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Air route network (ARN) is the important carrier of air transport, and its robustness has important influence on the safety and
stability of air transport. To analyze the robustness of ARN, in this paper, a topology potential relative entropy (TPRE) model is
proposed, based on topology potential (TP) and relative entropy (RE) methods. Firstly, the TPRE model is established as the
theoretical basis for the research. Secondly, an air route reduction network (ARRN) model is constructed according to real
Chinese ARN. Besides, the basic topology features of ARRN are given by complex network theory. To prove the applicability,
objectivity, and accuracy of the proposedmethod, attack strategies including random, degree, betweenness, closeness, eigenvector,
and Bonacich are used to attack ARRN. Eventually, the performance of ARRN robustness is analyzed by network efficiency, size of
giant component, and the proposed TPRE model. ,is conclusion has practical significance for optimizing ARN structure and
improving airspace efficiency.

1. Introduction

Air route network (ARN) is one of the important parts of air
traffic systems. In the air transportation, all the flights will fly
along the ARN; namely, ARN manages and limits the flight
trajectory. ,erefore, the robustness of the ARN has im-
portant impact on the safety and efficiency of air transport.
Due to the expansion of air transportation and the diver-
sified development of air route requirements, ARN will
become more and more complicated, and the bearing
pressure is getting bigger, causing ARN to be more sus-
ceptible to external interference. So, robustness of trans-
portation networks is one of the major problems that needs
to be solved urgently.

Essentially, the safety and smoothness of air traffic are
inseparable from the integrity of the ARN. When an aircraft
flies in airspace, it often encounters emergencies (such as bad
weather and temporary closure of the route), which leads to
the damage of the structure and the decrease of the traffic
capacity of the route. To study the robustness of the route
structure is to evaluate the rationality and anti-interference
of the ARN and, at the same time, provide a scientific basis

for the optimization of the route structure and the dynamic
adjustment of the airspace. ,e relative entropy theory can
evaluate the relative changes of two vectors, and it is sensitive
to the changes of the robustness parameters of the route.
Topological potential can describe the interaction between
network nodes and characterize the difference in the to-
pological position and the importance reflected by the node’s
own attributes. ,erefore, the combination of the two can
effectively evaluate the robustness of the ARN.

,e paper is organized as follows.,e literature review is
in Section 2. Section 3 introduces the basic concept of
network topology potential (TP) and builds the matrix form
of TP. In Section 4, a topology potential relative entropy
(TPRE) model is proposed. In Section 5, a Chinese air route
reduction network (ARRN) model is constructed, and the
robustness of ARRN is analyzed by the proposed method.
Finally, Section 6 concludes this paper and future work.

2. Literature Review

In general, the issue of air transportation network is in-
vestigated from the perspective of complex network. Zanin
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and Lillo [1] present a short review of the recent use of
complex network methods for the characterization of the
structure of air transport and of its dynamics, finding that
most studies focus on the topological and metric properties
of flight networks. ,e characteristics of American air
transportation network are analyzed by complex network
theory in [2]. Liu et al. [3] use complex network theory to
model airline route networks and then propose an effective
and efficient genetic algorithm to optimize airline route
networks. Connectivity and concentration of Lufthansa’s
network are studied by complex network theory in [4, 5]. Cai
et al. [6] study the Chinese air route network (CARN) within
the framework of complex networks and find that some
topological features of CARN are obviously different from
those of the Chinese airport network (CAN). In [7], Cardillo
et al. study the dynamics of the European air transport
network by using a multiplex network formalism, and the
results show that multiplexity strongly affects the robustness
of the European air network. ,e network structure and
nodal centrality of individual cities in the air transport
network of China (ATNC) are examined through a complex
network approach in [8]. A novel network model is pro-
posed with airports as nodes and the correlations between
traffic flow of airports as edges, and then Cong et al. [9]
investigated network properties to identify critical airports
in the network by the model. ,e process of delay propa-
gation is modelled by using complex networks in [10] to
describe the structure underlying the phenomenon of delay
propagation in the Chinese air transport system. Du and
Liang et al. [11] analyze the robustness of Chinese air route
network and identify the vital edges by a memetic algorithm.

