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+ere are various means of monitoring traffic situations on roads. Due to the rise of artificial intelligence (AI) based image
processing technology, there is a growing interest in developing traffic monitoring systems using camera vision data. +is study
provides a method for deriving traffic information using a camera installed at an intersection to improve the monitoring system
for roads.+emethod uses a deep-learning-based approach (YOLOv4) for image processing for vehicle detection and vehicle type
classification. Lane-by-lane vehicle trajectories are estimated by matching the detected vehicle locations with the high-definition
map (HDmap). Based on the estimated vehicle trajectories, the traffic volumes of each lane-by-lane traveling direction and queue
lengths of each lane are estimated. +e performance of the proposed method was tested with thousands of samples according to
five different evaluation criteria: vehicle detection rate, vehicle type classification, trajectory prediction, traffic volume estimation,
and queue length estimation.+e results show a 99% vehicle detection performance with less than 20% errors in classifying vehicle
types and estimating the lane-by-lane travel volume, which is reasonable. Hence, the method proposed in this study shows the
feasibility of collecting detailed traffic information using a camera installed at an intersection. +e approach of combining AI and
HD map techniques is the main contribution of this study, which shows a high chance of improving current traffic
monitoring systems.

1. Introduction

Urban road traffic is a complex phenomenon caused by
interactions among various moving entities, such as vehicles
and pedestrians. +e growth in urban population during the
past decades has raised the severity of urban traffic con-
gestion, leading to socioeconomic and environmental
problems in modern cities. To mitigate this issue, brisk trials
have been conducted to apply intelligent transportation
systems (ITS) in urban roads. In this regard, traffic moni-
toring is one of the most valuable functions of traffic
management systems (TMSs). Particularly in advanced
TMSs (ATMSs), real-time collection of precise information
through traffic monitoring plays a crucial role for traffic
managers when they develop various control strategies
[1–3]. Furthermore, the detailed numerical status of real-
time traffic such as lane-by-lane travel volume and queue

length can be used as supplementary information for co-
operative intelligent transportation system (C-ITS) opera-
tions based on autonomous vehicles [4, 5].

Traffic monitoring systems have been developed in
various ways, and traffic information is collected indirectly
or directly depending on the characteristics of a specific
monitoring system. Indirect methods estimate traffic status
such as travel volume and travel time within a road section
based on the data samples collected via roadside units (RSU)
or global positioning systems (GPS), which are instances of
automatic vehicle identification (AVI) technologies [6–8].
However, the estimation performance of these methods is
highly dependent on the market penetration rate (MPR) of
equipped vehicles for vehicle-to-infrastructure (V2I) com-
munication. On the contrary, direct methods measure the
traffic conditions using point sensors such as loop detectors
[9–11], radars [12–14], and video cameras [15, 16]. Loop
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detectors have been widely used for traffic monitoring due to
relatively higher reliability in collecting travel volume, oc-
cupancy, and spot speed, but their installation and main-
tenance complexity is higher because they are normally
installed on road surfaces [17]. Radar-based monitoring
systems are relatively easier to install, but the cost of the
hardware itself is more expensive [18]. Moreover, the
common limitation of both loop detectors and radar is
difficulty in classifying vehicle types. However, cameras are
relatively cheaper than radars, and camera-based moni-
toring systems are able to classify vehicle types [19].+ey can
also distinctively obtain traffic information in each lane of a
road spot [17]. +ey have a high potential for extracting
more detailed traffic information at a specific location, but it
requires advanced image processing techniques to obtain
reliable information, which is problematic. Automatic traffic
data collection via camera-based monitoring systems can be
operated at lower costs only when proper image processing
techniques support the system.

Various methods have been proposed in several studies
related to automatic image processing techniques. Some
studies from the early 2000s had focused on improving the
poor performance with respect to vehicle detection owing to
several technical issues, such as segmentation of objects in
the background and shadows [20], difficulties in detecting
dark-colored vehicles [21], differences in day- and night-
vision data [22], and influences of weather conditions [23].
An attempt to develop a technique to detect accidents au-
tomatically was also reported [24].

Recently, studies began to focus on using machine-
learning or deep-learning techniques, and one of the most
popular examples is the application of You Only Look Once
(YOLO) to process traffic vision data [25]. YOLO has high
applicability to real-time traffic monitoring based on its
capability to process multiple images faster than conven-
tional region-based convolutional neural networks (R-
CNNs). With the aid of deep-learning techniques such as
YOLO or faster R-CNN, the performance of detecting ve-
hicles using real-time traffic vision data has been tried to
improve in several studies. +eir common purpose was to
accurately count vehicles for estimating traffic conditions in
specific road spots [26]. Some of them specifically focused on
detecting vehicles in captured scenes with several objects
(vehicles) with high density [27], while others focused on
detecting small objects (vehicles) in complex scenes [28, 29].
Some studies have also attempted to distinctively detect road
vehicles and pedestrians [30, 31].

