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In this study, we selected four real-world rear-end crash scenarios with different crash characteristics. *e vehicles involved in
those crashes were not equipped with any crash avoidance systems. We then used the accident reconstruction method to build
those crash scenarios in PC-Crash software. *en, different FCW/AEB safety algorithms have been defined for a subject vehicle
model in each crash scenario and each scenario was simulated for a set of input parameters such as vehicle speed, brake intensity,
and driver reaction time. *e range and distribution of input parameters were extracted from the related field crash data and
available literature. A total number of 16000 simulations have been conducted which produced input-output datasets for further
investigations. Finally, the effects of input parameters on simulation outcomes including crash occurrence, AEB activation, injury
risk, and vehicle damage have been quantified using the Boruta algorithm.*e results indicated that the overall effectiveness of the
AEB system was a 57% reduction of rear-end crashes, a 52% reduction of injury severity (striking vehicle’s passengers), and a 47%
reduction of damages for striking vehicles. *e results also showed that the available AEB algorithms were more effective for the
average speed equal to or less than 80 kmph. *e speed of the subject vehicle, type of AEB algorithm, sensor detection range, and
driver reaction time were the most important parameters on crash outcomes. In addition, the results indicated that the per-
formance of FCW had a direct impact on the effectiveness of the AEB system for the integrated FCW+AEB system.

1. Introduction

*e advanced driver assistance systems (ADAS) technolo-
gies have shown promising results in terms of crash pre-
vention and mitigation by providing contextual information
to the driver such as a state of vehicle and traffic situation,
controlling the vehicle dynamics, or warning the driver in
high-risk situations, or recommending certain actions [1].
Among ADAS technologies, collision-avoidance systems
including the autonomous emergency brake (AEB) and
forward collision warning (FCW) have been specifically
developed to prevent or mitigate rear-end and pedestrian

collisions. *e rear-end crashes are the most common type
of crash and account for approximately 30% of the total
crashes each year in the U.S. *ey mostly resulted from the
driver’s inattention or a short-distance car-following situ-
ation [2]. *e National Transportation Safety Board esti-
mated that over 80% of deaths resulting from rear-end
crashes can be prevented by collision-avoidance systems [3].
*e FCW system has been widely adopted in the market,
whereas the AEB system is a somewhat new technology. For
example, in 2016, the AEB system was optional for only 6%
of vehicles and installed on 1% of vehicles in the USA; it is
expected that automobile manufacturers make the AEB
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standard by 2022 [4]. *is could potentially reduce the rear-
end crashes up to 70% if implemented on all passenger cars
[5]. Figure 1 shows the car-following scenario where the
subject vehicle (SV), equipped with AEB and FCW, detects
the lead vehicle (LV) via systems such as radar, lidar,
scanner, camera-laser device, or vehicle-to-vehicle com-
munication technology [6]. When the system recognizes an
impending collision, the FCW system warns a driver using
visual, audio, or haptic interfaces to apply the brake. If the
driver does not react in time and the crash is imminent, the
AEB system automatically applies the full brake at a certain
distance and time to stop the car.

Typically, the FCW/AEB systems are based on two main
components: safety distance and time to collision (DTC and
TTC). *e DTC and TCC can be converted to each other
based on the relative speed of vehicles. From this perspective,
Wang and Chen et al. (2016) divided the FCW algorithms
into perception-based and kinematics-based algorithms.*e
perceptual-based algorithms were empirical mathematical
models that were developed based on the human perception
threshold regarding the TTC. Parameters that are included
in these models are the relative velocity of vehicles and SV
vehicle’s speed. On the other hand, the kinematic-based
models use deceleration rate, driver reaction time, sensor’s
delay, and speed data to determine the DTC or TTC for the
FCW/AEB activation. *ere have been several algorithms
developed by researchers and vehicle manufacturers with
commercial names such as Mazda, Honda, Jaguar, and the
National Highway Traffic Safety Administration (NHTSA)
algorithms [7]. Studies on FCW/AEB systems can be clas-
sified into the following areas:

(i) Algorithm studies (AS): they are also called vehicle-
performance-based studies that focused on devel-
oping the FCW/AEB algorithms and evaluating their
performance to control the longitudinal dynamics of
the vehicle. *e main purpose of AS studies was to
gain a better understanding of the driver charac-
teristics (e.g., reaction time and braking intensity),
vehicle dynamic factors (e.g., tire-road interaction),
detection, perception, and prediction technologies
and then incorporating those factors into their al-
gorithms to achieve the best performance of the
FCW/AEB systems.

(ii) Effectiveness studies (ES): the main objective was to
assess the effects of FCW/AEB systems on safety
(e.g., reducing the crash number, injury severity, or
crash severity), driver behavior (e.g., driver accep-
tance or driver reaction), and traffic conditions.

Table 1 lists the past studies on FCW/AEB systems and
classifies them based on their approach and area of study. Not
shown in the table, but these studies can also be classified as
retrospective and prospective research according to Kovaceva
et al. [55]. In retrospective assessment, researchers use real-
world crash data such as the national crash database, in-
surance claims, or naturalistic driving data. *e prospective
approach, on the other hand, uses the computer simulation,
field operation test, or driving simulator to assess the safety

impacts. *e retrospective approach is indeed the most ef-
fective way to evaluate the safety of these systems because it
directly uses real-world crash data. However, the actual crash
data for the vehicles equipped with AEB systems are non-
existent or very limited to specific vehicle models [28, 36]. In
addition, the information regarding the AEB systems is not
usually available in the public domain crash database and
needs a third party (vehicle manufacturers) to extract this
information [49]. *erefore, it is difficult to distinguish be-
tween the vehicles with and without those systems.

Direct assessment of safety benefits using a prospective
approach has been a challenge. Flannagan and LeBlanc [41]
provided a detailed evaluation of FCW+AEB performance
using the naturalistic driving data for 1021 passenger cars
with no direct assessment of safety benefits. *e driving
simulator studies were focused only on FCW systems in
order to characterize the driver behavior [45], improve the
algorithm [20, 35], or warning systems [2, 9]. Yue et al. [44]
analyzed the results of recent studies that have been con-
ducted on the effectiveness of different ADAS technologies.
*ey estimated that the FCW+AEB system can potentially
reduce the number of rear-end crashes by up to 50%. *ey
also emphasized the gaps that exist between the AS and ES
studies in which studies that evaluate the relationship be-
tween the system performance and safety effectiveness of
ADAS technologies are scarce.*erefore, our understanding
of how factors including types of FCW/AEB algorithms,
driver reaction, and road conditions can contribute to the
variance of safety benefits of these systems is still limited.

Using analytical models and simulation combined with
real-world field data has shown a great potential to address
this challenge. Kusano and Gabler [21] and Kusano and
Gabler [22] studied the safety effectiveness of FCW+AEB
systems using field data and analytical analysis. *e ana-
lytical parts were developed based only on speed change of
vehicles (∆V) that was available in the database which may
not accurately represent the crash characteristics. *e
purpose of this paper is to establish a better understanding of
the effects of FCW+AEB system parameters, driver be-
havior, and road conditions on vehicle performance and
safety during the car-following scenario and quantify the
relationship between them.

*e remainder of this paper is organized as follows. In
Section 2, we will explain the four major steps that have been
taken to build the simulation scenarios based on real-world
crash data. *e simulation results are presented and eval-
uated in Section 3 followed by a discussion and limitation of
this study. Finally, conclusions are given in Section 4.

Subject Vehicle Lead Vehicle

FCW AEB

Figure 1: *e FCW and AEB crash avoidance systems for car-
following scenarios.
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Table 1: Summary of research on FCW and AEB.

