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)is paper studies the multistage pricing and seat allocation problems for multiple train services in a high-speed railway (HSR)
with multiple origins and destinations (ODs). Taking the maximum total revenue of all trains as the objective function, a joint
optimization model of multistage pricing and seat allocation is established. )e actual operation constraints, including train seat
capacity constraints, price time constraints in each period, and price space constraints among products, are fully considered. We
reformulate the optimization model as a bilevel multifollower programming model in which the upper-level model solves the seat
allocation problem for all trains serving multiple ODs in the whole booking horizon and the lower optimizes the pricing decisions
for each train serving each OD in different decision periods. )e upper and lower are a large-scale static seat allocation pro-
gramming and many small-scale multistage dynamic pricing programming which can be solved independently, respectively. )e
solving difficulty can be significantly reduced by decomposing.)en, we design an effective solution method based on divide-and-
conquer strategy. A real instance of the China’s Wuhan-Guangzhou high-speed railway is employed to validate the advantages of
the proposed model and the solution method.

1. Introduction

In recent years, high-speed railway (HSR) in China has
developed rapidly, but operating revenue varies greatly
between HSR lines. To tap the potential of operating revenue
and improve operating revenue is an important problem
that needs to be solved in HSR operation. Ticket price and
seat utilization are two important aspects to increase rev-
enue. In terms of ticket price policy, since China Railway
obtained pricing rights for HSR fromNational Development
and ReformCommissions in 2016, the ticket price strategy of
HSR has been more flexible, and dynamic price has received
much attention. In the aspect of seat utilization, the con-
ventional ticket organization strategies in China mainly
include ticket preassignment, seat sharing strategy, seat
reuse, and section-control strategy. With the upgrading of
Ticket Selling and Booking System of China’s Railway, 12306
network booking systems can carry out real-time dynamic

seat reuse, and these conventional ticket organization
strategies have been weakened for HSR. Railway depart-
ments pay more attention to adjusting seats flexibly
according to ticket sales results, but ‘preferentially selling
long-distance tickets to long-distance passengers’ is still the
basic principle of seat management. )e reform of ticket
price policy and seat management has created conditions for
China’s HSR to implement revenue management (RM)
strategy.

Pricing strategy and inventory control strategy play
important roles in RM systems for service industries, such as
the retail industry, airline industry, and hospitality industry
[1–7]. Inventory control techniques, normally known as seat
allocation in the passenger transportation market, are used
to maximize the total revenue of operators by determining
the booking limit of seats for multiple OD pairs at a fixed
price. However, the price of transportation products impacts
not only passenger choice behavior but also the distribution
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of passenger demand during the whole booking horizon.)e
combined effects of price and booking limits on the realized
passenger demand should be considered simultaneously.
Although pricing problems and inventory allocation prob-
lems are interrelated, especially in the railway market, there
are a few studies on the joint optimization problem of
pricing and seat allocation decisions [4, 8, 9].

High-speed and high-quality services are the advantages
of high-speed railway and air transportation. However,
multiple stops for a single HSR service are the most sig-
nificant difference between these two transportation modes,
which increases the complexity of joint pricing and seat
allocation for HSR. In the small HSR shown in Figure 1(a),
there are multiple HSR trains providing passenger trans-
portation services for a single OD. For example, OD (A, C) is
served by Train 1, Train 2, and Train 4, while Train 1, Train 4,
and Train 5 can provide services for OD (B, C). In addition
to multiple trains serving a single OD, for a train, the re-
sources (i.e., seats) of each leg (i.e., the section between two
adjacent station stops of the train) are shared by multiple
ODs served, as shown in Figure 1(b). For example, an HSR
Train 1 from A to D, stopping at stations B and C, can
provide services for 6 origin-destination (OD). For Train 1,
the capacity of leg B-C is shared by passengers of ODs
(A, C), (A, D), (B, C), and (B, D) served by Train 1. )e
complex relationship between multiple trains and multiple
ODs forms multiple products (i.e., the transportation service
from an origin to a destination provided by a train), which is
written as ((Origin,Destination)|Train). For example, in
Figure 1(b), there are 6 products: ((A, B)|Train 1),
((A, C)|Train1), ((A, D)|Train1), ((B, C)|Train1),
((B, D)|Train1), and ((C, D)|Train1). )us, the joint opti-
mization problem of pricing and seat allocation for HSR is a
large-scale multiproduct and multileg RM problem, posing
challenges not seen before for other modes of transportation,
such as air transportation.

Most existing studies on the joint optimization of pricing
and seat allocation in the rail market only considered a small
network or a few train services, which leaves a large gap
between the numerical experiments and real-world prob-
lems. )is study attempts to make contributions to the
existing research on large-scale joint optimization of pricing
and seat allocation for HSR by (1) establishing a joint op-
timization model of multistage pricing and seat allocation,
(2) reformulating the optimization model as a bilevel
multifollower programming model in which the upper-level
model solves the large-scale static seat allocation problem for
multiple products in the whole booking horizon and the
lower optimizes the small-scale multistage dynamic pricing
decisions for each product in different decision periods, (3)
improving the ticket price constraints considered by existing
studies and considering price time constraints in each period
and price space constraints among products, and (4) de-
signing an efficient solution method based on divide-and-
conquer strategy for large-scale problems.

)e remainder of this paper is organized as follows.
Section 2 summarizes the most relevant studies. Section 3
introduces the assumptions and notations. )e bilevel
multifollower programming model for joint HSR multistage

pricing and seat allocation problems is proposed in Section
4. )e details of the solution method, based on a divide-and-
conquer strategy, are described in Section 5. Numerical
experiments are provided in Section 6 to verify the avail-
ability and efficiency of the model and solution algorithm. In
Section 7, conclusions and future research directions are
summarized.

2. Literature Review

2.1.Pricing. Pricing strategy in RMusually refers to dynamic
pricing. Gallego and Van Ryzin [10] combined dynamic
pricing with RM and systematically studied the dynamic
pricing problem of perishable commodities by the intensity
control theory. In the twenty years since that paper, many
researchers have studied and expanded the dynamic pricing
problem by various methods. Passenger transportation is the
main application field for dynamic pricing strategy. In the
past, the research and application of dynamic pricing of
passenger transportation mainly focused on the civil avia-
tion industry, and in recent years, research in the railway
industry has gradually increased.