Such object detection techniques have evolved into real-
time visual object tracking approaches. Several studies have
proposed methods for tracking multiple objects in time
series based on convolutional neural networks (CNNs)
[32–34]. +ere are also some examples of using kernelized
correlation filter (KCF) for high-speed tracking of objects on
roads and even in waterway traffic [35, 36]. Within the
context of object tracking on roads, there were a few studies
related to tracking moving vehicles particularly for the
purpose of collecting more detailed traffic behaviors [37].
+ey have proposed methods for extracting and analyzing
trajectories of multiple vehicles within a specified road spot

for capturing lane-change events [38] or measuring the
speeds of individual vehicles [39]. However, till now, only
rough estimations have been conducted on trajectories
without accurately measuring vehicle positions over time.
For example, with the current machine-learning-based
image processing techniques, a possibility of detecting
multiple vehicles as a single object arises when they travel
through similar paths and speeds, even though on different
road lanes. Hence, it is still difficult to obtain an accurate
trajectory of a vehicle by tracking the exact position of the
road lane where the vehicle is located. Obtaining accurate
trajectories of multiple vehicles would be advantageous to
traffic managers intending to improve the accuracy of col-
lecting travel volume or queue length values in each traveling
direction at an intersection. Furthermore, it would enable us
to obtain information on different road lanes, which can be
useful for deeper analysis of traffic flow behavior and sup-
porting autonomous vehicle operations.

+erefore, we present a method for deriving traffic in-
formation using a camera installed at an intersection for
improving monitoring performance. +e method uses a
deep-learning-based approach for image processing for
vehicle detection and vehicle type classification. +en, the
method estimates lane-by-lane vehicle trajectories by
matching the detected vehicle locations with the high-def-
inition map (HD map). While estimating the vehicle tra-
jectories, we attempt to reduce the error of estimating the
center points of the bounding boxes in the images of vehicles
to ensure proper performance of the HD map-matching
process. Based on the estimated vehicle trajectories, the
traffic volumes of each lane-by-lane traveling direction and
queue lengths of each lane were estimated as well. In fact,
this is not the first attempt to increase the accuracy of
trajectory estimation to the lane level.+e work in [40] had a
similar purpose and approach but differs from the present
study in that recent deep-learning techniques and HD map
technology are combined for estimating vehicle positions
accurately.

+e remainder of this paper is organized as follows.
Section 2 provides a description of the method of vehicle
detection and classification, along with the method of
matching the detected vehicle positions with the HDmap for
lane-by-lane trajectory estimation. Section 3 describes the
settings for testing the performance of the proposed method,
and Section 4 presents the test results. Section 5 concludes
this paper and offers suggestions for further work.

2. AI-Based Vehicle Detection
System at Intersection

2.1. Data Flow Framework. In fact, the image processing
technology these days can easily identify a vehicle in a
captured image, as long as the image resolution is sufficient.
However, the focus of this study is on how to precisely
extract traffic information upon multiple vehicles on roads
rather than a single vehicle and how to deal with the
extracted data from the traffic monitoring perspective.
Hence, it is necessary to consider the data flow framework of
the camera-based vehicle detection system.
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Figure 1 shows the data flow framework of the arti-
ficial intelligence (AI) based vehicle detection system for
C-ITS. As shown, the system consists of four compo-
nents: roadside sensor, traffic monitoring center, RSU for
communication, and an on-board unit (OBU) in vehicles.
In this study, traffic cameras installed at intersections
were considered as the main roadside sensors. First, the
vision data of the traffic status at an intersection were
collected in real-time via a roadside sensor and sent to a
data collecting server in the traffic monitoring center.
+en, using the vision data, the center conducted the
vehicle detection task using the AI-based image pro-
cessing technique. +e information gathered from the
vehicle detection task was then used to extract and predict
the trajectories of vehicles. +en, the trajectory data
information underwent the HD map-matching task to
improve the prediction accuracy. +e information mes-
sage of the detected vehicles and their predicted trajec-
tories were sent to the OBU in a subject vehicle via RSU
using infrastructure-to-vehicle (I2V) communication.
When a message was received, the collision risk of the
subject vehicle could be calculated based on the predicted
trajectories and also be displayed to the vehicle moni-
toring system. +e status of the subject vehicle could be
sent back to the traffic monitoring center via the RSU
using V2I communication.

+e framework described above provides two major
advantages in terms of C-ITS operations. +e first is that
vehicle-to-vehicle collisions can be prevented by pro-
viding vehicles with their detection information traveling
through intersections. Implementing a service that pro-
vides detailed information, such as vehicle location, speed,
and abnormal status, is possible. In addition, it provides
predictive information in seconds using the previously
detected information. Second, a more detailed road status
can be provided by extracting lane-by-lane traffic con-
ditions near intersections. It is possible to provide a
service that provides information on the traffic volume
and vehicle queue of each lane. Furthermore, a service that
detects illegally parked vehicles on streets can also be
implemented. In this study, we aim to improve the ad-
vantages of the framework. +e focus of this study is to
develop methodologies for AI-based vehicle detection and
HD map matching, which are the tasks of the traffic
monitoring center described above.

2.2. AI-Based Vehicle Detection and Trajectory Prediction.
In this study, a deep-learning algorithm is adopted using
roadside sensors to extract object information such as ve-
hicle location, movement trajectory, and vehicle speed at
intersections and surrounding areas, and useful traffic in-
formation, such as traffic volume and queue length, is es-
timated. +e proposed algorithm is based on vision data
transmitted from the roadside sensors to a vision data
collecting server located in the traffic monitoring center, and
the predicted data are stored in a real-time database for real-
time data communication. As shown in Figure 2, the pro-
posed algorithm consists of (1) vehicle detection and

classification with deep learning, (2) trajectory extraction,
(3) trajectory correction, and (4) trajectory prediction, and
the details are outlined as follows.