In addition, robustness analysis of transportation net-
works is also a hot issue to apply complex network theory.
Zhang et al. [12] investigate the role of transportation
network topology, and the topology’s characteristics, in a
transportation system’s ability to analyze the resilience to
disaster events. ,e air navigation route system of fifteen
different countries from a consistent worldwide airspace
database and these airspace structures are analyzed by using
complex network theory in [13]. Shao [14] discusses the
robustness and structure of networks studied under different
attack strategies. Robust approach for concurrent aircraft
design and airline network design is discussed in [15].
Lordan et al. [16] study the topology and robustness of
airline route networks through complex network theory and
propose a survey and research agenda. ,e topology and
robustness of the network route of airlines following low cost
carriers (LCCs) and full service carriers (FSCs) business
models are studied in [17], and the results show that FSC
hubs are more central than LCC bases in their route net-
work. ,e robustness of the three major airline alliances’
(that is, Star Alliance, Oneworld, and SkyTeam) route
networks is analyzed in [18]. Hossain et al. [19] present a
complex network approach for measuring the performance
and estimating the resilience of an airport network to study
the Australian Airports Network (AAN). In [20], Wei et al.
analyze and optimize the algebraic connectivity of the air
transportation network to measure the network robustness.

A new index called the relative area index (RAI) is proposed
in [21] to analyze the robustness of European air traffic
network. Yan et al. [22] put forward the average edge be-
tweenness to assess vulnerability of complex transportation
network and find out key factors in complex transportation
network. Under different attack strategies in the airport
network, the resilience of global air transportation is in-
vestigated from the perspective of complex networks [23].
Reggiani et al. [24] discuss the role of connectivity in the
concept of resilience and vulnerability in transport research.
,e vulnerability of the European air transport network to
major airport closures is studied in [25], from the per-
spective of the delays imposed to disrupted airline
passengers.

In recent years, the research on the robustness of
complex networks has also received continuous attention
from scholars. Bellingeri and Cassi [26] use both classic
binary node properties and network functioning measure to
analyze robustness of weighted networks; simultaneously,
the response of real world and model networks to node loss
accounting for links weight in the model is analyzed. ,e
structural robustness of mammalian transcription factor
networks is discussed in [27]. Bellingeri et al. [28] analyze the
robustness of real-world complex weighted networks and
find that the robustness of the real-world complex networks
against nodes-links removal is negatively correlated with
link weights heterogeneity. In [29], the robustness of six real-
world complex weighted networks is discussed by the link
removal strategies. Shang [30] discusses the subgraph ro-
bustness problem and puts forward a framework to inves-
tigate robustness properties of the two types of subgraphs
under random attacks, localized attacks, and targeted at-
tacks. Besides, a rewiring mechanism based on Shannon
entropy concept is proposed in [31], to streamline the
complex networks configuration in order to improve their
resiliency.

Based on the analysis above, the robustness of a Chinese
air route reduction network (ARRN) model is analyzed in
this paper, by using a proposed TPRE method. Results show
that the proposed method performs well in measuring the
ARRN robustness.

3. Network Topology Potential Model

3.1. Topology Potential. ,e network node potential is
proposed based on the data field theory in physics. ,e
network system is regarded as an abstract system containing
multiple nodes and interactions of them. ,ere are field
effects around each node, and any node in the field will be
influenced by the combined effect of other ones. ,e in-
teraction and association of network nodes are described by
a model named topology potential.

In a given network, G � (V, E), where
V � vi | i � 1, 2, . . . , N  is the set of nodes, N is the number
of nodes, E � (vi, vj) | vi, vj ∈ V  is the set of edges, and
K(� |E|) is the number of edges.

,e topology potential (TP) of node vi, denoted by φ(vi),
is expressed as follows [32, 33]:
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 , i, j ∈ (1, 2, . . . , N), (1)

where mj is the attributes, used to indicate the influence of
node centrality, dij is the shortest distance between nodes vi

and vj, and α represents the control (impact) parameter,
which is used to regulate impact range of the nodes.

,rough further analysis above, the following formula is
obtained:
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,enetwork TPwithN nodes can be expressed inmatrix
form, denoted by Φ:

Φ � ED∗M, (3)

where TP vector is
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,e control parameter α is not related to the number of
nodes N; actually, the value of matrix ED is determined by
matrix dij  and the control parameter α. ,erefore, when
the parameter α is determined, the TP is determined by the
characteristics of the complex network.

3.2.&e Control Parameter. ,e control parameter α has an
important influence on the impact range of the nodes. Its
value directly controls the scope of influence of the nodes.
,e study of TP is determined by the optimal parameter and
the optimization analysis of control parameter, which de-
pends on the change of the topological potential entropy.