For civil aviation, Gallego and Van Ryzin [11] extended
the model of Gallego and Van Ryzin [10] to a multiproduct
joint pricing model and applied it to the case of multiple
flights in a network. You [12] studied the pricing strategy
with multiple seat classes for a single flight and multiple
flights and established a discrete-time stochastic dynamic
programming model. It simplified the ticket strategy and
reduced it to sets of critical decision periods, which elimi-
nated the need for large amounts of data storage. Zhang and
Cooper [13] studied the dynamic pricing problem for
parallel flights based on passenger choice behavior. )ey
established a discrete-time stochastic dynamic model based
on the Markov decision process. )e high-dimensional
Markov problem was solved by a heuristic algorithm, and
the upper and lower bounds of the price function were
obtained. Otero and Akhavan-Tabatabaei [14] used phase-
type distributions to fit the decision-making process of
passenger ticket purchase. )ey established a stochastic
dynamic pricing model for a single flight with multiple price
classes and solved it by a dynamic programming method.

For the railway industry, due to the number of stops, the
pricing problem of multiple train services and multiple ODs
is difficult to solve; many early studies are focused on a single
train servicing a single OD. Sibdari et al. [15] studied the
discrete-time-pricing problem with multiple seat classes for
a single train based on sales data from Amtrak. )ey pro-
posed a pseudo-dynamic heuristic strategy: at the beginning
of each day, a new price was calculated based on the in-
ventory level. )is strategy could correct pricing strategies
from current sales. Sato and Sawaki [16] used multinomial
logit models to describe the discrete passenger choice and
established a dynamic pricing model for multiple HSR train
services which compete with civil aviation. A small-scale
instance was used to verify the effect of the model. Zheng
and Liu [17] studied the pricing strategy optimization
problem for a single train service with multiple ODs and
established a mathematical programming model to optimize
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multistage prices. In the existing research, many studies
mainly focused on small-scale problems because of the
complexity of pricing problems in the railway industry.

2.2. Seat Allocation. Littlewood [18] first studied the seat
allocation problem and proposed a principle to decide
whether to accept or reject a reservation. Afterwards, many
researchers have undertaken a lot of studies on this basis.
Railway passenger transportation is often multileg, while
aviation passenger transportation is point-to-point, so the
scale of the problem of seat allocation is different between
these two transportation modes. Ciancimino et al. [19]
proposed a mathematical programming method for the
multileg and single-fare seat allocation problem with non-
nested structure. You [20] found a solution to the seat al-
location problem in the railway network by integrating the
advantages of mathematical methods and metaheuristic
methods. Wang et al. [21] studied the single-stage and
multistage stochastic programming models for the seat al-
location problem.)emodel could be solved by equivalently
transforming it into deterministic mathematical program-
ming. Yuan et al. [22] studied the application of dynamic
bidding price control in railway seat allocation. )ey built a
dynamic programming model to calculate dynamic bid
prices of multidimensional demand. Zhao and Zhao [23]
studied a seat inventory control method for homogeneous
seats of multiple train services with different stop-schedule
plans. )ey proposed a heuristic algorithm to solve the
nonlinear integer programming model. Yan et al. [24] re-
laxed the capacity constraint, combined with revenue
management, and constructed a probabilistic nonlinear
programming model to solve the seat inventory control and
train composition decisions problems simultaneously. In
these studies, they only considered how to allocate seats to
improve the revenue.

2.3. Joint Pricing and Seat Allocation. Although there have
beenmany studies on pricing and seat allocation, most of the
literature studied these two problems separately and there
are relatively few joint studies. In practical applications,
especially for civil aviation and railways, these two problems
are interrelated.

Most of the relevant research is in the field of civil
aviation. Weatherford [25] studied the joint optimization

of pricing and seat allocation at an early stage. )e
enumeration method was used to list the corresponding
price and seat allocation under different demands.
However, the scale of the study was small and only
considered the situation of two or three price classes (seat
classes) of a single flight; the demand constraint was
relatively ideal. Kuyumcu and Garcia-Diaz [26] analyzed
the joint optimization of pricing and seat allocation for
multiple flights in a network and proposed a solution
method based on graph theory. Without explicit as-
sumptions about demands and characteristics of various
products, it was not universal to reduce the difficulty of
the solution through specific preprocessing in the nu-
merical instance. Cote et al. [27] proposed a bilevel
programming model for the joint optimization problem of
pricing and seat allocation in the competitive environ-
ment of the aviation industry. )e objective function of
the upper-level problem was to maximize the network
revenue, and the objective function of the lower-level
problem was to minimize passengers’ individual perceived
travel disutility. )ey assumed that the airline knew how
competitors would react to its pricing strategy and that
demand was fully known. )e decision variables included
price but did not include seat allocation. )e seat allo-
cation was obtained according to its own price strategy
after knowing the competitors’ strategies. Feng and Xiao
[1] studied a comprehensive decision-making model for
optimal passenger cabin allocation and pricing and ob-
tained an optimal cabin allocation and pricing strategy
based on a sequence of threshold points, which was a
function of inventory, price, and demand intensity. Fi-
nally, a numerical instance of a single flight with multiple
price classes and multiple demands was presented.
Walczak and Brumelle [28] established a semi-Markov
model to study the joint optimization problem of pricing
and seat control for a single resource with multiple price
classes. Unlike most studies that adjusted operators’
strategies on the assumption that demand was known or
could be estimated, their study assumed that operators’
strategies were determined in advance and that demand
(including expected price) changed according to infor-
mation variables. )e passengers bought the ticket at the
lowest price at first. After the low-priced tickets were sold
out, they would buy the next higher-priced tickets. )is
situation would continue until the price was higher than
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Figure 1: A multi-OD HSR with multiple train services. (a) Multiple trains serving a single OD. (b) A train serving multiple ODs.
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the passenger’s expected price. Cizaire [29] studied the
joint optimization of the multistage pricing and seat al-
location for a single flight in a single OD with multiple
price classes. )e authors established models for the cases
of deterministic and stochastic demand. )e deterministic
demand model was solved by dynamic programming and
the stochastic demand model was solved by a heuristic
method.