2.2.1. Vehicle Detection and Classification with Deep
Learning. We used a deep-learning-based algorithm for
vehicle detection as it has higher applicability to real-time
traffic monitoring compared to other image processing
techniques such as traditional labeling due to its capability
of processing multiple images faster than others. +e
proposed system performs real-time detection of vehicle
location and speed from the vision data sent from the
vision data collecting server based on the YOLOv4 deep-
learning algorithm and performs vehicle type classifica-
tion. +e YOLOv4 algorithm uses the state-of-the-art
deep-learning method and is optimized, showing 10%
improved performance for the detection accuracy index
(MAP: mean average prediction) and a 12% improved
detection speed index (FPS: frame per second) compared
to YOLOv3, the previous version of the algorithm. In
particular, YOLOv4 can process vision data with effi-
ciency, enhancing its applicability in the traffic safety
sector where detection, preprocessing, and warning
message generation must be performed within 0.1
seconds.

In the process of vehicle detection and classification with
deep learning, the algorithm processes vision data in frames
and primarily generates vehicle type information such as
cars, trucks, and buses and vehicle location information
based on pixels. As for vehicle type information, data derived
from YOLOv4 can be directly used, and additional separate
training was performed based on the target site data to
improve the accuracy of vehicle type information. Vehicle
location information was generated based on the informa-
tion of each vertex and the center point of the bounding box.
+is information was then converted into longitude and
latitude coordinates based on the center point of the vehicle’s
bottom through correction.

2.2.2. Trajectory Extraction. +e vision data collected from
the roadside are distorted when converting 3D real-world
images into 2D images. Because of this distortion, a sig-
nificant error occurs between the actual physical coordinates
and the image coordinates depending on the degree of vision
data distortion when the location information detected in
pixel units is converted directly into longitude and latitude
coordinates. In this study, to remove this error, the corrected
vision data were generated from the distorted vision data by
inverse application of the camera intrinsic parameters
extracted through its calibration. Note that the focal length,
principal point, and distortion are the intrinsic parameters
of the camera. +e values of the intrinsic parameters were
determined by projecting a 2D image into 3D world space.
Also, note that an existing method is used for the distortion
correcting process in this study. For a better understanding
of the details of the distortion correcting method, refer to the
work by Seong et al. [40]. +e equation for correcting the
vision data distortion is as follows:
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where xp, yp are the pixel coordinates of an image, xpu, ypu
are the pixel coordinates of the image corrected for dis-
tortion, xn, yn are the normalized planar coordinates with
distortion, and xv, yv are the normalized planar coordinates
with corrected distortion. Focal length: fx � 664.821;
fy � 668.333. Principal point: cx � 350.377; cy � 350.377.

Distortion: k1 � 0.278027, k2 � 0.058863, p1 � 0.000278,
and p2 � −0.001996.

+e vehicle location information detected from each
image frame was expanded to a continuous frame for
extracting the vehicle trajectory information and data for use
in vehicle location correction. In the video images captured
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Figure 1: Data flow of AI-based Vehicle Detection system for C-ITS.
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by a camera, the similarity between the feature information
of the object in the image frame is used to track the location
change of the objects. To track the vehicle’s location, its
location and size in the previous frame were compared with
those of the vehicle object detected in the next frame. As a
result, the vehicle with the largest intersection of union
(IOU) was classified as an identical vehicle to the vehicle
existing in the previous frame; based on this classification,
the continuous movement of the vehicle was tracked. In
addition, if there was no intersection of union where the
location and size of the detected object for a set frame (0.2 s)
overlapped with that in the previous frame, the object was
recognized as a new object, and a new vehicle tracking ID
was assigned.

+e pixel coordinates extracted from an image are cal-
culated based on a matrix transformed using Transverse
Mercator coordinates of four designated points in the HD
map. +e transformed matrix is derived by using homog-
raphy that generalizes transformation relationships after
obtaining coordinates corresponding to sample image co-
ordinates. If there are four points (x1, y1), (x2, y2), (x3, y3),
and (x4, y4) in a plane and these points are projected to
another plane as (x1′, y1′), (x2′, y2′), (x3′, y3′), and (x4′, y4′),
there exists a 3 by 3 homography matrix H satisfying re-
lationship among these corresponding points. +e camera
image coordinates are converted to real-world coordinates
using such a mechanism.

2.2.3. Trajectory Correction. In general, deep-learning-based
vehicle detection extracts information in the form of a
bounding box, and the central point of the bounding box
represents the overall vehicle location information. How-
ever, as shown in the example in Figure 3, when vehicle
location information is extracted with reference to the center
point of the bounding box, the result differs from the lo-
cation with reference to the center point of the vehicle
bottom, which is the actual required information for traffic
monitoring. In addition, when the center point is estimated

based on the bounding box, an error occurs in the estimated
position according to the heading shown (by captured angle)
in the vehicle image. +is type of error can lead to another
error in trajectory prediction. +is subsequent error can
lower the performance of the HD map-matching process,
which deals with extracting lane-by-lane traffic information
later. Furthermore, if we assume that the trajectory pre-
diction with such an error is utilized in a vehicle’s collision
warning or avoidance system, it can also lead to insufficient
performance of the safety system. Hence, it is necessary to
give an effort in reducing the errors while estimating the
center point of the bounding box.