Authors Methods ADAS systems Area of study Findings

Brown et al. [8] Analytical analysis FCW AS TTC and driver reaction time had the
most effects on FCW performance

Lee et al. [9] Driving simulator FCW ES

For distracted drivers, early warning
reduced the number of collisions by

80.7% and its severity by 96.5%. *e ∆V
for a subject vehicle was used to measure

the crash severity

Ervin and Sayer
[10] Field operational test FCW ES (safety + driver

acceptance)

*e rate and severity of traffic conflicts
did not change with or without FCW
systems, and the acceptance of FCW was

mixed due to the false alarms

Lee and Peng [7] Naturalistic driving data FCW AS

Six FCW algorithms were analyzed based
on the kinematic data extracted from 107
cases. *e JHU APL algorithm developed
by NHTSA and John Hopkins showed

the best performance

Sugimoto and
Sauer [11] Simulation FCW ES (safety)

38% reduction in the total number of
crashes and 44% reduction in fatal

injuries

Najm and Stearns
[12] Field operational test FCW+adaptive

cruise control
ES (safety + driver

acceptance)

8–23% crash reduction for speed <35
mph and 11–26% reduction for the

vehicle’s speed >35. Overall, this system
can reduce all rear-end crashes by 10%,
and the acceptance of FCW was mixed

due to the false alerts
Breuer and
Faulhaber [13] Driving simulator Braking assistant

system ES (safety) 44% rear-end crash reduction

Jamson and Lai
[14] Driving simulator FCW AS Introduced the adaptive FCW system

based on driver style

Kullgren [15] Field data and simulation AEB ES (safety)
44% reduction of MAIS 2+ injuries in
rear-end collisions for a reduced delta-v

with 10 kmph

Georgi and
Zimmermann [16] Field data analysis FCW+AEB ES (safety)

Quantify the driver reaction based on
three types of drivers: realistic, best, and
lethargic. For the realistic driver, the AEB
decreased the rear-end crashes by 72%

Kuehn and
Hummel [17] Field data analysis FCW+AEB ES (safety)

5.7%–40.8% reduction of all car crash
types based on a combination of active

safety systems

Mohebbi and Gray
[2] Driving simulator FCW ES (driver acceptance)

Evaluated the effectiveness of different
warning systems including tactile and
auditory on the distracted driver. *ey
found that the tactile warning is more

effective

Coelingh and
Eidehall [18] Field operational test FCW+AEB ES (safety)

Evaluate the effectiveness of the systems
in velocity reduction and stopping
distance for the pedestrian crash
scenarios based on NHTSA test

procedures

Kusano and Gabler
[19]

Field data + analytical
analysis AEB ES (safety)

12%–50% reduction of delta-v for the
subject vehicle

Up to 14% reduction of collisions
19%–57% reduction of injury

Jermakian [5] Field data analysis FCW ES (safety)

FCW had the greatest potential to
prevent all crash types among other

systems including side view assist, lane
departure warning, and adaptive

headlights
Bella and Russo
[20] Driving simulator FCW AS Evaluated different warning algorithms

and developed a new warning algorithm
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Table 1: Continued.

Authors Methods ADAS systems Area of study Findings

Kusano and Gabler
[21] Field data analysis FCW AS

Data from EDR system of 47 rear-end
crashes were extracted to quantify the
driving reaction. *e average brake level
was 0.52 g in 1.1 to 1.4 s before the crash

Kusano and Gabler
[22]

Field data + analytical
analysis FCW+AEB ES (safety)

Reduce the ∆V 14%–34%
Up to 50% reduction of fatal injuries

Up to 7.7% reduction of crash numbers

Isaksson-Hellman
and Lindman [23] Field data analysis FCW+AEB ES (safety)

*ey used insurance data for specific car
models and found 23% rear-end crash

reduction

Anderson and
Doecke [24] Simulation AEB ES (safety)

Predicted the AEB system is highly
effective to reduce the risk of pedestrian

crashes
Chauvel and Page
[25] Field data analysis AEB ES (safety) Up to 15.3% reduction of fatal pedestrian

crashes

Rosen [26] Field data analysis AEB ES (safety) Up to 40% reduction of injury severity for
the vulnerable road users

Rizzi and Kullgren
[27] Field data analysis FCW+AEB ES (safety)

*e low-speed AEB reduces the striking
rear-end crashes (speed area of 50 km/h)

by 54–57%
*e overall reduction regardless of the

speed was 35%–41%

Doyle and
Edwards [28] Field data analysis AEB ES (safety)

Substantial claim prevention of the third
party

8% lower for own damage
21% lower third party injury

Fildes and Keall
[29] Field data analysis AEB ES (safety)

38% reduction of rear-end crashes
No differences in effectiveness between

various speeds

Flannagan and
LeBlanc [30] Naturalistic driving data FCW AS (system performance)

Provided detailed information about
alert events and driving exposure of 1985
vehicles over a year. *e most common
type scenarios that FCW was activated
were approaching slower or accelerating

vehicle

Grove and Atwood
[31] Naturalistic driving data FCW+AEB

AS (system
performance) + ES
(driver acceptance)

Studied the AEB performance of 150
heavy vehicles and its effects on diver
behavior and quantified the situations for

false AEB activation

Han and Heo [32] Analytical analysis AEB+ FCW AS Improved the robustness of object
detection using the vehicle’s kinematics

Isaksson-Hellman
and Lindman [33] Field data analysis AEB+ FCW ES (safety) 47% reduction for occupant injuries of

the struck vehicle
Rosado and Chien
[34] Analytical analysis AEB AS Suggested the safety margin in terms of

time and distance for AEB
Wang and Chen
[35] Driving simulator FCW AS Developed the kinematic-based

algorithm

Cicchino [36] Field data analysis FCW+AEB ES (safety)

*e FCW+AEB reduced the rear-end
crashes by 50%. *e rates of rear-end
crashes with injuries were reduced by
56% and 59% for striking and struck

vehicles, respectively

Li and Xing [37] Simulation FCW+AEB ES (safety)

Analyzed the adverse weather on
multirear-end crashes found that the

AEB is the most effective safety system to
reduce these types of crashes

Lubbe [38] Driving simulator FCW
AS (vehicle

performance) + ES
(driver acceptance)

Quantified the brake reaction time and
brake behavior and found the reaction
time for a heavily distracted driver is 1 s
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Table 1: Continued.