Compared with civil aviation, there is less research in
the railway industry. Ongprasert [30] proposed a seat al-
location model considering passenger choice and dis-
counted fares in the competitive environment of civil
aviation. )e paper mainly focused on the seat allocation
optimization problem based on passenger choice and only
considered whether to offer discounted fares in the pricing
optimization. )ere were multiple objective functions in
the model. )e model was verified in the case of multiple
train services and multiple ODs on the intercity HSR in
Japan. Hetrakul and Cirillo [4] used mathematical pro-
gramming models to analyze the joint optimization
problem of pricing and seat allocation for multiple train
services in multiple ODs in an intercity railway. )e
multinomial logit (MNL) model and latent class (LC)
model were used to simulate ticket purchase timing of
passengers, and on this basis, the demand distribution on
each booking day was obtained. )en, they defined an
acceptance ratio of each OD to adjust seat allocation and
controlled price changes by the probability of passenger
ticket purchase in the model, where price and seat allo-
cation were optimized simultaneously. Zheng [31] studied
the differential pricing problem for multiple train services
in a single sales period and established a bilevel pro-
gramming model. )e upper-level problem was differential
pricing and the lower-level problem was seat allocation,
where the user equilibrium traffic distribution method was
adopted. )e model was also extended to multiple stages
and differential pricing was implemented at each stage. )e
multistage model was solved by an approximate dynamic
programming algorithm. Hu et al. [8] proposed a nonlinear
programming model for joint optimization of pricing and
seat allocation in high-speed rail networks and designed a
solution algorithm based on the Davidon–Fletcher–Powell
method.

According to the literature review in this section and the
summary from the works of Cizaire [29] and Hetrakul and
Cirillo [4], we summarize and compare the relevant studies
from the main aspects of joint optimization of pricing and
seat allocation in Table 1.

To summarize, the methods proposed in most of the
literature mentioned above are not universal or only ap-
plicable to small-scale problems. For the convenience of
modeling and solving, some researchers have simplified a lot
of constraints. Most of the existing joint optimization studies
are based on passenger utility to allocate seats from the
perspective of passengers. In this paper, both seat allocation
and multistage pricing are optimized from the perspective of
operators. Furthermore, we fully consider the actual price
time constraints in each period and price space constraints
among products.

3. Notations and Assumptions

3.1. Assumptions

Assumption 1. We only consider the second-class seat.

Assumption 2. )e passenger transfer is not taken into
consideration.

Assumption 3. )e travel demand of each OD is indepen-
dent of each other.

3.2. Notations. )is section introduces the notations in the
study. We consider one direction on a HSR line L with N

stations. )e stations are denoted in order, as 1, 2, . . . , N. For
OD (i, j), 1≤ i< j≤N.H denotes the set of trains andW is the
set of all ODs on line L.Hij denotes the set of trains servingOD
(i, j). C(h) is the train seat capacity of train h, h ∈ H. n(h) is
the number of stop stations of train h. )e leg l is the segment
between two adjacent stop stations, 1≤ l≤ (n(h) − 1).)at is to
say, the first leg is the segment between the first stop station and
the second stop station, the last leg is the segment between the
(n(h) − 1)th stop station and the n(h)th stop station. We
denote the transportation service from i to j provided by train h

as a product 〈(i, j)|h〉. )e booking horizon is divided into K

booking periods.)e earliest one is period 1 and the latest one is
period K. Let mhk

ij denote the number of allocated seats for
product 〈(i, j)|h〉 in period k.)e number of allocated seats for
product 〈(i, j)|h〉 can be defined as mh

ij:

m
h
ij � 􏽘

K

k�1
m

hk
ij . (1)

For train h ∈ Hij, (i, j) ∈W, let 􏽢p
h
ij denote the full price

which is with no discount and determined by the government.
ph

ij
is the lower bound of the price which refers to the lowest

allowable floating price of current execution price (i.e., actual
price). ph

ij is the upper bound of the price which refers to the
highest allowable floating price of current execution price.
Generally, these three types of prices should meet
0≤ph

ij
≤ph

ij ≤ 􏽢p
h
ij. If the regulatory authorities do not impose

restrictions on ph
ij, it can be taken as ph

ij � 􏽢p
h
ij. Let phk

ij denote
the price for product 〈(i, j)|h〉 in period k. During the booking
periods, the value range of phk

ij is limited to [ph

ij
, ph

ij]. ph
ij is the

average price for product 〈(i, j)|h〉. It can be expressed as
follows:

p
h
ij �

􏽐
K
k�1 p

hk
ij m

hk
ij􏼐 􏼑

􏽐
K
k�1 m

hk
ij

�
􏽐

K
k�1 p

hk
ij m

hk
ij􏼐 􏼑

m
h
ij

. (2)

Define R as the total revenue. It is the product of ph
ij and

mh
ij:

R � 􏽘
(i,j)∈W

􏽘
h∈Hij

p
h
ijm

h
ij � 􏽘

(i,j)∈W
􏽘

h∈Hij

􏽘

K

k�1
p

hk
ij m

hk
ij . (3)

Let chk
ij be the generalized travel cost of the passenger. It

consists of the ticket price and the monetary cost of travel
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time. For product 〈(i, j)|h〉 in period k, the generalized
travel cost of each passenger is as follows:

c
hk
ij � t

h
ij] + p

hk
ij . (4)

where th
ij is the travel time for product 〈(i, j)|h〉, ] is the time

value of the passenger, and chk
ij is influenced by the travel

time and price of the product and indicates the distinctions
between different products.

)e average generalized travel cost of each passenger for
OD (i, j) in period k can be expressed as

c
k
ij �

􏽐h∈Hrs
c

hk
ij m

hk
ij

􏽐h∈Hrs
m

hk
ij

. (5)

For OD (i, j) in period k, the elastic demand function
can be described as follows:

q
k
ij � 􏽢q

k
ij exp ηk 1 −

c
k
ij

􏽢c
k
ij

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (6)

where 􏽢qk
ij is the initial travel demand corresponding to 􏽢ck

ij

and 􏽢ck
ij is the initial average generalized travel cost. )ere-

fore, 􏽢qk
ij � qk

ij(􏽢ck
ij). ηk is the price elastic parameter of pas-

senger demand in period k, ηk > 0. )e closer the time is to
the departure time, the smaller ηk is.