For a network G(V, E), the TP is φ(vi), i � 1, 2, . . . , N.
,e topological potential entropy, denoted by H, is

H � − 
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Z
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where Z is the normalization factor, and it is expressed as

Z � 
N

i�1
φ vi( . (8)

,e topology potential entropy H is a function of the
parameter α when the matrices M and dij  are determined.

,e uncertainty of network is the smallest for the
completely nonuniform network, and then the topology
potential entropy obtains the minimum value; the topology
potential of each node in the network is equal to a completely
uniform network, and then the differences among the node
attributes are the most stochastic, and the topology potential
entropy is the maximum. ,us, the optimal parameter,
denoted by αZ, is actually the corresponding parameter
when the topology potential entropy is the minimum, that is
min(H)⟶ αZ.

According to the analysis of the topology potential
entropy, it can be known that when α � 0, φ(j⟶ i) ap-
proaches 0, and there is no effect between nodes vi and vj,
then φ(vi) � si � s, and the topology potential entropy
approaches the maximum value Hmax � log N. When
α⟶ +∞, φ(j⟶ i)⟶ sj; at this moment, the effect
among any nodes is identical, and there is φ(vi) � N · s.
Meanwhile, the topology potential entropy also approaches
Hmax � log N.

,e value of potential entropy reflects the uncertainty of
the network. With the parameter α changing, the topology
potential entropy reaches the maximum at both ends. ,e
minimum exists in a certain part of the middle. At this point,
the network has minimal uncertainty, and the control pa-
rameter reaches the optimal value. Topology potential en-
tropy curve is shown in Figure 1.

,rough analysis, it can be seen that when the control
parameter is determined, the topology potential is a function
of network characteristics. ,erefore, the study of the net-
work topology potential can reflect the change of the net-
work characteristics and further reflect the network
robustness.

4. Network Topology Potential Relative
Entropy Model

4.1. RelativeEntropy&eory. Relative entropy, also known as
Kullback–Leibler divergence (KLD), is a basic conception in
the probability theory and information theory. ,e relative
entropy is an asymmetrical measure of the difference be-
tween two probabilities.

Let P(x) and Q(x) be two discrete probability distri-
butions of the value of x, and according to [34–36], the
relative entropy is defined as
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D(‖PQ) �  P(x)log
P(x)

Q(x)
 , (9)

where D(P‖Q) is the relative entropy of P(x) to Q(x).
For continuous random variables, the relative entropy is

expressed as

D(‖PQ) �  P(x)log
P(x)

Q(x)
 dx. (10)

,e relative entropy is a measure of asymmetry between
the two probability distributions P and Q, namely,
D(P‖Q)≠D(Q‖P). ,erefore, it does not represent a true
measure or distance. In the field of information theory,
D(P‖Q) represents the information consumption generated
when the true distribution P is fitted with the probability
distribution Q, where P represents the true probability
distribution and Q represents the fitting distribution. In
addition, the value of relative entropy is nonnegative, that is
D(P‖Q)≥ 0.

When two probability distributions are similar, the
relative entropy value is small, and as the difference between
the two distributions increases, the relative entropy value
also increases. ,erefore, relative entropy can compare the
similarity of different distributions and assess the relative
changes in characteristics. In this paper, the relative entropy
theory is used to analyze the relative change of network
topology potential, when the air route network under dif-
ferent attack strategies. As a result, the robustness of air
route network is analyzed.

4.2. Topology Potential Relative Entropy Model. Network
robustness can be explained by the fact that when certain or
random damage occurs in the network, and some or all of the
subnets are affected and damaged by the outside world, the
network can maintain and restore its performance and ef-
fectiveness to an acceptable level within a specified period of
time.,e influence of topology structure on the robustness of
complex networks generally includes random failure and
intentional failure of the network. In this section, intentional
attacks and random attacks are performed on the air route

network, and then the relative entropy of the network to-
pology potential is studied to evaluate the robustness of the
network. ,e network failure is shown in Figure 2.

