊙ denotes Hadamard product. In the test process, the
feature of search region z is extracted by feature extraction
network φ and denoted as φ(z, θ). Finally, the target’s final
location is estimated by searching for the maximum value of
correlation response map g as follows:

g � F
−1
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(z, θ)⎛⎝ ⎞⎠. (3)

)e feature extraction network φ can be trained offline
by the stochastic gradient descent method to minimize the

Table 1: Symbols summary.

x Target region
y Response of correlation filer
z Search region
w Correlation filter
g Response map of correlation filter
φ Feature extraction network
θ Parameters of φ
L(θ) Object function of θ
M, N, D Size of extracted feature
ε Accumulated ridge loss
βt Updating rate at time t

λ Regularization coefficient
F(·) Discrete Fourier transform
B Bounding box
c(·, ·) Modulation vector
r(·, ·) Feature representation of test image
φ I(·) IOU predictor module
θ IOU(·) Predicted IOU of bounding box
T1, T2 IOU thresholds
Lr1, Lr2, Lr3 Predefined updating rates
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object function L(θ) on a dataset which consists of a large
number of image pairs:

L(θ) � ‖g − g‖
2

+ λ‖θ‖
2
, (4)

where g is the desired response map. Compared with tra-
ditional discriminant correlation filter-based tracking
methods in which the features and the filters are learned
independently, DCFNet can be learned in an end-to-end
fashion and get higher accuracy. Furthermore, because the
lightweight network architecture is adopted, it can also get a
balance between speed and accuracy in tracking and operate
in real time. )is is the reason that we choose it as the base
object tracker.

3.2. IOU Prediction. IOU is defined as the ratio of the in-
tersection area between the candidate object region and the
ground truth region to the union area of them. It evaluates
the accuracy of the candidate region relative to the ground
truth region and is useful in many visual tasks. )e pre-
diction of IOU is first implemented by IOU-Net [31] in
object detection, in which each IOU-Net is trained for a
certain object class independently but not suitable for other
sorts of objects. However, the class-specific IOU predictors
are of little use for generic visual tracking because the ob-
ject’s class is generally unknown and arbitrary in object
tracking. To predict the candidate region’s IOU of all sorts of
objects in visual tracking, Danelljan et al. [32] proposed a
new IOU predictor which could predict an arbitrary object’s
IOU given only a single reference image by a modulation-
based network architecture as shown in Figure 1.

As shown in Figure 1, the IOU predictor network has
two branches, and both of them take the specific convolution
layers of ResNet-18 as backbone. )e reference branch
accepts convolution feature φ(x0, θ) and the object’s
bounding box annotation B0 in the reference image as inputs
and outputs a modulation vector c(φ(x0, θ),B0). )e test
branch takes convolution feature φ(xt, θ) and the estimated
bounding box Bt in current test image as inputs and outputs
a feature representation r(φ(xt, θ),Bt). )en, the feature
representation r of the estimated object region is modulated
by the coefficient vector c via a channel-wise multiplication.
Finally, the modulated representation is fed to the IOU
predictor module I which consists of three fully connected
layers. )e predicted IOU of the estimated bounding box Bt

in current test image is given by

IOU Bt(  � I c φ x0, θ( ,B0(  · r φ xt, θ( ,Bt( ( . (5)

3.3. Online Updating of the Base Object Tracker with the
Guidance of IOU. As many discriminant correlation filter-
ing-based object trackers, DCFNet has an incremental
model updating mechanism as shown in equation (2). In the
updating process, the parameter βt which denotes the impact
of current tracking result xt remains unchanged from the
start of tracking as follows.

)e assumption behind equation (6) is that the estimated
object regions in different frames are of equal importance.