)e elastic demand function implies passenger choices. qk
ij

is related to the generalized travel cost chk
ij in period k. 􏽐

K
k�1 qk

ij

is the total passenger flow volume calculated according to the
elastic demand function. )e railway operation department
allocates seats according to the principle of revenue maximi-
zation. Among 􏽐

K
k�1 qk

ij, the number of passengers choosing
train h during the whole booking horizon and in each booking
period is mh

ij and mhk
ij , respectively. )erefore, mh

ij and mhk
ij are

the consequences of passenger choices.
We list the parameters and decision variables used in the

model in Table 2.

4. Model

)is study establishes an optimization model to solve the
price and the number of allocated seats in period k for
product 〈(i, j)|h〉. )e objective function is to maximize the
total revenue for all products in all periods. Taking phk

ij and

mhk
ij as decision variables, the mathematical programming

model is constructed as follows:

maxR � 􏽘
(i,j)∈W

􏽘
h∈Hij

􏽘

K

k�1
p

hk
ij m

hk
ij , (7)

which subject to

􏽘

l

i�1
􏽐

n(h)

j�l+1
􏽐
K

k�1
m

hk
ij ≤C(h), 1≤ l≤ n(h), h ∈ H, (8)

m
hk
ij ≥ 0, (i, j) ∈W, h ∈ Hij, 1≤ k≤K, (9)

􏽘
h∈Hij

m
hk
ij ≤ q

k
ij, (i, j) ∈W, 1≤ k≤K,

(10)

p
h

ij
≤p

hk
ij ≤p

h
ij, (i, j) ∈W, h ∈ Hij, 1≤ k≤K, (11)

p
hk
ij ≤p

hk
i1j1

, i1 ≤ i, j≤ j1, (i, j), i1, j1( 􏼁 ∈W, h ∈ Hij, 1≤ k≤K,

(12)

p
hk1
ij ≤p

hk2
ij , (i, j) ∈W, h ∈ Hij, 1≤ k1 ≤ k2 ≤K. (13)

Constraints in (8) are train seat capacity constraints,
assuring that, for each train h, the seat capacity of each leg l is
shared by passengers of ODs which cover this leg l and is
served by this train h. Constraints in (9) guarantee the
number of allocated seats for each product 〈(i, j)|h〉 in each
period k is positive. Constraints in (10) define demand is the
upper bound of the number of allocated seats for OD (i, j) in
period k. Constraints in (11) are the upper and lower bounds
of price for product 〈(i, j)|h〉 in period k. ph

ij and ph

ij
are the

highest and lowest allowable floating price of current exe-
cution price. Constraints in (12) assure that, for the same
train and the same period, if the travel range of a long-
distance product covers the travel range of another short-
distance product, the price of the long-distance product is
higher than that of the short-distance product. Constraints
in (13) enforce that the price in period k + 1 is more than or
equal to the price in period k for the same product 〈(i, j)|h〉.
When the purchasing day is closer to the departure day, the
ticket price is more expensive.

Table 1: Literature review summary of joint optimization of pricing and seat allocation.

Authors Multiperiod Multileg Joint optimization Industry
Weatherford [25] 7 7 ✓ C
Kuyumcu and Garcia-Diaz [26] 7 ✓ 7 C
Cote et al. [27] 7 ✓ 7 C
Feng and Xiao [1] ✓ 7 ✓ C
Walczak and Brumelle [28] ✓ 7 ✓ C
Cizaire [29] ✓ 7 ✓ C
Ongprasert [30] ✓ ✓ 7 R
Hetrakul and Cirillo [4] ✓ ✓ ✓ R
Zheng [31] ✓ ✓ ✓ R
Hu et al. [8] ✓ ✓ ✓ R
)is research ✓ ✓ ✓ R
Note. C, civil aviation; R, railway.
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In order to solve this problem, we transform the model into
a bilevel multifollower programming model by decomposing
this mathematical programming model. )e upper-level model
is a seat allocation model for multiple products in the whole
booking horizon. )e lower-level model includes many mul-
tistage dynamic pricing models for each product. )us, the
multistage pricing and seat allocation problem for multiple
trains and multiple ODs are divided into two parts: the seat
allocation plan for multiple trains and the multistage pricing
strategy for each product.

)e details of bilevel multifollower programming are
described below.

4.1. 4e Upper-Level Model (Model 1). )e upper-level
model simultaneously solves the number of allocated seats
and corresponding price for all products in the whole
booking horizon. )e model is as follows:

maxR � 􏽘
(i,j)∈W

􏽘
h∈Hij

p
h
ijm

h
ij, (14)

which subject to

􏽘

l

i�1
􏽐

n(h)

j�l+1
m

h
ij ≤C(h), 1≤ l≤ n(h), h ∈ H. (15)

where the constraints in (15) are train seat capacity
constraints for each leg of each train. )e value of mh

ij and
ph

ij can be obtained by mhk
ij and phk

ij , according to equations
(1) and (2), respectively. phk

ij and mhk
ij are from the initial

solution or the output of the last iteration in the lower-
level model.

4.2.4e Lower-Level Model (Model 2). Based on the number
of allocated seats of each product 〈(i, j)|h〉 solved by the
upper-level model, the lower-level model solves the price phk

ij

and the number of allocated seats mhk
ij in each period k for

each product 〈(i, j)|h〉. For each product 〈(i, j)|h〉, the
pricing model is as follows:

maxR � 􏽘
K

k�1
p

hk
ij m

hk
ij , (16)

which subject to

Table 2: Parameters and decision variables.