Assume that the value of air route network topology
potential is distributed within the range of (φmin,φmax). ,e
topology potential is averagely divided into n intervals, and
each interval is denoted by xi(i � 1, 2, 3, . . . , n); namely, X �

xi|i � 1, 2, 3, . . . , n  is a set of intervals. ,e probability that
the original network topology potential falls within each
interval is P(xi) � pi(i � 1, 2, 3, . . . , n). When the network is
subjected to a random attack, a certain node is randomly
deleted. At this time, the probability that the network to-
pology potential falls within each interval is
S(xi) � si(i � 1, 2, 3, . . . , n). When the network is deliber-
ately attacked, the important nodes are deleted. In this case,
the probability that the network topology potential falls
within each interval is T(xi) � ti(i � 1, 2, 3, . . . , n). ,e
distribution law of the random variable x is as follows:
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From the relative entropy theory, we can get the fol-
lowing formulas:
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Comparing the two relative entropy values, it can be seen
that when DS >DT, the random attack has a greater impact
on the air route network, and the network robustness is
stronger under the intentional attack than under the random
attack. When DS <DT, intentional attacks have a greater
impact on the route network, and robustness is good in
random attacks. Especially, when DS � DT, this indicates
that the structural characteristics of the air route network are
affected by the same degree of random attacks and inten-
tional attacks, and the two attacks have similar impact on the
network robustness.

5. Robustness Analysis of Air Route
Reduction Network

5.1. Air Route Reduction Network Model. With the contin-
uous development of the aviation industry, airspace re-
sources are also becoming increasingly tense. As the main
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Figure 1: ,e curve of H with the control parameter α.
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carrier of aircrafts, air routes are the important component
of airspace.,e continuous increase of traffic flowmakes the
traffic density in the air route network too large, which
further highlights the irrationality of the air route network
structure. As a result, the pressure on the air route continues
to increase, the risk of air route failure increases, and the
robustness plays an important role in the operation of the air
route. ,e layout of Chinese air route network is shown in
Figure 3.

As shown in Figure 3, the red dots represent air route
waypoints such as airports, navigation points, route inter-
sections, and reporting points. Simultaneously, the air route
segments are depicted by the blue solid line and connected
by a series of waypoints. In this section, an air route re-
duction network (ARRN) model is constructed to analyze
the robustness of the network.,e press of model building is
as follows:

(a) An airport and its terminal area are collapsed into
one node. Meanwhile, Navigation points, intersec-
tions, and important reporting points are reduced to
nodes. If there is a route between two nodes, then
add an edge.

(b) If there is a waypoint on the route, and it is not a
convergence point such as an intersection and an
inflection point, the point is fused to other nodes on
the principle of proximity, and the original air route
segment remains unchanged.

(c) When there are two or more air route segments
between two nodes, multiple route segments are
condensed to one edge. All of them constitute an
undirected network model.

Based on the theory mentioned above, the ARRN model
is shown in Figure 4.

In Figure 4, red solid dots indicate the nodes that re-
duced by the waypoints of the air route network, and blue
solid lines represent the edges between nodes. A series of
nodes and edges are interconnected to form the ARRN
model. At the same time, it is known that the distribution of
nodes and edges is uneven; namely, the distribution of air
routes in the airspace is extremely uneven.

On the basis of the analysis of the network structure in
Figure 4, the basic topology features of the ARRN can be
obtained in Table 1.

Table 1 shows some basic network parameters of ARRN.
,e average degree of the network is about 4, indicating that
each node is directly connected with 4 neighbors. ,e
clustering coefficient and the average shortest path length of
the network are 0.21 and 10.03, respectively, illustrating that
the network has small-world properties to some degree.
Mixing coefficient of the network is negative, which means
that large-degree nodes are more likely to link the small-
degree ones; that is, the network is disassortative.

5.2. Attack Strategies. Robustness has important theoretical
and practical value for air route networks. Generally,
complex networks face two attack strategies: random attack
and intentional attack. Random attack is that a node or an
edge has failed by being randomly attacked with a certain
probability. Intentional attack is that the node or edge is
attacked according to certain strategy and fails. Based on
complex network theory, intentional attack strategies in-
clude degree, betweenness, closeness, eigenvector centrality,
and Bonacich centrality.

,e degree of node vi is defined as the number of edges
connected to this node. Intuitively, the greater the degree of a
node, the greater the importance of the node in a certain sense.

,e betweenness of node vi is defined as the fraction of
shortest paths between node pairs that pass through the
node of interest, which reflects the role and influence of the
node in the entire network. ,e betweenness of node vi,
denoted by B(vi) is [37, 38]

B vi(  � 
s≠i≠t∈V

nst vi( 

nst

, (13)

where nst is the number of shortest paths between nodes vs

and vt, and nst(vi) denotes the number of shortest paths
between vs and vt, which pass through node vi.

