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Driving fatigue is a physiological phenomenon that often occurs during driving. When the driver enters a fatigue state, they will
become distracted and unresponsive, which can easily lead to traffic accidents. The driving fatigue detection method based on a
single information source has poor stability in a specific driving environment and has great limitations. This work helps with being
able to judge the fatigue state of the driver more comprehensively and achieving a higher accuracy rate of driving fatigue detection.
This work mainly introduces research into different signal fusion methods to detect fatigue drive. This work will take the normal
driver’s breathing signal, eye signals, and steering wheel signal as research objects and collect and isolate the characteristics of the
fatigue detection signal. Research was then conducted on different signal fusion methods for the detected depth of breath. Change
of steering angle, eyelid closure, and blinking marks and the fatigue driving experiment was designed to evaluate the results of
different data fusion methods. Experimental results show that the detection accuracy of the heterogeneous signal fusion method in

fatigue detection is as high as 80%.

1. Introduction

L.1. Research Background and Significance. With the con-
tinuous improvement of domestic infrastructure construction
and the continuous improvement of people’s economic in-
come level, the number of private cars has expanded sig-
nificantly in recent years. Vehicles, such as cars and trains, still
rely on the manual driving of the driver, and driving fatigue is
a physiological phenomenon that often occurs during driving
and is unavoidable [1]. In highway traffic, fatigue driving has
become one of the main causes of traffic accidents. According
to the statistics, more than 60% of drivers have had a long
continuous driving experience. Among the major traffic ac-
cidents in the entire country, 27% of the drivers are fatigued
and cause the accident [2]. Toyota has conducted investiga-
tions into the causes of traffic accidents. Among the three key
factors: people, cars, and roads [3], the traffic accidents di-
rectly or indirectly caused by the “people” factor accounted