Notations Meaning
L A HSR line
N )e number of stations on line L

(i, j) An OD (the origin is station i and the destination is station j)
H )e set of train services on line L

W )e set of ODs on line L

Hij )e set of trains serving OD (i, j)

h A train service
C(h) )e train seat capacity of train h

n(h) )e number of stop stations of train h

l )e segment between two adjacent stop stations
〈(i, j)|h〉 A product (a transportation service from i to j provided by train h)
K )e number of divided periods
mhk

ij )e number of allocated seats in period k for product 〈(i, j)|h〉

k )e kth booking period
mh

ij )e number of allocated seats for product 〈(i, j)|h〉

􏽢p
h
ij Full price

ph

ij
)e lower bound of the price

ph
ij )e upper bound of the price

phk
ij )e price in period k for product 〈(i, j)|h〉

ph
ij )e average price for product 〈(i, j)|h〉

R )e total revenue
chk

ij )e generalized travel cost of the passenger
th
ij Travel time for product 〈(i, j)|h〉

] )e time value of passenger
ck

ij )e average generalized travel cost of passengers for OD (i, j) in period k

􏽢ck
ij )e initial average generalized travel cost

􏽢qk
ij )e initial travel demand corresponding to 􏽢ck

ij

ηk )e price elastic parameter of passenger demand in period k

qk
ij )e passenger travel demand for OD (i, j) in period k
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k�1
m

hk
ij ≤m

h
ij, (17)

m
hk
ij ≥ 0, 1≤ k≤K, (18)

􏽘
h∈Hij

m
hk
ij ≤ q

k
ij, 1≤ k≤K,

(19)

p
h

ij
≤p

hk
ij ≤p

h
ij, 1≤ k≤K, (20)

p
hk
ij ≤p

hk
i1j1

, i1 ≤ i, j≤ j1, i1, j1( 􏼁 ∈W, 1≤ k≤K, (21)

p
hk1
ij ≤p

hk2
ij , 1≤ k1 ≤ k2 ≤K, (22)

where the constraint in (17) is the seat allocation constraint,
which enforces that the sum of the number of seats in each
period cannot exceed the total number of seats in the whole
booking horizon. Other constraints are similar to equations
(9)–(13).

5. Solution Method

)e resolving thoughts are as follows. First, we solve the
number of allocated seats mh

ij for all products in Model 1.
)en, based on mh

ij, we solve price in each period for each
product inModel 2.)rough the linkage solution of Model 1
and Model 2, the joint optimization of seat allocation and
dynamic price is realized. By rebuilding Model 1 and Model
2 based on divide-and-conquer strategy, the bilevel multi-
follower model is solved.

5.1. 4e Equivalent Model of the Upper-Level Model
(Model 1’). Δmh

ij denotes the improving direction of mh
ij in

Model 1. Correspondingly, Δph
ij is the improving direction

of ph
ij. Using the first derivative to express the relation

between mh
ij and ph

ij, the equivalent model (Model 1’) of the
upper-level model can be obtained.

)e objective function is to improve the total revenue of
all products. It can be equivalently expressed as follows:

maxR � 􏽘
(i,j)∈W

􏽘
h∈Hij

p
h
ij + Δph

ij􏼐 􏼑 m
h
ij + Δmh

ij􏼐 􏼑.
(23)

)e relationship between Δmh
ij and Δph

ij can be
expressed as follows:

Δph
ij �

d p
h
ij􏼐 􏼑

d m
h
ij􏼐 􏼑
Δmh

ij. (24)

Hence, Model 1’ can be transformed as follows:

maxR � 􏽘
(i,j)∈W

􏽘
h∈Hij

p
h
ij +

d p
h
ij􏼐 􏼑

d m
h
ij􏼐 􏼑
Δmh

ij
⎛⎝ ⎞⎠ m

h
ij + Δmh

ij􏼐 􏼑,

(25)

which subject to

􏽘

l

i�1
􏽐

n(h)

j�l+1
m

h
ij + Δmh

ij􏼐 􏼑≤C(h), 1≤ l≤ n(h), h ∈ H, (26)

m
h
ij + Δmh

ij ≥ 0, (i, j) ∈W, h ∈ Hij, (27)

p
h

ij
≤p

h
ij +

d p
h
ij􏼐 􏼑

d m
h
ij􏼐 􏼑
Δmh

ij ≤p
h
ij, (i, j) ∈W, h ∈ Hij, (28)

Δmh
ij

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ δ, (i, j) ∈W, h ∈ Hij, (29)

where δ is the range parameter of ticket adjustment in the
neighborhood of mh

ij. Since d(ph
ij)/d(mh

ij) is only valid in the
neighborhood of mh

ij and ph
ij, the variation range of Δmh

ij

should be limited to ensure the validity of the solution. In
order to improve the efficiency of solving, δ is constantly
changing in the iterative process, δ � δ0(I − i)/i, where i is
the current iteration number, δ0 is the initial value of the
range parameter of ticket adjustment in the neighborhood of
mh

ij, and I is the preset maximum iteration number.
)e constraints include train seat capacity constraints,

nonnegative constraints, price constraints, and neighbor-
hood constraints. For each product, the sum of Δmhk

ij in all
periods cannot exceed Δmh

ij, so when Δmh
ij is small, it can be

considered that Δmh
ij is mainly concentrated on a certain

Δmhk
ij , which means the change amount of mh

ij is mainly
from the change amount of mhk

ij in a certain period k. Price is
negatively correlated to the number of allocated seats, that is,
d(ph

ij)/d(mhk
ij )< 0. )erefore, we can obtain

d p
h
ij􏼐 􏼑

d m
h
ij􏼐 􏼑

�

min
d p

h
ij􏼐 􏼑

d m
hk
ij􏼐 􏼑

⎧⎪⎨
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⎪⎭
Δmh

ij < 0

max
d p

h
ij􏼐 􏼑

d m
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ij􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
Δmh

ij ≥ 0
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, 1≤ k≤K, (30)

where d(ph
ij)/d(mhk

ij ) can be expressed as follows:

d p
h
ij􏼐 􏼑

d m
hk
ij􏼐 􏼑

�
c

k
ij − c

hk
ij − 􏽢c

k
ij􏽐h∈Hij

m
hk
ij /q

k
ijηk

m
h
ij

+
p

hk
ij

m
h
ij

−
􏽐

K
k�1 p

hk
ij m

hk
ij

m
h
ij × m

h
ij

.

(31)

)e derivation of equation (31) is shown in Appendix A.