Obviously, it does not hold inmany cases. For example, if the
object is occluded at time t, the estimated object region xt

may be unreliable and its importance βt should be reduced to
avoid the model drift. On the contrary, if the object’s ap-
pearance changes little in recent frames, the estimated object
region xt is more reliable and its importance βt should
increase to update the model more adequately. )erefore, it
is necessary to estimate the reliability of the estimated object
region xt and take it as a guidance to adjust the importance
βt adaptively as follows:

βt �
0, t � 0,

0.01, t> 0.
 (6)

In fact, the evaluation of tracking performance has
received certain attention and been used for model
updating in visual tracking. In most existing methods, the
reliability of tracking result is expressed as statistical in-
dexes such as APCE, PSR, PNR, and so on. )ese statistical
indexes are defined manually and calculated based on an
intermediate response map. In the evaluation, the original
information contained in tracking results such as color,
texture, and intensity are ignored. Different from them, we
introduce the IOU to measure the reliability of tracking
result and use it as a guidance to update the object tracker
online. As shown in Figure 2, the original DCFNet is
supplemented with an IOU predictor to constitute a new
tracker and in which the architectures of two networks are
remained unchanged.

Because of the prediction error, it is hard and unnec-
essary to adjust the parameter βt very precisely based on the
predicted IOU. In ourmethod, βt in equation (2) is redefined
by a linear piecewise function as follows:

βt �

Lr1, if IOU Bt( ≤T1,

Lr2, if T1 � IOU Bt( ≤T2,

Lr3, else,

⎧⎪⎪⎨

⎪⎪⎩
(7)

whereT1 andT2 are the IOU thresholds and Lr1, Lr2, and Lr3
are the model updating rates.

Compared with the manually defined statistical indexes
such as APCE, PSR, and PNR, the predicted IOU between
the estimated object region xt and the ground truth location
is learned from large numbers of samples. It can adapt to
different complex traffic scenarios and measure the reli-
ability of current tracking result more exactly and therefore
be helpful for the updating of the object appearance model.

4. Experiments

4.1. Experiment Settings. To verify the effectiveness of the
proposed object tracker, we first conduct extensive experi-
ments on 2 challenging public datasets including OTB-2013
[33] with 50 sequences and its updated version OTB-2015
[34] with 100 sequences. Without loss of generality, the used
datasets contain both traffic and nontraffic scenes. )e
hardware for the environments includes an Intel E5-2687
3.0GHz CPU, 128GB RAM, and a Nvidia 1080Ti GPU. We
implement our object tracker on Pytorch and compare it
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with other 8 modern object trackers such as SRDCF [35],
Staple [36], SiamFC [21], CFNet [37], the original DCFNet
[20], and its 3 modified versions which update their object
models using APCE, PSR, and PNR, respectively.

For a fair comparison with the original DCFNet, the
model updating rate Lr2 in equation (7) is set to 0.01 as same
as that in equation (2); meanwhile, Lr1 and Lr3 are set to
0.005 and 0.015. )e relevant parameters used for model
updating in DCFNet-APCE, DCFNet-PSR, and DCFNet-
PNR are chosen according to references [28–30], respec-
tively. It is worth mentioning that the proposed tracker is
evaluated under 6 different conditions to verify its robust-
ness to hyperparameter selection.

4.2.ExperimentalResults. )e tracking performance of each
object tracker is estimated by one-pass evaluation (OPE).
Figure 3 shows the success plots of OPE for the propose
tracker under condition 1 and other trackers on OTB-2013
and OTB-2015, and the numbers in the legends indicate the
average area under curve (AUC) scores of all trackers. A
more complete quantitative comparison between our
tracker under all conditions and other trackers is shown in
Table 2.

In addition to the above experiments on OTB-2013 and
OTB-2015, a group of experiments on KITTI [38] which is a
vision benchmark of autonomous driving are also conducted
subsequently to prove the feasibility of the proposed method

IOU

IOU predictor

DCF

Conv

Conv

βt

DCFNet IOU prediction network

Figure 2: Online updating of DCFNet under the guidance of IOU.

ResNet-18
Block 1-3

PrPool
3∗3

Groundtruth location

Estimated location

IOU

Concatenate

Concatenate

Conv Modulation vector

ResNet-18
Block 1-3

ResNet-18
Block 1-3

ResNet-18
Block 1-3

Conv Conv

Conv

Conv Conv

PrPool
3∗3

PrPool
3∗3

PrPool
3∗3 FC

FC

FC

FC

FC

FC

Figure 1: Network architecture of the IOU predictor.
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in traffic scenes. Partial experimental results are shown in
Figure 4, and for viewing convenience, the KITTI images are
cropped to reduce the field of vision.