Authors Methods ADAS systems Area of study Findings

Scanlon and
Sherony [39]

Field data
analysis + simulation FCW+AEB ES (safety)

*e crash reduction in the intersection
with FCW was 0–23% and with AEB was
25–59%. Injury reductions were 0–25%
for FCW and 38–79% for the AEB system

Jermakian and Bao
[40] Naturalistic driving data FCW ES (driving behavior)

Waring can improve the lane-keeping
and turn-signal behaviors of teenage
drivers but may result in more close-

following behaviors

Flannagan and
LeBlanc [41] Naturalistic driving data FCW+AEB AS (system performance)

*ey studied data from 1021 specific
vehicle models over a year to quantify the

AEB performance such as the
distribution of initial velocities where the
system was activated. *eir indirect

safety assessment showed 45% reduction
of rear-end crashes

Sander and Lubbe
[42]

Field data
analysis + simulation AEB ES (safety)

Evaluated field intersection crash data to
provide a set of scenarios that can be used
to assess the performance of AEB systems

Wang and Xi [43] Naturalistic driving
data + analytical analysis FCW+AEB AS

Developed a method to formulate the
driver’s braking behavior from a

perception decision action perspective

Yue and Abdel-
Aty [44] Driving simulator FCW AS

*ey provided a comprehensive overview
of the research that has been conducted
on crash avoidance effectiveness and also

found that the FCW under the fog
condition can reduce 35% of near-crash

events

Wu and Abdel-Aty
[45] Driving simulator FCW ES (driver behavior)

Quantified the effects of fog conditions
on driver reaction and braking behavior
with the existence of the FCW system

Lee and Jeong [46] Field data analysis AEB ES (safety) 25% injury reduction

Zhao and Ito [47] Simulation AEB AS+ES (safety)

Conducted a series of simulations with
different AEB algorithm’s parameters
and found the sensor angle is highly
effective to reduce the car-to-bicyclist

crashes

Arbabzadeh and
Jafari [48] Naturalistic driving data FCW AS

Estimate the driver reaction time based
on driver’s characteristics to improve the

warning time

Flannagan and
Leslie [49] Field data analysis FCW+AEB ES (safety)

*ey linked the police-reported crash
data with a vehicle identification number
and found that only FCW can reduce
16% reduction of rear-end crashes and
AEB (with ACC) can reduce the same

crash type by 45%

Lei and Qin [50] Simulation FCW+AEB AS
Developed a new algorithm to meet the
requirements of automobile safety and

comfort

Newstead and
Budd [51] Field data analysis AEB ES (safety)

36% reduction of fatal crashes for the
speed less than 60 km/h and 45% for

speed above 60 km/h
Salaani and
Elsasser [52] Field operational test FCW+AEB AS (system performance) Conducted test performance for heavy

vehicles

Wang and Zhong
[53] Field data analysis All types of ADAS

technologies ES (safety)
Provide recommendations for what kind

of ADAS technology should be
prioritized based on countries crash data

Zhu and Wang
[54] Naturalistic driving data FCW

ES (driver
behavior + traffic

conditions)

Quantify the driver reaction when the
FCW activated and the traffic conditions
(1.3 s was the mean value for driver

reaction time). *e FCW can potentially
increase traffic efficiency
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2. Method

*is study is comprised of four major steps, as shown in
Figure 2. In the first step, the four real-word rear-end crashes
were reconstructed in PC-Crash software to obtain the
impact characteristics. PC-Crash is vehicular accident
simulation software that uses a single body with a total of 14
degrees of freedom [56]. *e suspension system consists of
four massless parallel springs and dampers. Note that the
details of the mathematical models (for vehicle trajectory
and impact mechanism) have been explored and their
validity and accuracy were confirmed in several studies
[57–61]. More information about the PC-Crash model and
mathematical model of the impact are explained in Ap-
pendix A. *e impact parameters extracted from crash re-
construction simulations were then used to calculate more
informative properties including injury risk and vehicle
damage. In step 2, the input variables including FCW/AEB
algorithm parameters, driver reaction, and road condition
were defined and output parameters regarding the safety
effectiveness were specified. Next, building on four real-
world crash simulation scenarios, a series of simulations
with different types of FCW+AEB types and combinations
were conducted (three different FCW+AEB algorithms and
a benchmark with only the FCW system). Finally, by using
the statistical analysis, the postprocessing step was devised to
assess the effectiveness of AEB systems and the effects of
input variables on outcomes.

2.1. Crash Reconstruction. Four real-world rear-end crashes
that involved different vehicle types were selected to create
the simulation scenarios. Table 2 presents general infor-
mation on these crashes including the case number on the
NHTSA database, environmental conditions, and vehicle’s
model. *e environmental characteristics including road
geometry and surface condition weremodeled using the data
available on accident reports.*e overall vehicle motion and
trajectory of each vehicle are illustrated in crash scene di-
agrams in Appendix A. *ere have been limitations re-
garding the physical evidence and available data in the field
of accident reconstruction. However, for the purpose of this
study, the available information was sufficient to obtain the
impact parameters and required accuracy for the crash
severity. In this study, the impact parameters were the body
stiffness, contact friction between two vehicles, and resti-
tution factor of the impact. *e PC-Crash software has a
built-in collision optimizer that can be used to calibrate the
input parameters and find the optimum values for various
input crash parameters. Further detailed information on the
optimization process can be found in [56]. In the recon-
struction process, the known parameters were the rest po-
sition, vehicle trajectory, and impact point which were
estimated from the postcrash scene diagram and images.
*en, a series (at least 1000 simulations) of Monte Carlo
simulations were conducted considering uncertainties in
parameters including vehicle’s speed, road friction, contact
friction, and restitution factors (see Appendix A). *e op-
timum values of impact parameters provide sufficient

accuracy for vehicle trajectory, rest position, and actual
evidence, e.g., tire marks and postcrash vehicle’s deforma-
tion [62]. It should be noted that the original four real-world
rear-end crashes were reconstructed assuming that the ve-
hicles were equipped with the antilock braking system.

It is important to note that the selection of these cases
was based on several factors including the following: (1) the
availability of crash information regarding the vehicles,
location, accuracy of the crash diagram, and postcrash
pictures of vehicle deformation; (2) the availability of vehicle
dynamic information in PC-Crash library for the involved
vehicles; (3) the rear-end crash must be the first and main
harmful event of a crash and not the result of some other
crashes or impacts. *erefore, by manually searching the
NHTSA database and crash details, these four crashes were
selected. Further explanation of how this selection of crash
cases can affect the results is discussed in Section 3.

2.2. AEB/FCW Algorithms. In this study, the FCW/AEB is
considered as an integrated system that is based on twomain
components: the distance and time to collision (DTC and
TTC) [6]. *e mathematical equations for AEB and FCW
algorithms are presented in Table 3. Depending on the al-
gorithm, different parameters including vehicle’s speed,
maximum deceleration, driver reaction time, sensor delay
(constant 0.2 s in this study), and safety margin were con-
sidered in their equations. One of the important parameters
in the AEB algorithm is the value of the maximum possible
deceleration (braking force) for SV and LV vehicles (asv and
asv). Studies considered different values ranged from 0.6 g to
1 g [18, 21, 35]. However, it is well established that the
maximum possible brake deceleration depends highly on the
road-tire interaction [64]. In this study, instead of a constant
number, we considered the maximum possible brake de-
celeration as a factor of crash scene coefficient of friction
multiplied by gravitational constant
((μscene) × g(9.81m/s2)). *is means that the selected AEB
algorithms are capable to incorporate the real-time friction
measurements into their algorithms and adapt the maxi-
mum deceleration rate of the vehicles based on road friction
[65].

*e AL_K algorithm was considered as an integrated
FCW+AEB system that had the kinematics-based FCW
system. Similarly, the AL_P was the FCW+AEB systemwith
the perceptual-based FCW system and TTC� 2.2 s. *e
benchmark AL_TCC was also selected that both FCW and
AEB were based on the relative speed and TTC equal to 3.5 s
and 1.5 s, respectively. In the No_AEB case, the SV vehicle
was equipped only with FCW with TTC� 2.2 s similar to the
AL_P algorithm.