5.2. 4e Equivalent Model of the Lower-Level Model
(Model 2’). By allocating Δmh

ij to each period to obtain Δmhk
ij

for each product 〈(i, j)|h〉, the equivalent model (Model 2’) of
the lower-level model can be obtained. Corresponding to
Δmhk

ij , Δphk
ij is the change amount of price in period k for

product 〈(i, j)|h〉. Model 2’ can be expressed as follows:

maxR � 􏽘
K

k�1
p

hk
ij + Δphk

ij􏼐 􏼑 m
hk
ij + Δmhk

ij􏼐 􏼑, (32)

which subject to
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h
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p
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ij + Δphk

ij ≤p
hk
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(36)

p
hk1
ij + Δphk1

ij ≤p
hk2
ij + Δphk2

ij , 1≤ k1 ≤ k2 ≤K, (37)

where the constraints in (33)–(37) are similar to constraints
in (17) and (18) and (20)–(22). According to equations
(4)–(6) and equation (19), we can obtain the relationship
between Δmhk

ij and Δphk
ij as follows:

Δphk
ij �

􏽐h∈Hij
m

hk
ij

m
hk
ij

􏽢c
k
ij − c

k
ij −

􏽢c
k
ij

ηk

ln
Δmhk

ij + q
k
ij

􏽢q
k
ij

⎛⎝ ⎞⎠. (38)

)e derivation process of equation (38) is shown in
Appendix B.

5.3. Solution Algorithm Framework. )e divide-and-con-
quer solution algorithm framework of the bilevel multi-
follower programming model is shown in Algorithm 1.

6. Numerical Instances

6.1.Data. In this section, we use the data of train and passenger
flow in the downward direction of Wuhan (WH) Station to
Shenzhen North (SZN) Station of the China Wuhan-
Guangzhou High-Speed Railway (WGHSR) (as shown in
Figure 2) to design a small-scale instance and a large-scale
instance to verify the effectiveness of the proposed model and
solution algorithm. )e small-scale instance is performed to
explore the influence of parameters such as price elastic pa-
rameters and train seat capacity on the optimal results. )e
solution algorithm was developed by MATLAB 2014a, and the
numerical instances were performed on a Windows-based
workstation with an Intel(R) Xeon(R) 3.70GHz processor and
128GB RAM.

)e numerical instance includes 20 trains serving the line
(shown in Figure 2), and these trains and the train trips are
shown in Table 3. Among them, G1003, G1011, and G1133
comprise 16 carriages, each holding 1118 passengers.)e rest of
the trains travel with 8 carriages and could carry 559 passengers.
For trains with the same departure and arrival stations, the stop
plans are different and the departure times are distributed in
different periods of the day. Each passenger station along the
line is served by at least one train. )ere are 116 OD, served by
20 trains in total. 20 trains and 116 ODs are combined into 350
products.)emaximum number of intermediate stops is 8 and
the minimum number is 1 among the 20 trains.

)e current ticket booking horizon in China HSR is 30days
and the whole booking horizon is divided into K � 4 periods.

20 trains are divided into two categories according to their
departure time. Trains departing before 12:00 are considered as
category A, and trains departing after 12:00 are considered as
category B. )e fourth period is the closest to departure time,
and in this period, a fixed fare without discount is adopted.)e
other three periods are dynamic pricing periods, which adopt
dynamic discounts to sell tickets.)e price elasticity parameters
of the three periods are η1 � 2, η2 � 1.7, and η3 � 1.4, re-
spectively. )e specific division of booking horizon is shown in
Table 4.

)e real ticket sale data are taken as the initial solution of
the instance. Set the initial value of the range parameter of
ticket adjustment in the neighborhood of mh

ij as 5, that is,
δ0 � 5. )e influence of different values of δ0 on the solution
will be analyzed later.

6.2. Small-Scale Instance. )e small-scale numerical in-
stance is made up of two down trains, G6229 and G6233,
from GZ to SZN along WGHSR, including 8 ODs and 9
products in total. In this instance, the relationship between
trains and ODs is shown in Figure 3.

)e optimization process curves of total revenue and total
passenger kilometer in the small-scale instance are shown in
Figure 4. As can be seen from this figure, the optimization
process obtains the final solution at the 15th iteration. Com-
pared with the initial solution, the total revenue increased from
31,986.35 Yuan to 333,233.18 Yuan, with an increase rate of
3.90%.)e total passenger kilometer increased by 28.00% from
43,874.58passenger · kilometer (pkm) to 56,157.93pkm.)e
average passenger-kilometer price decreased from 0.73 Yuan to
0.59 Yuan, with a decrease of 13.73%. Price discount makes the
passenger flow increase significantly, which increases the
passenger revenue to a certain extent.

)e comparison of the price and number of allocated seats
for each product in each period (before and after optimiza-
tion) is shown in Table 5 (the passenger flow of product 4 is 0,
so this product is omitted). As seen in Figure 5, for most
products, price is reduced to attract more demand, which
could achieve the purpose of increasing revenue.

6.3. Sensitivity Analysis. In this section, based on the small-
scale instance in the previous section, we explore the influence
of the critical parameter changes on the optimization results
and carry out sensitivity analysis on price elasticity parameter,
train seat capacity, and the initial value δ0 of the range pa-
rameter of ticket adjustment in the neighborhood of mh

ij.

6.3.1. Sensitivity Analysis on Price Elasticity Parameter.
In order to analyze the influence of price elasticity parameters
on total revenue, the price elasticity parameters in each period,
η1, η2, and η3, were changed by multiples of 0.75, 1.00, 1.25,
1.50, 1.75, and 2.00.)e change curve of total revenue with five
groups of price elasticity parameters is shown in Figure 6.

As can be seen from Figure 6, the total revenue is
positively correlated with the price elasticity parameter.
)e larger the price elasticity parameter is, the more
significant the attraction effect of adjusting price on
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passenger flow will be, and the larger the number of it-
erations reaching convergence, the slower the conver-
gence speed.