In this study, to reduce the error in center point esti-
mation, real-time correction of vehicle location was per-
formed through the following two steps: (1) extracting the
heading and determining the traveling direction of the
vehicle and (2) estimating the shape of the vehicle bottom
and correcting the location.

For the first task, the vehicle heading was obtained using
the pixel coordinates detected in the vision data collected
from the road (the bounding box center point value) and the
pixel coordinates of the previous frame, as shown in Fig-
ure 4. +e heading of a vehicle is extracted through the
following steps: (1) +e vehicle position of the previous
image frame and the position of the current image frame are
converted into coordinates using a transformation matrix.
(2)+e angle formed by the two positions is calculated using
the Pythagorean equation, and the distance between the two
positions is calculated using the coordinate values. +e
extracted heading for each frame was corrected based on the
low-pass filter as follows:

zn � σ · zn−1 +(1 − σ) · zn, (2)

where zn is the corrected heading, zn−1 is the heading at
previous time, zn is the heading at current time, and σ is the
weight.

+e vehicle traveling direction and the vertical direction
are derived using the heading obtained from the real-time
estimation and the detected pixel coordinates. Figure 4(a)
shows the corrected results of the low-pass filter. In
Figure 4(b), the orange and blue colored lines represent the

Figure 3: Comparison before (red-colored dot) and after (orange-
colored dot) the trajectory correction.

Vehicle detection and
classification with deep learning

Trajectory extraction

Correction of image distortion

Extraction of vehicle heading and
determination of vehicle travelling

direction

Estimation of vehicle bottom shape
and correction of vehicle location

Tracking of vehicle location

Trajectory correction

Trajectory prediction

Figure 2: Algorithm for vehicle detection and trajectory prediction
with deep learning.
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filtered and raw data, respectively. Noisy data points and
variation in heading information are smoothed using a low-
pass filter.

Based on the previously derived information of vehicle
traveling direction and vehicle type, the shape of the vehicle
bottom was estimated, as shown in Figure 3. Because the
vehicle height varies depending on the type, the shape of the
bottom surface within the bounding box is estimated by
applying the average vehicle height per vehicle type. +e
bottom surface information is estimated based on the fol-
lowing steps: (1) +e center points of the bounding boxes in
the previous image frame and in the current image frame are
converted into Transverse Mercator coordinates. (2) Since
the vector formed by the two center points is the moving
direction of the vehicle, a hypothetical vector perpendicular
to the moving direction is drawn to create a rectangular
vehicle bottoms shape (assuming that vehicles have a
rectangular shape from the top view). (3) Let hcamera be the
height between camera and ground surface, hvehicle be the
height of a vehicle, d1 be the distance on the surface between
camera and vehicle, and d2 be the distance on the surface
between the camera and point where the line connecting
between the camera and the top of the vehicle meets the
surface. Here, hcamera, hvehicle, and d2 are directly obtained
from image data, and d1 then can be calculated by the
triangle proportional theorem. Note that the height of the
vehicle is assumed to be half of the actual height because the
center point of the bounding box detected in the image is
half the actual height in usual. Based on this method, the four
corner points (in 3D coordinates) of the vehicle bottom are
estimated. (4) +e 3D coordinates of the vehicle bottom
(a′, b′, c′, d′) are then converted into the image coordinates
(a″, b″, c″, d″) using an inverse transformation matrix, and
this finalizes estimating the vehicle bottom.+e center point
information of the vehicle’s bottom surface is extracted
based on the estimated pixel information of the bottom

surface, and the final pixel-based location information of the
vehicle is derived based on this information.

2.2.4. Trajectory Prediction. Using the previously derived
real-time trajectory data of the vehicle, the upcoming vehicle
trajectory information from 1 to 3 seconds was estimated.
Location information for each time slot was used to estimate
the future trajectory of the vehicle. In addition, a polynomial
curve fitting algorithm was used, as shown in the following
equation, by applying a linear equation if the past data is a
vehicle traveling forward or a quadratic equation for a
turning vehicle, to extract the future location of the vehicle.
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(3)

When estimating the future location of the vehicle based
on the detected vehicle location information alone, the result
showed that the prediction performance is decreased at the
intersection approach where a fewer number of points exist
in the trajectory data. To address this limitation, the HDmap
previously built at the intersection was used, as shown by the
solid black lines in Figure 5. Using the location information
per link in the HD map, the future vehicle location was
estimated assuming that the vehicle trajectory will follow the
shape of the HD map link, and the estimated result is shown
in Figure 5. +e blue solid line represents the ground truth,
the green- and blue-dotted lines represent the link of the HD
map where the detected vehicle is assigned, and the red-
dotted line represents the estimated future location of the
vehicle.
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Figure 4: Example of vehicle heading estimation. (a) Example image. (b) Correction result (example).
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2.3. Provision of V2X Communication-Based Detection
Information

2.3.1. Generation of HD Map-Based Information. +e cur-
rent C-ITS provides information such as unforeseen inci-
dents or accidents via messages that include longitude and
latitude data. For such type of information, C-ITS has an
advantage in terms of general use of information but is
disadvantageous when the number of messages increases
sharply with the increase in the number of related pieces of
information. Furthermore, in the case of existing C-ITS
based on location information, the computational load in-
creases rapidly as the number of messages increases when
matching the predicted vehicle trajectory information and
point of event occurrence for each event. What is worse in
the case of predicting trajectory based on the past trajectory
is that the accuracy decreases at curved sections and in-
tersections, leading to reduced accuracy when matching
events.+erefore, in this study, to overcome the limitation in
sending location information based on longitude and lati-
tude, the AI-based detection and prediction information
provided in the previous subsection was combined with the
HD map link information, as shown in Figure 6(a).