Figure 3 shows the typical time history of the speed
resulting from a simulation of car-following scenarios with
and without the crash. *is figure is only for the illustration
of how FCW and AEB systems affect the vehicle’s speed for
the case that the leading speed is stationary at the time of
impact. We made the following assumptions during the
development of rear-end simulation scenarios: (a) the driver
of the SV vehicle does not react until the FCW system is
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activated (@ tw); (b) the deceleration rate of both vehicles is
constant without any jerk and the maximum deceleration of
SV and LV vehicles is equal (asv � alv); (c) the LV vehicle
applies the maximum brake right at the beginning of

simulation; (d) the AEB system activated at all speeds. As
shown in Figure 3, the time history of the LV vehicle’s speed
decreases with the rate of alv until the stopping point.
Meanwhile, the SV vehicle starts the simulation with

Step 1: Accident Reconstruction Step 3: Simulation Process

Find Impact Parameters

Step 2: Identify Simulation
Parameters

Input Variables

Step 4: Post-Processing Data

Output Variables

AEB/FCW algorithm
parameters

Driver input parameters

Road conditions

Crash occurrence

Built the statistical model

AL_K, AL_P, AL_TTC

Effectiveness Assessment

Different AEB Algorithms

Without AEB System

Distribution of Output
Parameters

Variable importance
analysis

Atatistical Analysis

AEB activation

Injury severity MAIS 2+

Vehicle damage (crash
deformation energy)

Four real-world rear-
end crashes

4000
simulation for
each algorithm

Figure 2: Research steps.

Table 3: FCW and AEB algorithms.

Algorithm Source FCW AEB

AL_K [35] Rw � Vsv(tr + ts) + 0.5(
V2

sv

asv
−

V2
lv

alv
) + Rmin Rb � Vrel(tr + ts) + 0.5 × alv × (tr + ts)

2

AL_P [35, 63] Rw � Vrel × 2.2 + Rmin
If Vlv

alv
≥ ts Rb � Vrel(ts) + (trts)alv + 0.5 × 7.8(tr)

2

Else Rb � Vsv(ts) − 0.5 × alv × (tr − ts)
2 − 0.5 ×

V2
lv

alv

AL_TTC [17] Rw � Vrel × 3.5 + Rmin Rb � Vrel × 1.5
No_AEB [35] Rw � Vrel × 2.2 + Rmin N/a
Vsv: subject vehicle speed (m/s);Vlv: lead vehicle speed (m/s);Vrel: relative speed, (Vsv − Vlv);Rmin: safety margin (m); tr: driver reaction (s); ts: sensor delay
(s); asv: maximum deceleration of subject vehicle (m/s2); alv: maximum deceleration of leading vehicle (m/s2); maximum possible deceleration of vehicle:
amax � μscene × g.

Table 2: Information of real-world rear-end crash cases.

Simulation number NHTSA case number Road and weather
condition/speed limit

Subject vehicle Leading vehicle
Body type Mass (kg) Body type Mass (kg)

C1 3-C3-2018-006 Dry and clear sunny/89 kmph Pick-up truck 2522 Compact 1571

C2 1-19-2016-069-03 Dry and clear sunny/40 kmph Sedan 1550 Medium/heavy-duty
truck 7120

C3 1-11-2018-035-01 Dry and clear sunny/56 kmph Pick-up truck 2404 Sedan 1470

C4 1-13-2018-048-01 Dry, clear, night light/105
kmph Pick-up truck 2522 Sedan 1571

Journal of Advanced Transportation 7



constant speed to the point that warning is activated. *en,
based on driver reaction time (tr), a driver applies the brake
(the intensity of brake is not necessarily the maximum)
which decreases the Vsv with the adr rate. At the time of AEB
activation (tb), the maximum full brake deceleration is
applied to stop the vehicle (asv). For the cases that a rear-end
crash happens, both vehicles follow similar sequences up to
the impact point. At this moment (t� tcrash), the speed of
both cars was suddenly changed, and depending on impact
characteristics, three different postcrash scenarios can
happen which are illustrated in Figure 3.

2.3. Simulation Process. *e simulation process comprised
of simulating four reconstructed crash scenarios with a
specified range and distribution of input parameters and
measuring the simulation outcomes for a different combi-
nation of FCW/AEB systems. It is crucial to define and
specify the type of input parameters, their range, and dis-
tribution in which they reflect the real-world rear-end crash
characteristics. *erefore, the crash data from the Crash

Injury Sampling System (CISS) between 2016 and 2018 were
used to obtain the parameter’s characteristics. *e CISS is a
weighted database on a nationally representative sample of
crashes that has details about crash sites, vehicles, and
passengers. Considering the weight factor, the total number
of data points for rear-end crashes was found equal to
700,000 cases. *is is enough to quantify the distribution of
SV vehicle speed, environmental conditions, and the driver’s
reaction before the first harmful event. *e TRAV_SP,
WEATHER, and P_CRASH3 variables were used to find the
vehicle’s speed, weather condition, and driver input. *e
weather condition was used to estimate road friction. *e
details of input parameters, their range, and distributions are
listed in Table 4.

*e specified speed range was different from the range
obtained from field data for two reasons: (1) the speed data
reported CISS database is typically referred to as the speed
right before the crashes, whereas our simulations start a few
seconds before the crash; (2) the specified speed range
[0–200 kmph] can represent a much wider range of speed
limits. Based on CISS data, the weather condition for rear-
end crashes occurred in the dried clean road for 72% cases,
15% in cloudy weather, 10% in rainy weather, and 0.5% in
snowy conditions. *e random sampling with the same
distribution was used to generate the road friction values
(Mu). *e road friction for different road surface conditions
ranged from 0.3 for a snowy road to 0.9 for dried road
conditions [22]. *e P_CRASH3 provides information
about the driver’s reaction (i.e., braking, steering, or ac-
celeration) before the crash. Based on the data for the SV
vehicle, the SV driver applied the brake in 70% of cases, and
in 30% of cases, other actions were considered as no brake.
For the LV vehicle, in 96% of cases, the driver did not take
any action before the crash and applied the brake only in 3%
of cases. *ese probabilities were used to generate the
random values for the qualitative variable (Br_inp) for driver
input. For the driver reaction time, the gamma distribution
by Kusano and Gabler [22] was used. *ey specified three
different types of drivers including an alerted driver with
reaction time (tr) less than 0.6 s, a typical driver with a
reaction time ranging from 0.6 s to 1.4 s, and a distracted
driver with a reaction time higher than 1.4 s. *e safety
margin was selected based on the range of values found in
the literature [20]. *e other parameters including the de-
tection range and braking intensity of the uniform distri-
bution were selected because it was not feasible to quantify
their value using CISS data.

After generating the input parameters with the random
values and defined range and distributions, the output pa-
rameters were measured based on the following (see Ta-
ble 5). *e output parameters were crash occurrence (1: yes;
0: no), the crash severity using crash deformation energy,
injury severity using the maximum abbreviate injury scale
(MAIS 2+), activation of safety AEB&FCW systems (1: yes; 0:
no), and activation range for the FCW (RRw) and AEB (Rb)
systems.*e crash occurrence and its severity were extracted
from the impact characteristics resulting from the simula-
tion (see Appendix A). *e crash deformation energy is a
typical metric to calculate the impact severity in the field of
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accident reconstruction [66, 67]. To measure the MAIS 2+
injury risk, Kusano and Gabler [19] proposed an equation
based on the change of velocity (∆Vsv) and seatbelt status
using the field data analysis:

MAIS 2+ �
1

1 + e
− β0+β1ΔV+β2(belt)( )

, (1)

where β0, β1, and β2 were − 6.068, 0.1, and 0.6234, respec-
tively. belt is an indicator, taking on a value of 1 for a belted
driver and 0 for an unbelted driver. *e activation of FCW
and AEB was also calculated based on the SV vehicle’s
position at each time step. Vehicle’s relative speed and
distance were measured from algorithms. If during the
simulation, the vehicle passes the warning and braking
range, the value of 1 is assigned to the FCW and AEB status.
*e corresponding TTC for FCW and AEB was also mea-
sured based on the following equations:

tw �
Rw

Vrel

& tb �
Rb

Vrel

. (2)