for 92.9%, and the vast majority of traffic accidents are directly
or indirectly related to the status of the driver [4]. The driver’s
driving state directly affects the operating error rate and the
ability to deal with emergencies. The fatigue that occurs
during driving can cause the driver to become distracted and
slow to react. Driving fatigue has become an invisible killer in
road traffic and rail traffic. When the driver is tired and le-
thargic, the vehicle will not be able to control as expected. And
the consequences are unpredictable and unexpected as well.
This not only causes loss to one’s own life and property, but
also brings great harm to pedestrians. Therefore, it is urgent to
solve the problem of fatigue driving. To prevent accidents
such as fatigue driving, it is necessary to develop effective
fatigue detection methods; at this stage, fatigue detection is
carried out by a single signal, and the detection of a single
signal is one-sided. Therefore, in fatigue detection, research
on how to detect fusion signals is imperative, which can detect
driver fatigue in multiple directions and reduce driver fatigue.
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1.2. Related Content. Fatigue can affect normal work and
even cause accidents. To reduce the impact of fatigue on
people, Wang proposed a method to provide real-time fa-
tigue detection [5]. First, he uses an active shape model to
detect human faces and extracts the histogram features of
directional gradients of the eyes and mouth. Secondly, the
support vector machine (SVM) is used to classify the state
and posture of the orthography and scaling with iterations
algorithm to estimate the head posture. Third, according to
the face state, the fatigue decision index is obtained, and the
weight of the fatigue decision index is calculated by the
entropy method. Finally, based on the calculated fatigue
decision index, he applies the Bayesian method to evaluate
the driver’s fatigue level. The final average accuracy of his
method is 83.3%. However, the operation of this method is
more complicated. Li et al. explored a feature weight-driven
signal fusion method [6] and proposed interactive mutual
information modeling to improve the accuracy of mental
workload classification. They used EEG and ECG signals to
verify the proposed heterogeneous organisms the effec-
tiveness of signal fusion methods. they invited ten subjects to
participate in simple, medium, and difficult tasks to collect
brain and ECG signals of different mental load levels. Then,
they can be used for classification according to the het-
erogeneous physiological signals of different mental work-
load states. Their experiments show that the ECG can be
used as a supplement to the EEG, optimize the fusion model,
and improve the estimation of mental workload. The clas-
sification results show that the proposed biosignal fusion
method IMIM can improve the classification accuracy of
feature-level and classifier-level fusion. Their research shows
that multimodal signal fusion is expected to identify the level
of mental workload, and the fusion strategy has potential
psychological workload estimation applications in cognitive
activities in daily life. However, there are limitations of
location in terms of use. The disadvantage is that only ten
experimental subjects were selected, which is too small to
have the validity of the experiment. Zheng et al. proposed a
dynamic fatigue detection model based on hidden Markov
model [7]. The model can use various physiological and
detection information to estimate driver fatigue in a
probabilistic manner. In the actual driving process, they
simultaneously recorded electroencephalogram (EEG),
electromyography (EMG), and breathing signals through
wearable sensors and sent them to the computer via Blue-
tooth. Then, according to the physiological information, the
distribution estimates of different time periods are used to
obtain the fatigue probability. Their HMM-based fatigue
identification method can dynamically obtain fatigue test-
ing. However, the calculation amount of this detection
method is too large, and the detection has greater difficulty.
Pilataxi et al. introduced a driving assistance system that
detects when the driver is drowsy [8]. The system is tested by
a car-like robot that is wirelessly controlled by a computing
interface developed in Visual Studio 2010, which simulates a
car panel. An artificial vision system monitors the driver’s
head direction to determine whether the driver is drowsy.
However, this study did not use heterogeneous signal fusion
methods.
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1.3. Main Content and Innovation. The main content of this
article is to study the respiratory physiological signals, driver
operation signals, and eye signal detection in the fatigue
driving detection, collect and extract the characteristics of
the physiological signals and eye detection signals, and then
compare the signal fusion methods. The best decision-level
fusion method is selected for the fusion of heterogeneous
signals, and finally the high accuracy of the heterogeneous
information fusion method in the detection of fatigue
driving is confirmed by the detection of fatigue driving
signals. The innovation of this paper is to combine the fa-
tigue driving detection signal with heterogeneous signal
fusion and achieve a high accuracy rate of fatigue driving
detection by fusing the collected heterogeneous signals.

2. Fatigue Driving Concepts and Methods

2.1. Definition of Fatigue Driving. To allow readers to better
understand the meaning of driving fatigue, I will talk about
some theoretical knowledge as the theoretical basis for the
article. Fatigue driving refers to the phenomenon that the
driver has physical and psychological disorders and de-
creased driving skills after driving for a long time. Fatigue is
a very complex physiological phenomenon, which can
generally be divided into mental fatigue and physical fatigue.
Mental fatigue is manifested as restlessness, loss of moti-
vation, difficulty in concentration, slow thinking, low mood,
decreased work efficiency, prolonged reaction time, and
decreased work accuracy. Its continued development will
cause headaches, dizziness, insomnia, and dysfunction of the
cardiovascular system, respiratory system, and digestive
system. Mental fatigue and physical fatigue often occur at the
same time [9, 10]. The driving fatigue discussed in this article
refers to the phenomenon of slow response and misjudg-
ment when the driver is driving. Driving fatigue is often a
mixture of physical fatigue and psychological fatigue [11].
Continuous driving time is the most important and com-
mon cause of driving fatigue. According to the statistics of
the literature, after 3hours of continuous driving, most
drivers will start to feel fatigue and start to experience
operational errors. After continuous driving, the incidence
of car accidents will rise to 1.5 times that of normal con-
ditions. Therefore, the laws of various countries have strictly
controlled the driving time of drivers, as shown in Table 1.
The generation of driving fatigue is also closely related to
the driver’s physical and mental state when starting to drive.
Factors such as the driver’s circadian rhythm, sleep time, age,
and gender will all induce driving fatigue to varying degrees.
The driving environment is also a factor in driving fatigue.
Conditions such as temperature, humidity, oxygen content
in the air, noise, and vibration of car seats are much worse
than indoor environments. Unfavorable conditions driving
fatigue usually occurs in driving environments [12, 13].