Figure 6(b) shows the HDmap link allocation algorithm.
First, in the process of extracting HD map link information,
information such as the length, linearity, and type of link and
the longitude and latitude of the start and end points are
extracted from the link attribute information of the HDmap.
+is information of the HD map is compared with the
detected location coordinates of the vehicle, and matching is
performedwith the nearest link, extracting the lane on which
the vehicle is currently traveling. Figure 7 shows an example
of the HDmap link allocation based on the trajectories of the
forward-traveling vehicle and turning vehicle. As shown in

the figure, information on whether the vehicle travels for-
ward or turns is extracted based on the vehicle trajectory for
the past 1 s. Based on this information, if the vehicle is
determined to be traveling forward, links with forward-type
traveling are extracted from the HD map links, and the
extracted candidate links and vehicle trajectory for 1 s are
matched based on the start and end points, thereby
extracting the HD map link with the closest matching. Fi-
nally, the HD map link extracted based on the distance is
compared with the heading of the vehicle traveling direction,
and when the latter shows consistency within a set threshold,
the HD map link is allocated.

To enhance the applicability of the extracted information
based on AI, the information extracted from the vision
sensor is allocated in HD map link units. +en, the number
of vehicles present in the link representing density, the most
necessary information in traffic management, and queue
length information are generated by the link. +e density is
calculated as the difference (nin − nout) between the number
of vehicles entering the starting point (nin) and that leaving
the end point of the link (nout). As for the queue length of a
vehicle, when the average speed over the last 1 s is smaller
than the set speed for each HD map link, the corresponding
vehicle is classified as the vehicle in the queue. To improve
the applicability of the information, the queue length is
expressed based on the offset of the HDmap. For example, if
the length of the HD map link is 50m, the start point of the
link is set to 0, and the end point of the link is set to 50 based
on the vehicle traveling direction. Based on these values,
when the vehicle queue length is 20m from the end point of
the link, the start point of the queue is offset by 30, and the
end point by 50.

2.3.2. Data Design for V2X Communication-Based Infor-
mation Provision. Data converted based on the link format
of the HD map are stored in the server in the format
shown in Tables 1 and 2 to be utilized in messages in C-ITS
in the future. Table 1 shows the storage format of vehicle
information, which is used for storing and sharing object
information (vehicle type, longitude, and latitude coor-
dinates) extracted from AI. However, to improve the
applicability of the information and accuracy of matching
with the vehicle trajectory, the information allocated to
the HD map link is combined. In addition, providing
predicted information of vehicle objects based on the HD
map link ID facilitates the calculation of the probability of
collision in the future traveling direction of an autono-
mous vehicle.

Table 2 shows the storage format of data, primarily
processed to facilitate the application of the information
extracted from AI-based detection information to the traffic
management field. As described above, information of the
number of vehicles present in the link (density), queue
length information, and average speed information is gen-
erated with reference to the HD map link. Similar to the
storage format of vehicle information (Table 1), the pre-
dicted information is provided to facilitate the calculation of
the collision probability in the future traveling direction of

Figure 5: Example of vehicle location prediction.
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an autonomous vehicle. As shown in Tables 1 and 2, not only
does the proposed system enhance the applicability of in-
formation by actively utilizing HD map links, but also the
object extraction and traffic-related information are pro-
vided in combination with a similar format considering the
need for other information attributes depending on the
situation.

3. Target Site for Application of the Proposed
Method and Evaluation

3.1. Target Site. Figure 8 shows the target site for applying
the AI-based vehicle detection and prediction technique
proposed in this study. +e proposed system was evalu-
ated using data collected for three days, and data for
accuracy verification were generated in two steps as

follows. First, the ground truth data for calculating the
accuracy of vehicle location information were generated
using a drone, by capturing the same area as the image
data collected from the roadside vision sensor and col-
lecting vertical images. Second, information such as the
vehicle type, number of vehicles in a link, and queue
length was generated based on a field survey, and the
vehicle type and the number of vehicles were manually
counted from visual observation of image data. To prevent
human errors in counting, a cross-check and final check
were performed using labeled image data.

3.2. Accuracy Evaluation. Descriptions of how we evaluate
the performance of the proposed methodologies are pro-
vided in this subsection, which is based on five different

Point 1-1

Point 2-1
Point 1-2

Point 2-2

Path 1

Path 2
Line 1

Line 2

Detection of a vehicle
traveling forward

Detection of turning
vehicle

Path3

Point 2-1

Point 2-2
Point 1-2

Line 2

Line 1

Point 1-1

Figure 7: Example of road lane allocation for a vehicle traveling forward and a turning vehicle.
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Hd map information
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Vehicle information
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- Vehicle trajectory
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- Traveling direction

HD map link
search

Combining the
Hdmap link and

detection information

(b)

Figure 6: HD map example for generation of HD map-based information of the target site (a) and HD map link allocation algorithm (b).
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evaluation criteria: vehicle detection rate, vehicle type
classification, trajectory prediction, traffic volume estima-
tion, and queue length estimation.