Figure 4 shows the process in each scenario that has been
programmed using coupled simulation by Visual Basic and
PC-Crash software. At the beginning of the simulation, the
initial values were assigned to input parameters. Two con-
ditions were set based on the rear-end crash dynamics. First,
the simulation does not start if either the initial speed of SV
vehicle was less than LV vehicle or the relative speed of cars
was less than 4m/s. *is is because, in both of those

situations, the likelihood of a rear-end crash is very low [43].
For the set of data that met the conditions, the SV vehicle
was positioned at the distance Rd from the lead vehicle. *is
way, the simulation starts right at the time that the following
vehicle detects the leading vehicle. At each time step, the
relative distance of the vehicles, warning range (Rw), and
braking range (Rb) were calculated. Depending on the SV
vehicle’s initial position (Rd), specific sequences were de-
fined based on the driver reaction time, braking behavior,
and FCW/AEB status. Since these actions are sequential, the
initial relative distance of vehicles determines the sequence
of events. For example, if the initial distance is greater than
the warning range, the vehicle continues to move forward
without any driver’s reaction until it reaches the Rw distance.
*en, the FCW system is activated, and based on driver
inputs (brake exertion, its intensity, and reaction time), the
SV decelerates or continues to move forward up to the Rb
distance. At this point, regardless of the driver’s reaction, the
full automated brake is applied to stop the vehicle.

For the cases that the initial SV’s position is within the
warning range (Rb<Rd<Rw) or shorter than the brake range
(Rd<Rb), the sequences of events were different. *e first
scenario is typical in a real-world traffic situation where the
vehicles in other lanes perform a lane change in front of the
SV vehicle or the SV vehicle does the lane change. In the first
scenario, if driver input was not zero and the reaction time
was not longer than the time that the subject vehicle needs to
reach the Rb distance, the vehicle decelerates. If there was no
driver input, the vehicle continues to move forward up to Rb

Table 4: Input parameters and their distribution.

Input variable Variable name [Range] unit Distribution

Subject vehicle’s speed Vsv [0–200] kmph Gamma distribution
(shape� 5.78854313, rate� 0.070391)

Leading vehicle’s speed Vlv [0–50] kmph Uniform
Initial distance Rd [30–120] m Uniform
Safety margin Rmin [6,9,12,15] m Uniform

Road friction Mu [0.3–0.9] Normal (mean� 0.65,
sd� 0.1)

Braking intensity deceleration Br_L [3–9] m/s2 Uniform
Maximum brake intensity Br_F [3–9] m/s2 Normal (mean� 6.4, sd� 1)

Driver’s reaction time (tr) tr [0.26–2.5] s Gamma distribution
(shape� 7, rate� 7)

Driver brake Br_inp [1: yes; 0: no] In 70% cases, “yes,”
and in 30% cases, “no”

Type of FCW/AEB algorithm ADAS AL_K, AL_P, AL_TTC, No_AEB N/a

Table 5: Output parameters measured from the simulations.

Output parameters (variable name) Definition
Crash occurrence (crash) 0: no crash; 1: rear-end crash occurred
Crash deformation energy (E) *e vehicle damage measured using impact parameters
Injury severity (MAIS 2+) Maximum abbreviated injury scale measured directly from ∆Vsv
AEB activation (AEB) 0: off; 1: on
Warning range (Rw) DTC for FCW activation
Brake range (Rb) DTC for AEB activation
Warning time (tw) TTC to activate the FCW
Brake time (tb) TTC to activate the AEB
DTC: distance to collision; TTC: time to collision
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distance. *e latter scenario is less common and can happen
for the same reason as the first scenario. In this case, the AEB
is activated and the beginning of the simulation and the SV
applies the full brake to stop the vehicle regardless of driver
input.

For each reconstructed crash case, four combinations of
active safety features including three different AEB systems
(FCW+AL_K, FCW+AL_P, and FCW+AL_TTC) and
one without the AEB system (No_AEB) were selected. For
each combination, 1000 scenarios were defined and simu-
lated using the specified range and distribution of input
parameters. *erefore, the total number of simulations
generated for each safety feature was 4,000 cases.

2.4. Statistical Analysis of the Effects of Safety Features. In this
step, we conducted a multivariable regression modeling and
analysis methodology to estimate the effects of the various
driver- and road-related variables (driver reaction time, road
friction, etc.) and ADAS safety features (AEB, FCW, etc.) on
the response variables of occurrence of a crash, AEB acti-
vation, vehicle damage, and injury severity. Since the oc-
currence of the crash and AEB activation are (0/1) binary
variables, we used a binomial logit general linear model to
quantify the effects. Energy absorption and injury severity
are both continuous variables; thus, we utilized an ordinary
least squares linear regression model to quantify the effects
on these variables [68]. *e proposed multivariable
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regression model approach allows us to study the effects of
the type of FCW/AEB algorithm, driver reaction, and road
conditions on the safety effectiveness of these systems. *e
regression modeling and the statistical analysis were con-
ducted using R software [69].

*e coefficients of regressor variables for different re-
sponses will be different depending on the unit of the re-
sponse; therefore, standardization of the effects is needed to
determine which variables are more important for the re-
sponse. *e well-known Boruta algorithm [70] was used to
quantify the importance of the regressor variables following
the statistical models. Using the Boruta package in the R
software algorithm, we intended to capture the most im-
portant variables with respect to the outcomes [71]. Finally,
the effectiveness of each FCW/AEB algorithms on different
safety aspects was quantified using

eff � 1 −
Pwith

Pwithout
, (3)

where the Pwith and Pwithout are the probabilities of each
outcome with and without the AEB system.

3. Results and Discussion

*is section is presented in three separate parts: (1) results of
simulations; (2) results of statistical analyses; and (3) limi-
tations of this study. In Section 3.1, the simulation outcomes
for each safety feature are presented based on the following
aspects: the system performance measurements including
the AEB activation and corresponding DTC and TTC to
activate the AEB and FCW systems; the safety performance
metrics the crash occurrence, injury risk (MAIS 2+> 10%),
and vehicle damage (E> 100,000 J). *en, the results of
statistical analysis are presented in Section 3.2 to evaluate the
relationship between the various input parameters, safety
performance metrics, and AEB activation.

3.1. Results of Simulations. *e performance of each algo-
rithm (AL_K, AL_P, AL_TTC, and No_AEB) was evaluated
in each reconstructed rear-end crash scenario. From the
4,000 simulations for each algorithm, the outcomes were
measured for 3,548 cases, and in 452 cases, the simulation
stopped for the following reasons. *e relative speed of the
two vehicles was very small (Vsv-Vlv< 4m/s) or the LV
vehicle’s speed was higher than the SV vehicle’s speed
(Vlv>Vsv). Table 6 summarizes the distribution of the DTC
and TTC and the activation rate of FCW and AEB systems
for each algorithm. *e typical ranges of tw found in the
literature for the rear-end crash scenarios are ranged from
2 s to 5 s [2, 72, 73],whereas for the AEB activation, the tb
values of 0.45 s to 0.6 s [19], 1 s to 2 s [17, 24, 26], and 1.5 s
-2.4 s for heavy vehicles [52] were used in the literature. In
addition, the distribution of TTC for FCW and AEB acti-
vation based on different safety margins and types of the
algorithm is presented in Figures 5 and 6.