2.2. Introduction to Over-Limit Learning Machine.
Over-limit learning machine is an algorithm in neural
network research. It is a generalized single hidden layer
teedforward neural network used for classification,
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TaBLE 1: The control of driving time by laws of various countries.

Country Continuous driving time Cumulative driving time (one day)
China 4 hours 8 hours

United States None 10 hours

Japan 4 hours 9 hours

Australia 5 hours 12 hours

Europe 4.5 hours 10 hours
regression, clustering, sparse approximation, compres- Bl Bi BL Feature
sion, and single or multilayer hidden nodes. Feature learning
learning [14, 15] is where the parameters of the hidden Clustering
nodes (not just the weights connected to the input to the Regression
hidden nodes) do not need to be adjusted [16]. These dasilitg;‘%ion

hidden nodes can be randomly assigned and never
updated (i.e., they are random projections, but have
nonlinear transformations), or they can be inherited from
their parents without being changed [17, 18]. In most
cases, the output weights of hidden nodes are usually
learned in a single step, which is equivalent to learning a
linear model [19]. There will be no common problems
such as falling into local minimum and overfitting in
traditional neural networks, and it is suitable for modeling
systems with complex nonlinear input and output rela-
tionships. Its advantage is that the learning speed is fast.
For the algorithm applied to the product, it can greatly
reduce the calculation amount, increase the calculation
speed, and greatly improve the calculation speed [20, 21].
Its characteristic is that the weights of hidden layer nodes
are randomly or artificially given and do not need to be
updated. The learning process only calculates the output
weights. Figure 1 shows the simple results and applica-
tions of over-limit learning.

The ELM structure is as follows: suppose there are K
pairs of input and output combinations, x is the feature
vector used for training, and y is the corresponding output
result, where i =0 [22, 23]. Assuming it is an N-dimensional
feature vector, at the same time, the number of hidden nodes
in the overlimit learning machine is also set to N [24]. Let U
be a unitary matrix of size N * N in the first layer of ELM. fis
the nonlinear activation function of ELM, and W is the
weight vector of the second layer of ELM. At this time, the
output of ELM can be expressed as

[f @AS o () ]W = y. (1)

2.3. Introduction to Fractional-Order System. Fractional-
order system is a generalization of the integer order
system. Many physical processes can be modeled by
fractal sequence systems such as diffusion and thermal
conductivity, diffusion circuits, electrochemical pro-
cesses, polarized dielectric viscous materials such as
polymers and rubber, the release phenomenon of organic
dielectric materials, flexible structure data network and
biological traffic, etc. [25, 26]. This article will be used in
data modeling. The general fractional order system can be
expressed as

FiGure 1: Simple structure and application of overlimit learning
machine.

y(&)+ Y ay(t) =) bD(1). (2)
i=1 i=1

According to the definition of Miller et al,, the gener-
alized form of the fractional difference is defined as

a a
D <—1>’”< ) (3)
m=0 m

where h is the sampling period, where it is defined as

DI f (k) = lim

S| =

a K(a+1)
= ) (4)
<m> K(a-m+1)K(m+1)
where K(a) is defined as
K(a) = J;OO cz_le_(d. (5)

In actual calculations, to simplify the calculations, matrix
operators can be used to approximate and implement
fractional differential operations; namely.