3.2.1. Accuracy of Vehicle Detection and Classification.
To evaluate the vehicle detection performance, the detection
rate was calculated to determine whether all vehicles were

Table 2: Traffic information storage format including the number of vehicles on the link and queue length.

Field name Description
LinkID Serial number of link ID in road central line of HD map in the detection area
Timestamp Vehicle detection time (present)
Avgspeed Average speed of vehicles with link ID
Linktraveltime Difference between the entry and exit time of vehicle
Numvehicle Number of vehicles for the applicable link (present)

Object status ObjectID ID of an object with abnormal driving
Offset Offset of event point for link ID

Queue
QueueID Queue event ID
Offsetstart Start point of offset of event point for link ID
Offsetend End point of offset of event point for link ID

Road prediction

Index Index (0–29 for 3 s prediction in units of 0.1 s)
Timestamp Vehicle detection time (prediction)
Numvehicle Number of vehicles for the applicable link (prediction)
Avgspeed Average vehicle speed (prediction)

(a) (b)

Figure 8: (a) Example of roadside sensor screenshot. (b) Example of HD map.

Table 1: Vehicle information storage type.

Field name Description
LinkID Serial number of link ID in road central line of HD map in the detection area
Timestamp Vehicle detection time: Unix timestamp (UTC) of accuracy in milliseconds
ObjectID Object ID
Vehicletype Vehicle type
Vehicletypeprob Vehicle type probability
Objectstatus Normal/abnormal traveling status (abnormal when not in motion for a certain period of time)
Offset Offset of event point for link ID
Posdistance Distance between the present HD map link and the extracted coordinates in longitude/latitude
Poslong Longitude
Poslat Latitude
Speed Speed of detected vehicle (km/h)
Heading Heading (°)

Object prediction

Index Index (0–29 for 3 s prediction in units of 0.1 s)
Timestamp Vehicle detection time (prediction)
Poslong Longitude
Poslat Latitude
Speed Speed (km/h)

Heading Heading (°)
LinkID Link ID of predicted location at the timestamp of the detected object
Offset Offset of link ID of predicted location at the timestamp of the detected object
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successfully detected regardless of vehicle type. As in
equation (4), it is defined as the ratio of the total number of
detected objects to that of ground truths:

detection rate �
total number of detected objects
total number of ground truths

. (4)

Vehicle classification performance is evaluated through
MAP, which is a performance evaluation index widely used
in the field of computer vision. MAP is the mean of the
average precision (AP) values of each vehicle type. +e AP
represents the performance of the classification algorithm as
a single value, and it is calculated as the area below the graph
line in the precision-recall graph. As in equation (5), the
precision is calculated as the ratio of the number of correct
answers for vehicle type classification (true positives) to that
of all detected vehicles (sum of true and false positives). +e
recall is calculated as the ratio of the number of correct
answers (true positives) to that of all ground truths (sum of
true positives and false negatives), as shown in equation (5).
Precision and recall are inversely related to each other.

Hence, the changes in such a relationship are analyzed to
properly evaluate the overall performance of the proposed
method.

Precision �
TP

TP + FP
�

TP
all detection

, (5)

Recall �
TP

TP + FN
�

TP
all ground truths

. (6)

3.2.2. Accuracy of Vehicle Trajectory Estimation. +e per-
formance of the vehicle trajectory prediction was evaluated
by comparing the predicted and actual trajectories. +e
predicted trajectory is the set of coordinates within an in-
tersection derived by the AI-based detection technique,
while the actual trajectory is that directly generated from the
image data. +e average Euclidean distance is used for
calculating the prediction accuracy, as shown in the fol-
lowing equation:

average Euclidean distance �

���������������������������

􏽐
N
t�1 xa,t − xp,t􏼐 􏼑

2
+ ya,t − yp,t􏼐 􏼑

2
􏽱

N
, (7)

where N is the number of sets of t for the comparison,
(xa,t, ya,t) are the actual coordinates of the vehicle location
at t, and (xp,t, yp,t) are the predicted coordinates at t.

3.2.3. Accuracy of Traffic Volume Estimation. Traffic volume
was estimated by comparing the number of vehicles counted
by the image processing (estimated value) technique and
that counted manually (actual value). +e evaluation was
performed by calculating the root mean square error
(RMSE) and mean absolute percentage error (MAPE). +e
former is used to check the degree of difference between the
estimated and actual values, which can be calculated using
the following equation:

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

, (8)

where n is the number of data points for the comparison, yi

is the i-th predicted value, and 􏽢yi is the i-th actual value of
the traffic volume.

However, RMSE is highly influenced by the size of the
estimation subject (scale-dependent errors), and it may
emphasize only greater errors than the small ones. Hence, we
calculate MAPE as well, which is independent of the scale of
the estimation subject and can be calculated using equation
(9):

MAPE �
100
n

􏽘

n

i�1

Ai − Fi

Ai

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (9)

where n is the number of data points for the comparison, Ai

is the i-th predicted value, and Fi is the i-th actual value of
the traffic volume.