Based on [39, 40], closeness of node vi is defined as the
reciprocal of the sum of geodesic distances to all other nodes
of V, and it is calculated by the following formula:

Cc vi(  �
1

j�1,j≠idij

, (14)

where dij is the geodesic distance between vi and vj. ,e
greater the closeness of the node, the greater the centrality of
the node, and the more important it is in the network.

Random 
failure

Failed node Failed node

Intentional
failure

Figure 2: Network failure schematic diagram.
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Dangalchev (2006) modified the definition to a general
form, called residual closeness in [41]. Residual closeness is
able to reflect the effects of node removal even if this removal
does not result in disconnected components, and it is
expressed as

CR vi(  � 
j�1,j≠i

2−dij . (15)

Eigenvector centrality of node vi, denoted as CE(vi) is
computed by [42, 43]

CE vi(  � λ−1
max 

N

j�1
aijej, (16)

where λmax is the maximum eigenvalue of the adjacency
matrix A and e � [e1, e2, . . . , eN]T is the corresponding

Figure 4: Air route reduced network model.

Table 1: Basic topology features of the ARRN.

Parameters Nodes Edges Average degree Clustering coefficient Average shortest path length Mixing coefficient
ARRN 881 1762 3.99 0.21 10.03 −0.029

Figure 3: ,e distribution of Chinese air route network.
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eigenvector, aij is the connection between node vi and node
vj: aij � 1 when there is a connection existing, aij � 0
otherwise.

Bonacich centrality is defined as follows [44]:

C(δ, β) � δ(I − βA)
−l

A, (17)

where δ is a scaling constant, β reflects the effects of the
centrality of its neighbors on a node’s centrality and
|β|< (1/λmax), I is an identitymatrix, and l is a column vector
of ones.

According to the above attack strategies, the top-20
nodes of ARRN are obtained as shown in Figures 5(a)–5(f)
respectively.

Figure 5 shows the spatial distribution of top-20 nodes
(see solid green dots) ranked by different strategies in ARRN,
where Figure 5(a) shows one of the results of the random
strategy. It is shown in Figure 5 that most of the top-20 nodes
are located in Central-south and Southeast China. From
Figures 5(c) and 5(d), we can see that the distributions based
on betweenness and closeness are similar; meanwhile, the
results of degree and Bonacich are extremely close (see
Figures 5(b) and 5(f)). However, the eigenvector is different,
and the distribution is extremely concentrated (see
Figure 5(e)).

5.3. Network Topology Potential. In Section 3.2, the key step
in getting topology potential is to determine the optimal
control parameter αZ. According to the ARRN model, the
function curve of topology potential entropy H and control
parameter α is obtained, and the result is shown in Figure 6.

As depicted in Figure 6, the topology potential entropy
H decreases first and then increases. When α � 1.0, H gets
the minimum value Hmin. ,erefore, the optimal control
parameter αZ � 1.0.

Based on the topology potential theory, the nodes to-
pology potential of the ARRN are achieved in Figure 7.

,e topology potential of ARRN nodes is averagely
divided into n(� 7) intervals, and the results are shown in
Figure 7. ,at is, the set of intervals is
X � xi | i � 1, 2, . . . , 7 . From the theory in Section 3.2, we
can get the distribution law of the random variable x and it is
expressed as follows:

X (0, 5) (5, 10) (10, 15) (15, 20) (20, 25) (25, 30) (30, 35)

Probability 0.080 0.296 0.384 0.152 0.052 0.027 0.009
 .

(18)

From the distribution law, the value range and probability
distribution of the network topology potential can be clearly
and directly observed. In the next section, the relative entropy
of topology potential under different attack strategies will be
discussed to analyze the robustness of the ARRN.

5.4. Robustness Analysis. In order to analyze the robustness
of the ARRN, different attack strategies mentioned in Sec-
tion 4.2 are implemented on the network, and the top-20

nodes in Figure 5 are removed by the order of descending
metric values. ,en, some robustness measures including
network efficiency, giant component, network topology
potential, and topology potential relative entropy are applied
to measuring performance of the network robustness. ,e
results are shown in Figure 8.