Df (h) wy, A 0
M =% M w, 0 |,
Df (kh) wy A w, (6)

a
wy = (—1)k< >
k



Due to the edge effect and the truncation effect [27, 28],
equation (6) cannot always start from k = 1. However, each
row of the fractional differential operator matrix can be
regarded as the weight of the input x. When k > 1 and a is not
an integer, it will approach 0 [29, 30]. Therefore, a suitable
upper limit K needs to be selected. At this time, formula (6)
can be rewritten as

Df (kh) we, A 0
1
M :W M wy 0 | (7)
Df (Th) 0 A w,

3. Feature Extraction and Heterogeneous Signal
Fusion in Fatigue Detection

3.1. Physiological Signal Feature Collection

3.1.1. Working Principle of Detecting Physiological Signals.
In this paper, continuous wave radar is selected as the de-
tection sensor. The typical block diagram of continuous
wave radar is shown in Figure 2, including power divider,
transmitting antenna, receiving antenna, oscillator, mixer,
detector, and other circuits. The transmitting antenna
transmits the microwave signal in a directional direction,
and it is reflected back after encountering obstacles and
received by the receiving antenna. After being mixed with
the oscillator, the low-frequency signal is detected by the
mixer. When using continuous wave radar to detect the
human thoracic cavity, the movement of the thoracic cavity
will produce frequency modulation. According to the
Doppler effect, the reflected radar signal will also have a
corresponding frequency shift, so the obtained low-fre-
quency signal contains the movement information of the
thoracic cavity.

Human body thoracic cavity that is used as a target for
detecting the radar emission signal returned by the tho-
racic cavity movement will generate frequency modula-
tion; the phase information related to the thoracic cavity
movement can retrieve the modulation data. Can be late,
the phase data can reflect the tester’s breath and heartbeat.
Doppler radar has a good ability to penetrate clothing or
bedding and can achieve noncontact detection. However,
for the radio frequency, whether the signal is in the air or
on the surface of the skin, there is reflection loss, which
results in a strong correlation between the performance of
the radar and the frequency. Therefore, the choice of radar
sensor is a key indicator, which directly affects the quality
of the experimental results. From the theory of continuous
wave radar, it can be known that the smaller the wave-
length of the radar in the output baseband signal B(t), the
more obvious the displacement change of the detected
chest cavity, which means that the higher the frequency of
the selected radar, the better. According to the electro-
magnetic field theory, the higher the radar frequency, the
smaller the signal reflection after encountering the human
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body surface, the weaker the ability to penetrate clothing,
and the greater the energy consumption of transmitting
signals of the same power. It can be seen that the fre-
quency selection of radar is a contradictory process.
According to the reasons such as penetration ability,
volume, and transmission power, in this article, the
10.525 GHz radar module HB100 is selected as the front-
end detection sensor. This module is a microwave moving
object detector designed by using the Doppler effect. The
actual sample is shown in Figure 3. The radar module is
mainly used for automatic door switches, safety precau-
tion systems, automatic train signals, and other occasions.
The internal integrated transmission and receiving an-
tennas, oscillators, mixer, detectors, and other modules
have the advantages of strong antiinterference ability, low
output power, and long detection distance.

3.1.2. Physiological Signal-Related Quantity. Normal signals
measured by Doppler radar include respiratory signals and
heart rate signals. This article aims to study the relationship
between the driver's breathing and the changes in heart rate
while driving and the degree of fatigue. Feature value ex-
traction of physiological information, where the breathing
amplitude at a certain moment is represented by H(t), which
reflects the depth of respiration (RD), that is, the expiratory
volume and inhalation volume during breathing, and the
respiratory rate (RR) at a certain moment, is represented by
H(F) representation. The standard deviation can be used to
measure the degree of deviation of a random variable from
the mean. The standard deviation is

1 t
Wl = ;Z(H(t)—Hbave),

t-1

(8)

W2 = (H(t) - Hfave)’

~
I
—_

|
S -
M-

where W1 and W2 represent the standard deviation of the
respiratory amplitude and frequency, respectively, and Hb
and Hf represent the average respiratory amplitude over a
period of time. Because the heart rate amplitude of the radar
test is very small, it cannot reflect the change of the heart rate
amplitude. In this paper, the heartbeat signal frequency (HR)
is used to test the driver’s heart rate fluctuations during the
failure phase, and the standard deviation W3 is also used to
measure it, which can be expressed as

t

1
ws =\ Y (Y5 () = Yope)- 9)

t=1

Among them, Y(t) represents the heartbeat frequency at
a certain moment and represents the average value of the
heartbeat frequency over a period of time.
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filter

F1GURE 2: Block diagram of continuous wave radar.