3.2.4. Accuracy of Queue Length Estimation. +e evaluation
of the performance of the queue length estimation is similar
to that of the traffic volume estimation. +is is done by
comparing the queue length in meters derived by the image
processing (estimated value) technique and that collected
from a drone image (actual value). Here, we calculate the
RMSE of the queue length estimation using equation (8),
where 􏽢yi is the i-th actual value of queue length. We also
calculate the MAPE of the queue length estimation using
equation (9), where Fi is the i-th actual value of the queue
length.

4. Result of Applying AI-Based Vehicle
Detection and Trajectory Prediction

4.1. Accuracy of Vehicle Detection and Classification.
Figure 9 shows an example of vehicle detection using the
proposed training model based on YOLOv4. +e system
detects vehicles within the detection range and saves the
results of the vehicle classification and coordinates of the
bounding box as an image file (∗ .jpg) and data files (∗ .txt),
using the same filename. By using the data collected by the
drone (considered as actual data) and that extracted by the
classification model, the performance evaluation is per-
formed with the detection rate and MAP described in the
previous section. +e number of tested samples was 6,804.
As a result, the detection rate was 99%, indicating that it
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could judge the detected objects as vehicles very well. In
terms of vehicle type classification, the MAP value was 95%
for cars, 87% for trucks, and 81% for buses.

4.2. Accuracy of Vehicle Trajectory Extraction. In vehicle
trajectory extraction, during preprocessing, the locations of
a vehicle are extracted at each frame by the proposed
method. +en, the locations of the vehicles are projected
onto the drone image. By matching the vehicle locations of
the drone image and those from the proposed method to the
same coordinates, it is determined that the vehicle area
overlaps the most with the same vehicle. As shown in the
figure, the vehicle locations extracted by the proposed
method (red box area) are projected onto the drone image,
where the actual vehicle locations are displayed in the drone
image (blue box area) to determine them as the same vehicle.
+e performance of vehicle trajectory prediction is evaluated
using these two different vehicle trajectories, as described in
the previous section. +e number of tested samples was
60,531. As a result, the average Euclidean distance was
1.138m.

4.3. Accuracy of Traffic Volume Estimation. Figure 10 shows
an example of comparing drone and camera images for the
performance evaluation of traffic volume estimation. +e
test area is the blue box area within an intersection. As
shown in the figure, the identification names are assigned for
each in/out lane, and the pairs of the lane-by-lane travel
directions of the vehicles can be seen in Tables 3 and 4.+en,
the number of vehicles in each lane-by-lane traveling di-
rection is counted from the drone images manually to obtain
the actual data. On the contrary, the proposed method
extracts the number of vehicles in each lane traveling di-
rection based on the camera images to obtain the estimated
data. Table 3 shows the traffic volume in each traveling
direction counted from the drone images, and Table 4 shows
that extracted from the camera data. In these tables, the
notations in the second column represent the identification
numbers of departure lanes (from I_1 to I_12) in
approaching roads (from Road_1 to Road_4). However,
those in the second row are the identification numbers of
arrival lanes (from O_1 to O_12) in the roads in each di-
rection. For example, if some vehicles pass through the

intersection from the right-most lane of Road_1 (I_1) to the
left-most lane of Raod_3 (O_5) and they are counted as 5, we
record the counted number as shown in the tables. Hence,
the entire table represents the lane-by-lane vehicle count
values (travel volumes) of all departure and arrival pairs.+e
unknown in the latter table is the case when the camera-
based system fails to detect a vehicle. When comparing the
results of the two, the RMSE is 4.20 vehicles, and the MAPE
is 16.41%.

4.4. Accuracy of Queue Length Derivation. Figure 11 shows
an example of a drone image for queue length derivation,
which was also performed manually. A person selects the
starting and ending points of the vehicles within the delayed
section on the road.+en, data containing the bounding box
information of the vehicles at the starting and end points,
map coordinates, and queue length within the image are
saved. Using the information from these data, the true value
of the queue length is calculated by converting the values
into the real-world scale, which is considered the actual
queue length. However, the proposed method directly de-
rives the queue length through HD map matching to obtain
the estimated data, which is compared with the actual queue
length from the drone image. +e number of tested samples
was 62,205. Comparing the two, the RMSE is 2.37m, and the
MAPE value is 13.25%.

4.5. Comprehensive Evaluation. +e overall performance of
the proposed method is presented in Table 5. As described in
the previous subsections, the detection rate is the total
number of detected objects over the total number of ground
truths, and a successful detection performance of 99% for
6,804 attempts is achieved, which can be judged to be highly
consistent. +e performance of the vehicle classification is
performed in terms of MAP. With 6,804 test samples, the
MAP values were 95%, 87%, and 81% for cars, trucks, and
buses, respectively. Hence, the proposed method also shows
reasonable performance in classifying the vehicle types. In
terms of trajectory prediction, the average Euclidean dis-
tance was 1.138m when 60,531 samples were tested. Such a
low degree of error indicates the high performance of the
proposed method. In terms of both traffic volume and queue
length estimations, the absolute differences are only 4.20
vehicles for vehicle counting and 3.08m in queue length
estimation upon the RMSE values for more than 60,000 test
samples. +e MAPE values are less than 20%, which means
that the performance of the proposed method is reasonable,
particularly when estimating the lane-by-lane traffic infor-
mation. Overall, based on the analyses of the five different
evaluation criteria, the method proposed in this study shows
the feasibility of collecting detailed traffic information with a
camera installed at an intersection. In addition, the average
time taken from image collection, data processing, and data
storage in the server is 0.034 seconds, showing that the
performance of the entire process can be completed within
0.1 seconds in general. Considering the results of this study,
the proposed method is a highly optimistic technology to be
applied to the fields of ITS and C-ITS.