4.3. Experimental Analysis. It can be found from Table 2 that
the proposed method achieves the highest tracking accuracy
under all conditions and therefore has a certain degree of
robustness to hyperparameter selection. Taking the results
under condition1 as example, the tracking accuracy of our
method increases by 5% on OTB-2013 and 1% on OTB-2015
compared with that of the original DCFNet. )e improvement
verifies that the proposed dynamic update mechanismwhich is
guided by IOU is more adaptable to the variation of object

appearance than the fixed update mechanism used in the
original DCFNet. Furthermore, our method also exceeds the
DCFNets which are modified by APCE, PSR, and PNR, re-
spectively. )e reason is that these rule-based evaluation in-
dicators are easy to be affected by the irregularity and noise of
the response map. By contrast, as a data-based evaluation
indicator which is learned from amass of videos, the IOU used
in our method can evaluate the tracking results more realis-
tically. However, the price is that the tracking velocity has
decreased from80FPS to 30FPS because of the IOU calculation.

In addition, the experimental results shown in Figure 4
demonstrate that our tracking method with online updating
can track the traffic participants well and guarantee the
operational efficiency and safety of car sharing services.
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Figure 3: )e success plots of OPE on OTB-2013 and OTB-2015 (under condition 1).

Table 2: )e average AUC scores of all trackers in the experiments.

Conditions OTB-2013 OTB-2015

Our method

Condition1: T1 � 0.15, T2 � 0.80 0.6465 0.6083
Condition2: T1 � 0.15, T2 � 0.85 0.6429 0.6056
Condition3: T1 � 0.15, T2 � 0.90 0.6420 0.6069
Condition4: T1 � 0.20, T2 � 0.80 0.6465 0.6096
Condition5: T1 � 0.20, T2 � 0.85 0.6428 0.6082
Condition6: T1 � 0.20, T2 � 0.90 0.6423 0.6097

DCFNet — 0.6144 0.6035
DCFNet-APCE )e same as reference [28] 0.6029 0.5793
DCFNet-PSR )e same as reference [29] 0.6247 0.5958
DCFNet-PNR )e same as reference [30] 0.5925 0.5565
CFNet — 0.6016 0.5839
Staple — 0.5839 0.5727
SRDCF — 0.6168 0.5932
SiamFC — 0.6051 0.5832
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5. Conclusion and Future Work

Visual object trackers can acquire the trajectories of the
objects such as pedestrians and vehicles in traffic scene and
make the car sharing services more secure and efficient. To
promote the tracking performance in complex traffic scenes,
it is necessary to update the object model adaptively, and the
accurate evaluation of current tracking result is beneficial to
the updating of the object appearance model. Instead of
using the rule-based indicators such as APCE, PSR, and
PNR, we introduced a data-based IOU predictor which is
learned offline from a large number of image pairs to
evaluate the tracking result. Based on predicted IOU, a
dynamic updating mechanism of the object model is pro-
posed. In the updating, if the predicted IOU is high, a larger
weight may be assigned to the current tracking result and a
smaller weight on the contrary. Finally, we integrate this
dynamic updating mechanism into DCFNet tracker. Ex-
periment results showed that compared with the original
tracker, the proposed tracker’s tracking accuracy increased
by 5% on OTB-2013 and 1% on OTB-2015. More than that,
out tracker also exceeds the modified DCFNet trackers
which update their object models using APCE, PSR, and
PNR, respectively. It is verified that as a data-based tracking
performance evaluation index, IOU can act as a more re-
liable guidance than the rule-based evaluation indexes to
update the object appearance model online and improve the
accuracy of object tracking for car sharing services.

)e limitation of our research is that because of the ad-
ditional calculation produced by IOU prediction, the tracking
velocity has decreased from 80FPS to 30FPS. Future research
may include backbone network sharing, network structure
searching, and model compressing of IOU prediction network
to improve the accuracy and speed of the IOU predictor.
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