FIGURE 3: The physical map of the radar module.

3.2. Steering Wheel Angle Collection

3.2.1. Principle of Steering Wheel Acquisition Sensor.
Most steering angles have two measurement methods: ab-
solute and relative. This is because it is necessary to record
the specific position of the steering wheel during the research
process. An absolute angle encoder was therefore chosen as
the sensor in this study. The angle of the steering wheel can
be detected without affecting the driver, and the accuracy of
the detection can be improved. According to the steering
wheel steering requirements of fatigue driving, the model
P3022 Hall angle sensor is selected. The P3022 Hall angle
sensor converts the transformed angle signal into an elec-
trical signal via electromagnetic induction principle; when
the steering angle changes, the angle of the sensor installed
under the steering wheel will change accordingly. And the
sensor will output an electrical signal proportional to the
rotation angle. P3022 angle sensor has the characteristics of
360-degree mechanical angle, angle resolution, 0.088 de-
grees, output 0-5V analog voltage signal, and so on. Since
the measurement range of the angle sensor is only 0-360
degrees, and the actual steering wheel rotation angle is
0-1080 degrees, which far exceeds the measurement range of
the angle sensor, it is necessary to add a sensor to record the
entire process of steering wheel movement. In this way, it is
possible to accurately judge whether the driver is driving in a
straight line and can also switch to the Hall angle sensor for
timely measurements and accurately record small-turn
signal changes. The circuit design is shown in Figure 4. The
system uses a 3590S-2-103L precision ten-turn rotary po-
tentiometer to measure the entire angle change during the
rotation of the steering wheel.

The maximum resistance value of the rotary potenti-
ometer is 5KQ. The actual change range of the potenti-
ometer is 500 Q2-5KQ when the steering wheel rotates
0-1080 degrees. Considering the power consumption of the
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FIGURE 4: Schematic diagram of angle sensor.

circuit and the signal change range, the voltage divider
resistance is 5 K(), and the analog signal output change range
is 0.45V-2.5V. It can be seen that the resolution of the
rotary encoder is very low, but the experiment only needs to
record the changing trend and position of the steering wheel
angle, and there is no need to have high requirements for
accuracy.

3.2.2. Reverse Disk Angle Signal Correlation Quantity. In
this paper, the fatigue driving detection uses a rotary po-
tentiometer to record the rotation track of the entire steering
wheel. When the steering wheel rotates clockwise, the
sampled voltage signal value will continue to increase, and
when the steering wheel rotates counterclockwise, the
sampled voltage signal value will continue to decrease.
Therefore, it can be judged whether the current road con-
dition is a continuous curve, a large curve, a small curve, or a
straight road according to the change trend of the sampled
voltage signal. In this study, the voltage value can be used
directly instead of the angle value to calculate. Because the
analysis is only concerned with the change trend of the
steering wheel angle of the angle sensor, and the change of
the small angle, the Hall angle sensor outputs the voltage
value corresponding to the angle.

(1) The steering wheel angular velocity V can be
expressed as



0; = 0

Vt)=—
® ti—tia

(10)

Among them, 6 is the digital number of the output
conversion of the voltage value corresponding to the
steering angle of the steering wheel at t.

(2) The standard deviation of the steering wheel angular
velocity can be expressed as

Wy = ! Zn: (Vi - Vave)' (11)
i=1

n-14%

Among them,

1 n
we = Z v;,  Nisthe number of samples.  (12)
i=1

(3) The standard deviation of the steering angle of the
steering wheel can be expressed as

1 n
w= ﬁ Zl(ez - eave)' (13)

1

Calculate the steering angular velocity, angular velocity
standard deviation, and angle standard deviation per unit
time during the driving process of the driver, and compare it
with expert scoring standards to analyze the correlation
between the degree of driving fatigue and the parameter
information of the driving vehicle.