Figure 9: Vehicle detection by the proposed method based on
YOLOv4.
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Figure 10: An example of comparing drone image and camera image for traffic volume estimation.

Table 3: Traffic volume in each direction counted from drone images.

Out Road_1 Road_2 Road_3 Road_4
Total

In O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8

Road_1
I_1 N/A N/A 0 0 5 93 0 8 106
I_2 N/A N/A 0 0 117 1 0 0 118
I_3 N/A N/A 74 0 0 0 0 0 74

Road_2
I_4 0 26 N/A N/A 0 0 1 9 36
I_5 0 0 N/A N/A 0 0 39 0 39
I_6 0 0 N/A N/A 47 0 0 0 47

Road_3
I_7 1 59 0 18 N/A N/A 0 0 78
I_8 82 1 0 0 N/A N/A 0 0 83
I_9 0 0 0 0 N/A N/A 29 0 29

Road_4
I_10 0 0 0 3 0 35 N/A N/A 38
I_11 0 0 32 1 0 0 N/A N/A 33
I_12 23 0 0 0 0 0 N/A N/A 23

Total 106 86 106 22 169 129 69 17 704

Table 4: Traffic volume in each direction extracted through camera data.

Out Road_1 Road_2 Road_3 Road_4
Unknown Total

In O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8

Road_1
I_1 N/A N/A 0 0 5 87 0 8 7 107
I_2 N/A N/A 0 0 109 1 0 0 3 113
I_3 N/A N/A 74 0 0 0 0 0 0 74

Road_2
I_4 0 23 N/A N/A 0 0 1 8 3 35
I_5 0 0 N/A N/A 0 0 37 0 2 39
I_6 0 0 N/A N/A 43 0 0 0 3 46

Road_3
I_7 1 49 0 7 N/A N/A 0 0 12 69
I_8 79 0 0 0 N/A N/A 0 0 2 81
I_9 0 0 0 0 N/A N/A 25 0 0 25

Road_4
I_10 0 0 0 3 0 32 N/A N/A 1 36
I_11 0 0 31 0 0 0 N/A N/A 2 33
I_12 22 0 0 0 0 0 N/A N/A 1 23

Unknown 6 11 0 5 10 6 6 1 0 45
Total 108 83 105 15 167 126 69 17 36 726
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5. Conclusion

In this study, we considered a method for deriving traffic
information using a camera installed at an intersection to
improve the monitoring system for roads.+emethod uses a
deep-learning-based approach for image processing for
vehicle detection and vehicle type classification. +e method
then estimates the lane-by-lane vehicle trajectories using the
detected locations of vehicles. Based on the estimated vehicle
trajectories, the traffic volumes of each lane-by-lane trav-
eling direction and queue lengths of each lane were esti-
mated. +e performance of the proposed method was tested
with thousands of samples according to five different
evaluation criteria: vehicle detection rate, vehicle type
classification, trajectory prediction, traffic volume estima-
tion, and queue length estimation. As a result, the method
shows the feasibility of collecting detailed traffic information
with a camera installed at an intersection.

+e proposed method has two research values. It has
shown high accuracy in (1) real-time vehicle detection and
classification based on deep-learning-based image process-
ing and (2) estimating lane-by-lane vehicle trajectories by
matching the detected vehicle locations with the HD map.
While estimating the vehicle trajectories, this study has
attempted to reduce the error of estimating the center points

of the bounding boxes in the images of vehicles to ensure
proper performance of the HD map-matching process.
Hence, the approach of combining AI and HD map tech-
niques is the main contribution of this study. +is study
shows a high chance of improving current traffic monitoring
systems.

Although the proposed method has shown reasonable
performance, this study is not without limitations. +e error
rates for both lane-by-lane traffic volume and queue length
estimations are greater than 15% even though the vehicle
detection showed a 99% performance, which is reasonable
but not sufficient in terms of the reliability of traffic in-
formation. +is is due to intermittent mismatches between
the vehicle locations of the camera images and the HD map
coordinates. Hence, further studies should consider en-
hancing the matching performance between camera image-
based data and map data. Furthermore, the results of this
study confirmed that the error increased with the distance
between the camera and vehicle. +us, investigating the
minimum required distance between the camera and the
intersection area can be a topic for future studies. In ad-
dition, for road lanes, additional research is required to
develop a vehicle location correction algorithm. It is also
necessary to perform training with trucks and buses to
further improve the detection rate. Subsequent studies

Figure 11: An example of comparing drone image for queue length derivation.

Table 5: Overall performance.

No. Evaluation item Number of samples (frame) Subitems Value Unit Evaluation method
1 Object detection 6804 — 99 % Detection rate

2 Object classification 6804
Car 95 % MAP
Truck 87 % MAP
Bus 81 % MAP

3 Trajectory location 60531 — 1.138 Meter Mean Euclidean distance

4 Traffic volume 60531 — 4.20 Number of vehicles RMSE
16.41 Error rate MAPE

5 Queue length 62205 — 3.08 Meter RMSE
18.28 Error rate MAPE
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should consider these limitations for the further develop-
ment of image processing-based traffic monitoring systems.
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