Figure 7 shows the results of safety performance for each
type of algorithm. As expected, the crash outcomes in terms of
both number and severity were significantly higher when the

SV vehicle was equipped only with the FCW system
(No_AEB). For instance, the rear-end crash rate of 80%
resulted from simulations that were at least two times higher
than cases with FCW+AEB. As pointed out by Yue et al. [44],
the combined ADAS technologies seem more effective than a
separate system. *e AL_K algorithm showed the minimum
crash outcomes in both crash number and crash severity.*is
algorithm had the highest average waring range (Rw � 93.5m
and tw � 3.8 s) and the lowest braking range (Rb� 30.2m and
tb � 1.35 s). On the other hand, AL_P safety performance
results indicated the highest crash outcomes among AEB
algorithms. *e estimated TTC for the FCW and AEB ac-
tivation by this algorithm were 2.7 s and 1.49 s, respectively.
*e TTC of 2.7 s for FCW activation provided a shorter time
for a diver to react and led to a higher number of crashes in
the simulations with the AL_P algorithm. Lee and Peng [7]
pointed out that these algorithms might have been designed
based on different philosophies such as preventing all rear-
end crashes or only crashmitigations. However, the results for
the AL_P indicated that this algorithm did not performwell in
any of those aspects.

In addition, the unavoidable crash cases for the SV
vehicle equipped with the AEB system were extracted. *e
results showed that the crash occurred in the cases where the
SV vehicle had an average velocity of 111 kmph, the LV
vehicle’s speed of 24 kmph, the initial distance of 59m
(ranged mostly between Rb<Rd<Rw), and the driver re-
action time around 1.1 s. *is introduces the high-risk
scenario that can be potentially used as a test scenario to
evaluate the AEB performance in a car-following scenario.

Figure 8 shows the results of the safety effectiveness
assessment for each algorithm and the overall results. *e
greatest potential safety benefits come from the AL_K al-
gorithm in crash reduction, injury severity, and vehicle
damage of 69%, 62%, and 60%, respectively. As mentioned
earlier, there have been several studies that estimated the
safety effectiveness in crash reduction ranged from 30% [27]
to 79% [16] which depends on different factors such as
assessment method, type of FCW/AEB algorithms, and
speed range. Regardless of the type of algorithm, the overall
effectiveness assessment of the AEB system showed a 57%
reduction in rear-end crash numbers, 52% reduction in SV
vehicle damage, and 45% reduction in risk of MAIS 2+
injury.

*e only study on the effectiveness of AEB systems
regarding the vehicle damage was conducted by Doyle et al.
[28] using the insurance claim data for specific vehicle
models.*ey pointed out that the AEB system can effectively
reduce the vehicle’s damage ranging between 6% and 18%.
However, they did not include factors such as vehicle speed,
types of AEB algorithm, and driver’s characteristics in their
statistical model. *e presented study showed an average of
52% reduction in vehicle damage based on the crash de-
formation energy calculated directly from the impact me-
chanics. Our evaluation with respect to the effectiveness of
AEB to reduce the injury risk is consistent with the findings
of multiple studies. Kusano and Gabler [22] and Cicchino
[36], for example, estimated 50% and 56% injury reduction
in their analysis, respectively.
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3.2. Results of Statistical Analysis. Table 7 presents the
details of four statistical models that were developed for
crash occurrence, AEB activation, injury risk, and vehicle
damage. *e results show an acceptable accuracy for each
model based on the value of R-squared (R2) and the
corresponding p value. All the input variables except the
road friction were significant in crash, injury, and vehicle
damage models. *is is because we incorporated the real-
time road friction measurements into our algorithms
which is advantageous to the system [74]. Also, in the
crash model, the Mu and Vlv were not significant based on
a 90% confidence interval.

Using the Boruta library in R software, the most im-
portant variables with respect to the statistical models are
presented in Figure 9. *e results show that the most im-
portant parameters on AEB activation, crash, injury, and
energy model were the subject vehicle’s speed (Vsv), types of
the algorithm (ADAS), initial distance or detection range
(Rd), and driver’s reaction time (tr). However, the level of
importance for each parameter was different in each model.
For example, in the AEB activation model, the SV vehicle’s
speed had the highest level of importance, whereas in the
crash model, the type of FCW/AEB system (ADAS) had the
highest importance. *e results also showed that the injury
model mostly depends on the Vsv. *is is because the ve-
locity change (∆Vsv) was the metric to calculate the injury
severity which its value depends on impact characteristics
(e.g., restitution factor and body stiffness). *e following
paragraphs will explain the effect of these important pa-
rameters on the statistical models.

Figure 10 shows how different parameters affect the AEB
activation. *e AL_P algorithm had the highest activation
rate compared to other algorithms. Also, increasing the
initial distance (sensor range) from 50m to 75m, decreases
the AEB activation by 10%. When the SV speed is higher
than 100 kmph, AEB is activated with almost 100% prob-
ability. Also, increasing the driver reaction time will increase
the AEB activation rate.*e activation rate is more than 95%
for the driver reaction time of 1.1 s and more. Although the
current AEB algorithms incorporate the driver’s reaction
time in their mathematical models, in most cases, they use a
fixed value, whereas, depending on driver style, age, and
gender, location of the reaction time can change [14]. *e
results show that for the integrated FCW+AEB system, the
performance of FCW can significantly affect the perfor-
mance of AEB. As mentioned earlier, even though the AL_P
algorithm predicted a similar range of DTC and TTC for
AEB activation, the low value of TTC for FCW (tw � 2.7 s)
led to a higher number of crashes compared to other
algorithms.

Figure 11 shows the effects of type of algorithm (ADAS),
SV vehicle’s speed, initial distance (sensor range), and driver
reaction time on the crash probability. Regarding the effect
of ADAS algorithms on crash probability, we can see that
AL_K is most effective, followed by the AL_TTC which in
turn is followed by the AL_P system. *is is consistent with
the safety effectiveness assessment results that are shown in
Figure 8. To our knowledge, there has not been a study that
assessed the safety effectiveness regarding the safety model of
FCW/AEB algorithms. *e results indicated that decreasing
the SV vehicle’s speed and driver reaction time can sig-
nificantly decrease the risk of crashes. Additionally, in-
creasing the initial distance (sensor range) from 50m to
100m can potentially decrease the risk of crashes by 35%.

*ere have been several studies about the effectiveness of
AEB systems regarding the vehicle’s speed. Figure 12 shows
the distribution of the speed for the SV vehicle equipped
with AEB systems regarding the crash occurrence. *e re-
sults indicate that the selected AEB systems are more ef-
fective to avoid crash for the average speed of 75 kmph and
ineffective for the average speed of 111 kmph and higher.
*is is consistent with the results of the field data analysis
extracted by Cicchino [36]. She found out that the AEB
system is more effective for a speed of 80 kmph or less. Also,
Rizzi et al. [27] studied the low-speed AEB for specific car
models and found that the reduction of rear-end crashes was
significant at the speed of 50 kmph.*e findings of this study
support the fact that the safety performance of current FCW/
AEB systems highly depends on the vehicle’s speed, as
shown in effect plots of the crash, injury, and energy models
(see Figures 11 and 13). *e results of the crash based on the
type of AEB algorithm and SV vehicle’s speed are presented
in Figures 5 and 6.