6.3.2. Sensitivity Analysis on Train Seat Capacity. Train seat
capacity determines the number of seats available for allo-
cation. In this section, we analyze the impact of train seat
capacity on total revenue.When the number of seats on train
G6233 increases from 500 to 700, with a step size of 10, the
changing trend of total revenue is shown in Figure 7. With
the increase of seat capacity, the total revenue shows an
increasing trend between 500 and 580; at the same time, the

growth rate gradually slows down and tends to stabilize
when seat capacity exceeds 580. )e results show that the
increase of train seat capacity can improve revenue to some
extent, but when the capacity is too loose, it cannot bring
more revenue; this is because price cannot be reduced
indefinitely.

6.3.3. Sensitivity Analysis on Initial Value of the Range
Parameter of Ticket Adjustment. In the optimization algo-
rithm, the initial value δ0 of the range parameter of ticket
adjustment in the neighborhood of mh

ij limits the adjustment
amplitude of the number of seats. In order to analyze the

Set an initial feasible solution, mhk
ij � 􏽢qhk

ij , phk
ij � 􏽢p

hk
ij ;

Calculate the initial total revenue, R0 � 􏽐
(i,j)∈W

􏽐
h∈Hij

􏽐
K
k�1 phk

ij mhk
ij ;

Repeat
Calculate mh

ij � 􏽐
K
k�1 mhk

ij ; ph
ij � (􏽐

K
k�1 phk

ij mhk
ij )/mh

ij;
Solve Δmh

ij for all products by Model 1’;
Repeat
Solve Δmhk

ij for each product by Model 2’;
Update mhk

ij � mhk
ij + Δmhk

ij ; phk
ij � phk

ij + Δphk
ij ;

Calculate the total revenue, R � 􏽐(i,j)∈W􏽐h∈Hij
􏽐

K
k�1 phk

ij mhk
ij ;

Compare the old and new revenue. Update the optimal mhk
ij and phk

ij at the higher total revenue;
Stop if the value of objective function does not improve in successive iterations;
Output: final solution.

ALGORITHM 1: Divide-and-conquer solution algorithm.

Table 3: Train composition table of numerical instance.

Train trips WH-SZN WH-GZS CSS-SZN CSS-GZS GZS-SZN
Number of trains 2 5 4 3 6

Train no. G1003
G1011

G1107
G1123
G1133
G1141
G1159

G6001
G6015
G6021
G6027

G6107
G6115
G6121

G6205
G6215
G6221
G6229
G6233
G6243
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Figure 2: )e line map of the downward direction of WH to SZN of China WGHSR.

Table 4: Booking horizon division of numerical instance.

Period no. k 1 2 3 4

Start time )e 1st day A: the 19th day A: the 25th day A: the 29th day
B: the 20th day B: the 26th day B: the 30th day

End time A: the 18th day A: the 24th day A: the 28th day One hour before departingB: the 19th day B: the 25th day B: the 29th day
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influence of δ0 on the solution results, δ0 is set at 1, 3, 5, 7,
and 10, and the change curves of total revenue under dif-
ferent δ0 are shown in Figure 8.

Figure 8 shows that the smaller δ0 is, the better the
optimization result is, but the slower the convergence rate.
In this small-scale instance, the difference between the
lowest total revenue (when δ0 � 10) and the highest total
revenue (when δ0 � 1) is only 40.95 Yuan (-0.12%). We set
δ0 � 5 in this instance, and there is almost no difference
(only −0.05%) in total revenue when δ0 � 5 and when δ0 � 1.

6.4. Large-Scale Instance. In this section, the large-scale
instance consisting of 20 trains and 116 ODs on WGHSR
was optimized. )e final solution was obtained through 21
iterations, which takes about 1.15 hours. )e optimization
process curves of total revenue and passenger kilometer are
shown in Figure 9.

)e total revenue of the final solution is 2,206,256.79
Yuan, which increased by 1.61% compared with the initial
solution. )e final total passenger kilometer reaches
5,716,751 pkm, with a growth rate of 23.37%. )e average

GZS QS HM GMC SZN

G6229
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1 4 6
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Figure 3: )e relationship between trains and ODs in small-scale instance.
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Figure 4: Optimization process curves of small-scale numerical instance.

Table 5: )e comparison of price and number of allocated seats before and after optimization.

Products
p0

h
ij m0

h
ij

􏽥ph
ij ρp(%)

􏽥mh
ij ρm(%)

Train OD (ph1
ij , ph2

ij , ph3
ij ) (mh1

ij , mh2
ij , mh3

ij )

G6229

GZS-QS 24.5 3 20.3 (14.7, 17.0, 20.3) −17.12 3 (0, 0, 3) 10.94
GZS-GMC 59.5 18 49.5 (35.7, 41.4, 49.5) −16.89 20 (0, 0, 20) 10.50
GZS-SZN 74.5 220 61.2 (44.7, 51.0, 62.1) −17.89 247 (2, 18, 227) 12.15
QS-SZN 49.5 12 40.1 (30.5, 35.3, 42.1) −18.94 14 (0, 4, 10) 14.32

GMC-SZN 14.5 6 12.3 (9.2, 10.7, 12.7) −15.23 6 (0, 1, 5) 8.14

G6233
GZS-HM 34.5 16 35.3 (28.0, 31.2, 35.7) 2.41 14 (0, 1, 13) −12.60
GZS-SZN 84.5 214 59.5 (47.4, 55.0, 66.4) −29.59 255 (58, 58, 139) 19.17
HM-SZN 39.5 21 29.6 (23.7, 26.5, 31.6) −24.98 27 (4, 4, 19) 27.10

Notes: 􏽥ph
ij, the average price in the first three periods; 􏽥mh

ij, the average number of allocated seats in the first three periods; p0
h
ij, the initial price; m0

h
ij, the initial

number of allocated seats before optimization; ρp, the increase rate of the average price compared with initial values; ρm, the increase rate of the average
number of allocated seats compared with initial values. )e unit of price is Chinese Yuan.
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passenger-kilometer price reduced from 0.47 Yuan to 0.39
Yuan, with a 17.64% decrease. In the large-scale instance,
the large price discount brings an obvious increase in
passenger flow, which improves the total revenue to a
certain extent.

Compared with the initial solution, the revenue change
rate of each train is shown in Figure 10. Among them, the
revenue change rate of 17 trains is positive and the maxi-
mum revenue change rate of a single train is 8.72%. For most
trains, the revenue is improved. )e revenue of three long-
distance trains (G1003, G1107, and G1123) decreases, except

for G1123, which has the largest decline of 3.28%; the other
two trains decreased by less than 1%.