3.3. The Driver’s Eye Feature Point Collection Based on the
Over-Limit Learning Machine. Eye feature point positioning
belongs to the category of face alignment, which refers to
finding various facial feature points (landmarks) from the
detected face, such as key positions such as eyes, eyebrows,
nose, mouth, and facial contours. Figure 5 shows the facial
feature point model.

As shown in Figure 6, the feature points are distributed
in the lines in the figure, where the eye area contains the
main information of the eyes, and the schematic diagram of
the eye feature points is shown in Figure 6, including 2
points on the upper eyelid, 2 points on the lower eyelid, and
2 points on the left and right corners of the eye.

Over-limit learning machine is an algorithm in neural
network research, used for classification, regression,
clustering, sparse approximation, compression, and feature
learning of single or multilayer hidden nodes. The algo-
rithm builds a cascaded residual regression tree, thus
making the face gradually return to the true position from
the initial value of the feature point. Use the super learning
machine to align the detected face area to find the position
of the face. The detection result is shown in Figure 7. The
eyelid aspect ratio can characterize the degree of eyelid
opening. We select 3 typical eyelid closure types for
analysis.
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FiGuUre 5: Location information of feature points.

For various eyelid states, the eyelid height-to-width ratio
can be used to represent it. The eyelid height-to-width ratio
can reflect the various transformation characteristics of the
driver’s eyes in a time series. The blink frequency refers to
the number of blinks of the driver in a unit time. Under
normal circumstances, the driver’s blinking frequency re-
mains within a relatively stable range during normal driving.
When the driver is in a fatigued driving state, the blink
frequency will be significantly reduced or significantly in-
creased, which is very unstable. Eye-closing speed refers to
the time it takes for the eyelids to go from a normal open
state to a fully closed state. The shorter the time, the faster the
eyelid closure speed, and the shorter the time, the slower the
eyelid closure speed. The speed of closing the eyes of the
driver during normal driving is much faster than during
fatigue driving. When the driver is in a state of fatigue, the
closing speed of the eyelids is very slow.

3.4. Heterogeneous Signal Fusion Method for Fatigue Driving
Detection. Driving fatigue is a complex physiological and
psychological phenomenon. The single-modal driving fa-
tigue detection method cannot fully characterize the driver’s
fatigue. And in actual driving scenarios, due to various
environmental interferences (such as unstable lighting
conditions in the driving environment, vehicle vibration,
spatial electromagnetic interference, etc.), the detection
method based on a single information source is not reliable.
This section discusses the combination of normal driver
respiration data, eye data, and steering angle parameters and
judge the overall fatigue condition of the driver, so as to
achieve higher driving fatigue detection accuracy, stability,
and environmental adaptability. Differential fusion means a
complete preprocessing process. Data entry, forecasting, and
arbitration decisions are based on information from many
different sources to achieve more accurate, stable, and re-
liable target data from a single source.

3.4.1. Type of Signal Fusion. The heterogeneous signal fusion
method actually uses the data of multiple sensors to obtain
complete information about the object or the environment.
Its core part is the fusion algorithm, and different fusion
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FIGURE 7: Typical degree of eyelid closure.

algorithms have different advantages. There are many in-
formation fusion algorithms that have been proposed.
According to the different levels of data abstraction, they can
be divided into three levels: data layer fusion, feature layer
fusion, and decision layer fusion. The integration of these
three levels has its own advantages. As shown in Figure 8, the
data layer fusion is to directly perform the fusion without
any processing and processing of the raw data from the
sensors of the same category, and then perform feature
extraction with the data obtained after the fusion, and finally
obtain the discrimination result. This method belongs to the
lowest level of fusion, and there is no data loss. However, this
fusion method has considerable limitations. It has certain
restrictions on multiple sensors. The sensors to be fused
must be of the same type, and the consistency of time and
space must be ensured before fusion. This means that the
increase in the amount of calculation will result in slow
processing speed and poor real-time performance.
Compared with the other two methods, the feature-level
fusion belongs to the middle-level fusion. Different from the
data-level fusion, it first extracts the corresponding features