As mentioned earlier, the injury risk was mostly de-
pendent of the SV vehicle’s speed. Based on the results
shown in Figure 13, the MAIS 2+ injury risk was more than
40% for the vehicle speed higher than 150 kmph, whereas the
injury risk decreased only by 6% if the initial distance
(detection range) increases from 30m to 125m. It must be
noted that the injury risk was measured considering only the
speed change parameter and other factors related to miti-
gation mechanisms (e.g., airbag and vehicle structure) were
not considered. *e crash deformation energy (vehicle
damage) variation versus SV vehicle speed and types of
algorithms are also plotted in Figure 13. *e only study that
we could find related to the effects of AEB systems on vehicle
damage was by Doyle et al. [28]. *ey utilized the insurance
claim data for specific vehicle models and pointed out that
the AEB system can effectively reduce the vehicle’s damage
by 6% to 18%. However, they did not include the factors such

Table 6: *e summary of AEB and FCW performance regarding the DTC, TTC, and activation rate for the AEB and FCW algorithms.

Algorithm Rw (m)∗ Rb (m)∗ tw (s)∗ tb (s)∗ AEB activation (%) FCW activation (%)
AL_K 93.5 (55.66) 30.2 (13.83) 3.8 (1.03) 1.35 (0.48) 81 100
AL_P 60.2 (18.6) 34 (13.2) 2.72 (0.26) 1.49 (0.15) 94 100
AL_T 90.2 (29.3) 34.1 (12.4) 4.1 (0.26) 1.5 78 100
No_AEB 57.5 (18.15) N/a 3 (0.58) N/a N/a 100
∗mean standard deviation.
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as vehicle speed and driver reaction in their statistical model.
Considering these two factors, the results of the current
study indicated that the type of AEB safety model can
significantly change the crash deformation energy.

*e injury risk depends on characteristics of the occupant
(age, gender, position, etc.), vehicle’s structure (body stiffness,
seat mechanism, and passive safety systems), and the impact
mechanism. However, in this study, we were only able to use
the ∆Vsv, which depends on the impact parameters, to
measure the MAIS 2+ injury risk. *erefore, the injury highly
depends on vehicle body stiffness and restitution factor ob-
tained for each reconstructed rear-end crash scenario. Fig-
ure 14 shows the injury risk curves based on crash
deformation energy and speed of the subject vehicle for each
crash scenario. For example, in the C2 scenario, the subject
vehicle was the passenger car and the lead vehicle was a heavy-
duty truck. Hence, the subject vehicle’s driver experienced a
higher injury risk with respect to the vehicle’s speed change
because of the significant difference in vehicles’ mass.

It is important to note that since the aim of this study was
to find how the type of safety algorithms can change the rear-

end crash outcomes, selecting other vehicle types would
result in a similar relationship between parameters but with
different intensities. For example, if instead of a pick-up
truck we had a compact sedan as a subject vehicle, the
amount of injury risk and crash deformation would have
been higher at a certain speed range. However, we would
have seen the same relationship between the type of ADAS
system, vehicle speed, injury risk, and crash deformation.

*e simulations were also categorized based on the SV
vehicle’s initial position into three ranges (see Figure 15). In
55% of simulations, the SV’s initial distance was greater than
the warning range. *is is a typical situation for FCW/AEB
systems which provides more time for the driver to react and
decelerate the vehicle. *e two other ranges were when the
initial position was either between the warning and braking
range or less than the braking range (39% and 5% of cases,
respectively). As mentioned earlier, these situations can
happen in real-world road traffic conflicts due to the lane
change or merging onto the roadway. *e corresponded
crash reduction based on initial distance was 33%, 45%, and
95% from high to short distance, respectively. *is was
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Table 7: Regression analysis results: (a) crash model, (b) AEB model, (c) energy model, and (d) injury model.

Regressors
Crash model1 AEB model1 Energy model2 Injury model2

β SE Sig. flag β SE Sig. flag β SE Sig. flag β SE Sig. flag
Intercept − 3.156 0.253 ∗∗∗ − 3.435 0.340 ∗∗∗ − 162420.49 10122.17 ∗∗∗ − 12.373 1.500 ∗∗∗

Detection range − 0.049 0.001 ∗∗∗ − 0.029 0.001 ∗∗∗ − 729.29 38.58 ∗∗∗ − 0.073 0.006 ∗∗∗

Driver reaction time 2.651 0.082 ∗∗∗ 2.743 0.117 ∗∗∗ 44706.31 2944.23 ∗∗∗ 3.737 0.436 ∗∗∗

Safety margin − 0.096 0.008 ∗∗∗ − 0.133 0.010 ∗∗∗ − 1950.66 326.48 ∗∗∗ − 0.197 0.048 ∗∗∗

Road friction − 0.163 0.296 ns 2.894 0.399 ∗∗∗ − 595.93 11923.83 ns − 2.399 1.768 ns
Br_inp1 − 1.463 0.063 ∗∗∗ 0.672 0.077 ∗∗∗ − 35248.83 2437.02 ∗∗∗ − 3.339 0.361 ∗∗∗

Subject vehicle’s speed 0.065 0.001 ∗∗∗ 0.069 0.002 ∗∗∗ 4490.73 32.86 ∗∗∗ 0.409 0.005 ∗∗∗

Leading vehicle’s speed − 0.001 0.002 Ns 0.023 0.003 ∗∗∗ − 1512.25 78.43 ∗∗∗ − 0.133 0.011 ∗∗∗

Br_L 0.327 0.024 ∗∗∗ 0.318 0.032 ∗∗∗ 12438.63 923.16 ∗∗∗ 1.139 0.137 ∗∗∗

ADASAL_P 2.311 0.083 ∗∗∗ 2.003 0.104 ∗∗∗ 40057.07 3063.87 ∗∗∗ 6.365 0.454 ∗∗∗

ADASAL_TTC 0.599 0.080 ∗∗∗ − 0.571 0.077 ∗∗∗ 9267.35 3064.09 ∗∗∗ 0.714 0.454 Ns
ADASNo_AEB 5.167 0.107 ∗∗∗ − − − 106315.14 3063.87 ∗∗∗ 8.324 0.454 ∗∗∗

n: 14,185; df: 14,174 n: 10,637; df: 10,627 n: 14,185; df: 14,174 n: 14,185; df: 14,174
R2� 0.556; p ≈ 0 R2� 0.432; p ≈ 0 R2� 0.605; p ≈ 0 R2� 0.366; p ≈ 0

Logistic regression modelMultiple linear regression model. Significance codes: P≤ 0.05: ∗; p≤ 0.01: ∗∗; p≤ 0.001: ∗∗∗; p> 0.05: ns.
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expected because the rear-end crash is more likely in close
distance car-following scenarios.

3.3. Limitations. *is study has some limitations that should
be mentioned. While the focus of this study was to evaluate
the AEB system, some vehicles might have other collision-
avoidance technologies, including the adaptive cruise con-
trol that could have affected the vehicle performance in car-
following scenarios. It should be noted that the focus of the
presented study was only on the algorithm, driver reaction,
and road parameters and assumed that the detection systems
are similar in all SV vehicles with the same value for sensor
delay (0.2 s). *e car-following scenarios analyzed in this
study were on a straight road, whereas the FCW/AEB could

potentially perform differently on a slope or curve road.*is
is still a challenging topic that needs to be addressed. [75].