We carried out a further analysis based on travel distance
(i.e., the distance a train travels from origin to destination).
Figure 11 shows the change rate of average revenue and
passenger-kilometer rise with fluctuations when travel
distance increases; the improving amplitude of total revenue
and the growth rate of passenger kilometer of long-distance
trains are greater than those of short-distance trains.

Furthermore, we select GZS-SZN and WH-GZS as
typical short-distance OD and long-distance OD, respec-
tively, for analysis. After optimization, the average revenue
growth rate of GZS-SZN is 4.10%, while the average revenue
growth rate of WH-GZS is 2.92%. )e average revenue
improvement amplitude of long-distance OD is smaller than
that of short-distance OD. Further analysis of the revenue
rate, passenger flow change rate, and price change rate shows
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Figure 5: Price and number of seats during the booking horizon before and after optimization.
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that the difference among products serving short-distance
OD is more obvious than that serving long-distance OD, as
shown in Figure 12. )is is because there are more trains

available for short-distance passengers to travel and the
difference between the products selected by passengers is
more obvious.

In Figure 12, for short-distance OD (GZS, SZN), the
revenue of product 〈(GZS, SZN)|G6207〉 serving by long-
distance train G6027 decreased slightly, but the total revenue
of train G6027 increased (see Figure 10). Meanwhile, the
revenue of other products serving OD (GZS, SZN) all in-
creased, especially the revenue of products
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Figure 9: Optimization process curve of large-scale numerical
instance.
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Figure 11: )e rate of average revenue and passenger kilometer to
travel distance.
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Figure 12: (a) Index variation of products in GZS-SZN. (b) Index
variation of products in WH-GZS.
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〈(GZS, SZN)|G6215〉 and 〈(GZS, SZN)|G6221〉 served by
short-distance trains increased most obviously. It shows that
the seat allocationmechanism objectively causes the result of
“preferentially selling long-distance tickets to long-distance
passengers.”

7. Conclusions

)is paper studies the joint optimization of multistage
dynamic pricing and seat allocation for multitrain and
multi-OD in HSR. A mathematical programming model is
constructed to maximize the total revenue of all trains as the
objective function. )e constraints include the price time
constraints in each period and price space constraints
among products, which makes the model more consistent
with the real operation situation. )en, the model is
transformed into a bilevel multifollower programming
model, which includes a large-scale static seat allocation
model in the whole booking horizon for all products and
many small-scale dynamic pricing optimization models for
each product in each decision period. Based on divide-and-
conquer strategy the solution method we proposed effec-
tively reduces the solving scale and difficulty by adjusting the
number of tickets among trains using a seat allocation model
and solving the multistage price of each product.

)e instance on China’s WGHSR shows that the model
and algorithm have a good solving effect. In the large-scale
instance, the total revenue increases by 1.61%.)e passenger
flow increases significantly through dynamic pricing. )e
model and algorithm parameters affect the solving results.
)e price elasticity parameter is positively correlated with
total revenue. Total revenue can be improved by moderately
increasing train seat capacity. )e initial value of range
parameter of ticket adjustment has a great influence on the
solving efficiency, but has little influence on the final so-
lution quality. )rough the dynamic pricing strategy, the
revenue of most trains is increased. )e revenue growth rate
of short-distance trains is higher than that of long-distance
trains and the differences of the revenue growth rate among
short-distance trains is more obvious.

However, some factors were not taken into account in
this study. In this paper, the whole booking horizon is di-
vided into 4 pre-given periods which include 3 dynamic
price periods. A way to accurately divide the booking ho-
rizon is worth further study. In addition, in actual opera-
tions, HSR trains have different seat classes. )e dynamic
pricing of multiple seats is also one of the future research
directions. )e last but not least, if there is a special re-
quirement to guide demand and make the equilibrium of
capacity utilization among different trains better, optimi-
zation objectives or constraints about the range of the train
full load rate can be added on the basis of the optimization
model proposed in this paper, but the solutionmethod needs
further research.

Appendix

A. The Derivation Process of Equation (31)

Take the derivative of both sides of equation (2) to mhk
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that is,
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Substitute equations (4) and (5) into equation (6):
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Take the derivative of both sides of equation (A.3) tomhk
ij :

d q
k
ij􏼐 􏼑

d m
hk
ij􏼐 􏼑

�
−q

k
ijηk

􏽢c
k
ij􏽐h∈Hij

m
hk
ij

t
h
ij] + p

hk
ij +

d p
hk
ij􏼐 􏼑

d m
hk
ij􏼐 􏼑

· m
hk
ij −

􏽐h∈Hij
t
h
ij] + p

hk
ij􏼐 􏼑m

hk
ij

􏽐h∈Hij
m

hk
ij

⎛⎝ ⎞⎠. (A.4)

Since qk
ij and mhk

ij are linear, its derivative is 1.
So, d(qk
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ij ) � 1; then, we can obtain
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Transforming equation (A.5), we can obtain
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Substitute equation (A.6) into equation (A.2):

d p
h
ij􏼐 􏼑

d m
hk
ij􏼐 􏼑

�
c

k
ij − c

hk
ij − 􏽢c

k
ij􏽐h∈Hij

m
hk
ij / q

k
ijηk􏼐 􏼑

m
h
ij

+
p

hk
ij

m
h
ij

−
􏽐

K
k�1 p

hk
ij m

hk
ij

m
h
ij × m

h
ij

.

(A.7)

)erefore, the derivation process of equation (31) in
Model 1’ is shown above.

B. The Derivation Process of Equation (38)

Obtain Δphk
ij by looking for the relationship between Δmhk

ij

and Δphk
ij .

According to equation (6), the demand change Δqk
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caused by the price change Δphk
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change Δmhk
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periods remain the same. Hence, we can obtain
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)en, substitute equation (B.3) to equation (B.2) and
equation (B.2) to equation (B.1):
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)en, transforming to solve Δphk
ij ,
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)erefore, the derivation process of equation (38) in
Model 2’ is shown above.
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