Sensor 1

o
Sensor2 ——»| &
& .
5 Feature Decision
= 7| extraction result
=
<
8
<
A

Sensor N ——p

FiGure 8: Data layer fusion.

from the original data collected by different sensors, per-
forms certain processing on the extracted features, and then
fuses them. Finally, the model is modeled to obtain the
discrimination result. The fusion process is to fuse the
features extracted from the original data, reducing a lot of
calculations, improving the transmission speed and pro-
cessing speed, and has a certain real-time performance, but
compared with data-level fusion, a certain amount of in-
formation will still be lost. This leads to a decrease in ac-
curacy. Feature layer fusion is shown in Figure 9.
Decision-level fusion is the highest level method among
the three fusion methods. Unlike the previous two, it uses
multiple sensors to monitor an object at the same time.
However, unlike the data level, different types of sensors can
be used, and each sensor is processed independently. That is,
the model is established after the features are extracted, and
the decision result is obtained, and then all decision results
are merged and judged to obtain the final decision result. The
decision fusion method is aimed at the decision results of
different sensors, which makes it more computationally
intensive and more real-time. However, it has undergone
multiple layers of information extraction, and the infor-
mation loss is more serious, which greatly reduces the ac-
curacy of the fusion result. Therefore, the heterogeneous



8
Feature
Sensor 1 > .
extraction
o
Feat 2
eature 2]
Sensor 2 > . 2
extraction 9 L.
1 Decision
> &
= result
(5]
=
=
2
<
oo o &
Feature
Sensor N > .
extraction

FIGURE 9: Feature layer fusion.

signal fusion in this paper adopts the decision-making layer
fusion calculation, and the decision-making layer fusion is
shown in Figure 10.

3.4.2. Decision-Making Layer Fusion of Heterogeneous Sig-
nals in Fatigue Driving Detection. The core idea of applying
the information fusion method to fatigue driving detection is
to analyze data from multiple angles to obtain the final high-
precision identification result. The steps of decision-making
and fusion of heterogeneous signals in the fatigue driving
detection in this part are shown in Figure 11.

(1) Collection of characteristic data: Experiments are
conducted in a good city road environment. At the
same time, the above three devices collect data under
different driving behaviors and simply process the
collected sensor raw data: cutting samples, labeling,
and the obtained data as the information converged
data layer.

(2) Feature extraction: The feature extraction is performed
on the data of the three information sources. The
feature extraction method is the same as the above.

The same method is adopted, and the feature is
obtained as the feature layer of information fusion.

(3) Train their respective identification models. Train the
three features of the feature layer using different
overlimit learning machine algorithms.

Three identification models are obtained, and their
respective decision-making results are obtained.

(4) Integration of decision-making levels: The decision
results obtained in the third step are fused through
the designed fusion method to obtain the final
recognition result.

4. Experiments and Results of Heterogeneous
Information Fusion Methods

Based on the feature collection of EOG, ECG, and steering
wheel proposed above and the extraction algorithm of
several features such as heart rate, blink frequency, eyelid
closure, and the final decision fusion algorithm, this article
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Figure 11: Decision-making layer fusion steps.

designs a set of fatigue verification methods to verify the
feasibility of the fatigue detection methods designed in this
article. In the article, a certain fatigue-induced paradigm was
selected and the physiological data of 10 subjects were
collected, and then the results were statistically verified.