Furthermore, the motion control systems such as a
model predictive controller or a proportional-integral de-
rivative can change the vehicle dynamic response too.
Considering the related controller factors can bring more
insight into how crash avoidance systems perform in dif-
ferent situations.*e reconstruction technique that was used
to measure the crash severity and speed change was limited
by the available information from the NHTSA crash data-
base, PC-Crash library information, and our optimization
method. *erefore, the injury severity and vehicle damage
resulting from these simulations may not be generalized to
all types of vehicles because changing vehicle characteristics
can result in different impact parameters.
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Figure 9: *e results of parameter importance evaluation using Boruta model for each outcome. (a) AEB activation. (b) Crash occurrence.
(c) Crash deformation energy. (d) Injury severity (MAIS 2+).
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Figure 10: Effect plots for four important parameters resulted in the AEB activation model (confidence interval of 95%).
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We also applied recursive feature elimination (RFE)
methods and built a random forest model in the RFE al-
gorithm to select the most important variables. However, the
outputs obtained by this backward selection method
revealed that all the variables had almost the same level of
importance due to their distribution which made no sense in

terms of interpretation. Hence, we decided to apply a more
efficient variable selection method (Boruta) to rank pre-
dictors based on their predictive power and adjust for many
interactions of control variables. Last but not least, the false-
positive cases for AEB activation were not considered in this
study which could affect the driver decision-making process.
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Figure 11: Effect plots for four important parameters resulted in the crash model (confidence interval of 95%).
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Figure 17: Crash scene diagram for each scenario. (a) C1. (b) C2. (c) C3. (d) C4.

Table 8: Summary of parameters resulted from the crash reconstruction.

Impact parameter
Crash reconstruction case

C1 (pick-up truck) C2 (4-door sedan) C3 (pick-up truck) C4 (pick-up truck)
Restitution factor 0.1 0.12 0.11 0.12
Contact friction 0.67 0.6 0.55 0.63
Body stiffness (N/m) 382590 145678 422811 325299

Table 9: Summary of SV vehicle parameters that were used in accident reconstruction∗.

Vehicle parameter
Crash reconstruction case

C1 (pick-up truck) C2 (4-door sedan) C3 (pick-up truck) C4 (pick-up truck)
L/W/H (m) 4.6/2/2.2 4.6/1.8/1.4 5/1.9/1.8 5.5/2.2/2.8
Inertial properties
yaw/roll/pitch (kg.m2) 4099/1261/4099 2439/731/2439 4219/1265/4219 4947/1341/4947

Tire model Linear with maximum
lateral slip of 10°

Linear with maximum
lateral slip of 10°

Linear with maximum
lateral slip of 10°

Linear with maximum
lateral slip of 10°

Tire size front/rear 285/35 R19 255/35 R18 265/60 R 18 235/40 R 17
Suspension properties
(stiffness/damping)

31882 (N/m)/3586
(Ns/m) 24179 (N/m)/2731 (Ns/m) 35234 (N/m)/3963 (Ns/m) 34860 (N/m)/3921 (Ns/m)

Wheelbase 2.85 2.75 3 3
∗*ese values have been extracted from the PC-Crash library and available public domain information.
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4. Summary and Conclusion

Efforts have been made in this study to provide some insights
into the effectiveness of different AEB decision-making al-
gorithms on rear-end crash outcomes.*e real-world rear-end
crash scenarios were simulated for a wide range of parameters
that were extracted from either real-world crash data or lit-
erature. *e driver input was also modeled using the reaction
time and brake exertion. *ree architects of FCW+AEB al-
gorithms were selected to analyze their effect on vehicle
performance to avoid or mitigate the crash using the following
metrics: the crash occurrence rate, injury risk, and crash
deformation energy. Using a series of simulation results, the
statistical model was used to evaluate the relationship between
those metrics and input variables, and the importance of
parameters was measured based on the Boruta algorithm.

*e overall effectiveness assessment of the AEB system
has shown a 57% reduction of rear-end crashes, a 52%
reduction of injury severity (striking vehicle’s passengers),
and a 47% reduction of damages for striking vehicles. *e
results also indicated that the available AEB algorithms are
more effective up to the average speed of 80 kmph. *e
results of the Boruta model indicated that the speed of the
subject vehicle, type of AEB algorithm, sensor detection
range (initial distance), and driver reaction time are the most
important parameters on crash outcomes and activation of
AEB systems. In addition, the results indicated that the
performance of FCW had a direct impact on the effec-
tiveness of the AEB system for the integrated FCW+AEB
system. *is is important for developing the partial brake
systems (before full brake exertion) that are recently under
development for the vehicles to replace the driver brake
reaction [43]. *ese technologies are expected to play a key
role in the future of transportation, particularly in the
transition period from conventional vehicles to fully au-
tonomous vehicles.

*is study also provides basic information to identify
some edge case scenarios that can be used for the safety
evaluation of these systems at different stages of develop-
ment and deployment. In the future, we plan to study the
effectiveness of AEB algorithms that are based on vehicle-to-
vehicle connection or developed for level four of autono-
mous vehicles.

Appendix

A. PC-Crash Simulation

*e PC-Crash simulation has two main parts: modeling the
trajectory of the vehicle: the kinetics model which considers
all vehicle dynamic forces in three directions was used in PC-
Crash simulations.

Impact model: the impact model was based on combined
conservation of linear and rotational momentum in three
directions with restitution factor. Using the coefficient of
restitution allows us to have a more realistic assessment of
the impact phase by dividing it into the deformation and
restoration phase. *is reflects the capacity of the contacting
bodies to recover from the impact. For simplicity, the 2D

impact model is presented in Figure 16, whereas in PC-
Crash, the 3D analysis is conducted.

*e following equations show how the postcrash velocity
(only for SV) is measured:

Vsvt
� VsvT

+ ωsvz
× t1,

Vsvn
� VsvN

− ωsvz
× n1,

(A.1)

where Vsv_Tand Vsv_N are the tangential and normal velocity
components of SV center of gravity, ωsvz

is the yaw speed,
and t1 and n1 are the distances of the center of gravity to the
impulse point. *e components of the relative speed be-
tween two vehicles at the impulse point with assuming the
Vlvt

and Vlvn
are the velocity components of LV as shown in

Figure 17,
Vt � Vsvt

− Vlvt
,

Vn � Vsvn
− Vlvn

.
(A.2)

Also, the conservation of linear and rotational mo-
mentum for SV vehicle is

msv Vsvt
′ − Vsvt

􏼐 􏼑 � T,

msv Vsvn
′ − Vsvn

􏼐 􏼑 � N,

Isvz
ωsvz
′ − ωsvz

􏼐 􏼑 � − Tn1 + Nt1,

(A.3)

where using the combination of the above equations enables
us to measure the change of relative velocity which can be
calculated from

Vt
′ � Vt + c1T − c3N,

Vn
′ � Vn − c3T + c2N,

(A.4)

where

c1 �
1

m1
+

1
m2

+
n
2
1

Isvz

+
n
2
2

Ilvz

,

c2 �
1

m1
+

1
m2

+
t
2
1

Isvz

+
t
2
2

Ilvz

,

c3 �
n1t2

Isvz

+
n2t2

Ilvz

.

(A.5)

Depending on the restitution factor and contact friction,
the above equations are solved to calculate the postimpact
speed. PC-Crash has built-in functions that if the two ve-
hicles made contact during the simulation, the impact
characteristics including crash deformation energy are
calculated from the contact point based on the body’s
stiffness, restitution factor, and contact friction. *is energy
is measured using the following equation [56]:

E �
F

2
× sdef, (A.6)

where E is the deformation energy, F is the impact force, and
sdef is the crush depth and depends on body stiffness. *e
optimum values of impact parameters resulted from four crash
reconstruction simulations for the following vehicle are pre-
sented in Table 8. It shows that the restitution factor and
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contact friction were very close regardless of the type of vehicle.
However, the body stiffness which determines the crush depth
was significantly different. For example, the pick-up truck had
almost two times a stiffer body than a passenger car.

General vehicle information regarding the subject ve-
hicle is presented in Table 9.
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