4.1. Fatigue Induction Method. The main purpose of the
experiment here is to induce fatigue in the subjects, measure
its various physiological indexes under the state of fatigue
occurrence, and make calculations and analysis. The ob-
tained characteristic index is compared with the index
calculated from the collected signals in the mental state, and
finally the judgment result of the fatigue state is obtained.
This experiment requires a more natural and undisturbed
induction method. Choosing the method of neutral long-
term video stimulation can make the individual produce a
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spontaneous fatigue response. In the actual experiment
arrangement, this article selected 5 subjects who are adult,
healthy, non-drug-addicted individuals who are not taking
any drugs, and the subjects are all young people aged 20-35
to ensure that the data is comparable. Five subjects were
subjected to 25 minutes of real-time data collection of ECG,
breathing rate, eye movement, and steering wheel infor-
mation. A certain neutral video stimulus was given during
the acquisition process to induce sleepiness in the subjects,
and the physiological parameters in the process were
recorded, and the characteristic indexes were calculated. The
subjects were still awake at the beginning of the experiment.
The parameter characteristics are compared, and the final
result is obtained.

4.2. Data Analysis. Using the algorithm proposed in Section
2, this paper calculates the collected data and obtains its
characteristic parameters by statistics. The detailed results
are shown in Figure 12.

Statistical recognition rates of fatigue driving samples
were 81%, 75%, 79%, 76%, and 76%, respectively. Judging by
the predictions of the Extreme Learning Machine, the de-
tection rate of the alarm state was as high as 81% of the
steering wheel signal under varying degrees of fatigue in the
steering wheel change trend. The signal currently predicts
the level of fatigue while driving. In drowsy conditions, the
range of steering angle changes is gradually reduced and the
number of settings is significantly reduced. The depth of
breathing in the normal signals of the driver is accompanied
by a deeper sleep. The depth and width of the breath and the
frequency gradually decrease.

Figure 13 shows the blink frequency per unit time cal-
culated from the electrooculogram signal. This article
chooses to use 1 minute as the unit. It can be clearly seen that
as the experiment progresses, the blink frequency of the five
subjects has increased significantly.

Based on the above statistical results, it can be seen that
there is a certain correlation between blinking frequency and
fatigue. The higher the blinking frequency, the more fa-
tigued. Participants blinked more frequently when they
entered a state of fatigue. In addition, it can be seen from
Figure 13 that as fatigue deepens, the blink frequency of
many subjects has a certain downward trend relative to the
maximum value.

Figure 14 shows the eyelid distance per unit time cal-
culated from the eye movement signal. The unit of 1 min is
chosen. It can be clearly seen that as the experiment
progresses, the eyelid distance gradually decreases in all five
subjects.

From the above figure, it appears that the degree of eyelid
closure can be used as a relative indicator to determine
fatigue. In addition, Figure 14 shows that the fourth person
sleeps in 15 minutes, when their eyelids are closed, and woke
up after 16 minutes. Although different from the data of
other volunteers, the general trend of change for each
person, of course, is a downward one.

In summary, the experimental results show that the
fatigue detection method of heterogeneous signal fusion can
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FIGURE 12: Physiological signal and steering wheel signal change
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FIGURE 13: A statistical graph of the blink frequency of five subjects.

improve the accuracy of fatigue detection while avoiding the
impact on driver behavior.

5. Discussion

This paper firstly collects and extracts features from phys-
iological signals, driver operation signals, and eye signals in
fatigue detection, and then performs signal fusion on the
extracted signals to achieve a higher accuracy rate of fatigue
driving detection, and finally performs signal fusion. In the
detection experiment of the method, it is concluded that the
accuracy of the fatigue driving detection method of the
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FIGURE 14: Statistics of eyelid closure data of five recipients.

heterogeneous signal fusion method is higher than that of
the driving fatigue detection method of a single signal source
through the statistics of the super learning machine algo-
rithm. The research of this article has not enough under-
standing of the signal fusion method, but the research of this
article has certain reference value for the detection method
of fatigue driving. It provides a certain research route for
future fatigue driving detection methods. This article still has
some shortcomings. For example, the number of samples
selected in our research process is not very large, and the
data obtained is often not comprehensive enough. Driving
fatigue is a problem that drivers often face. Combining with
heterogeneous signal fusion methods can certainly make the
research on driving fatigue more in-depth.
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