Figure 8 presents the results of six attack strategies to
ARRN with four different robustness measures. In
Figure 8(a), network efficiency decreases as a function of the
number of nodes removed in ARRN for each criterion. With
the betweenness strategy, the rate of efficiency reduction is
higher than that of others (see Figure 8(a)). Meanwhile, the
line of efficiency in closeness is slightly above betweenness.
However, degree and Bonacich have similar effects on
ARRN efficiency, for their line almost overlaps as shown in
Figure 8(a). ,e impact of attack with eigenvector strategy
on ARRN efficiency is less than that of other intentional
attacks, but higher than that of random attack.

In Figure 8(b), the size of ARRN giant component is a
function of removed nodes to analyze the robustness of the
network. As shown in Figure 8(b), the slope of the line with
eigenvector strategy is the largest; thus, the eigenvector
criterion has a significant effect on ARRN giant component.
,e lines of degree and Bonacich almost coincide, so they
have similar impact on ARRN giant component. ,e sizes of
ARRN giant component and removed nodes are almost
linear when under the betweenness and closeness strategies.
Simultaneously, the fluctuation between giant component
and removed nodes is great under random attack.

,e computational ARRN topology potential is
compared in Figure 8(c) under different attack strategies.
From Figure 8(c), we find that lines of degree, between-
ness, and Bonacich have similar slopes, illustrating that
the effects on ARRN topology potential caused by the
three strategies are close to each other. Moreover, since
the curve of ARRN topology potential based on closeness
is almost in line with the eigenvector, the two attack
strategies yield extremely similar results. It is obvious that
random attack has minimal effect on ARRN topology
potential.

As shown in Figure 8(d), the relationship between ARRN
topology potential relative entropy and removed nodes is
described to show performance of the network robustness.
In the beginning, ARRN topology potential relative entropy
caused by degree and Bonacich strategies grows faster than
others; in addition, the relative entropy value of degree is
similar to that of Bonacich. Although the line of ARRN
topology potential relative entropy caused by betweenness is
lower than that caused by degree and Bonacich, its slope is
higher than that of the latter. ,erefore, with the increase of
removed nodes, the relative entropy caused by betweenness
exceeds that of degree and Bonacich. ,at is, the perfor-
mance of network robustness varies from different stages.
Curves of closeness and eigenvector are slightly higher than
those of random strategy, meaning that closeness and ei-
genvector have slightly greater impact on robustness than
random strategy.
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In short, from Figure 8, we know that the proposed
theory can reflect the degree and trend of robust change in
ARRN well. Furthermore, the result is specific and accurate.

So, the proposed theory has objectivity, accuracy, and ap-
plicability in studying the ARRN robustness under different
attack strategies.

Random

(a)

Degree

(b)

Betweenness

(c)

Closeness

(d)

Eigenvector

(e)

Bonacich

(f )

Figure 5: ,e top-20 nodes of ARRN ranked by random, degree, betweenness, closeness, eigenvector, and Bonacich metrics, respectively.
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Figure 8: Continued.
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6. Conclusions

In this paper, a TPRE robustness measure is proposed to
analyze the robustness of air route network based on topology
potential (TP) and relative entropy (RE) theories. ,e matrix
form of the topology potential is given, which can reduce the
complexity of batch calculations. According to Chinese air
routes, an air route reduction network (ARRN) model is
constructed. ,en, attack strategies including random, degree,
betweenness, closeness, eigenvector, and Bonacich are
implemented on ARRN. At last, robustness measures in-
cluding network efficiency, giant component, and the pro-
posed one are used to show performance of the ARRN
robustness. ,e robustness is analyzed by different measures,
and the results show that the proposed measure is objective,
accurate, and effective. In the future, we will continue to
optimize the proposed theory, making it more applicative, and
explore more good methods to study the network robustness.
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A. J. Garćıa del Amo, and S. Boccaletti, “Modeling the multi-
layer nature of the European Air Transport Network: resil-
ience and passengers re-scheduling under random failures,”
&e European Physical Journal Special Topics, vol. 215, no. 1,
pp. 23–33, 2013.

[8] J. Wang, H. Mo, F. Wang, and F. Jin, “Exploring the network
structure and nodal centrality of China’s air transport net-
work: a complex network approach,” Journal of Transport
Geography, vol. 19, no. 4, pp. 712–721, 2011.

[9] W. Cong, M. Hu, B. Dong, Y. Wang, and C. Feng, “Empirical
analysis of airport network and critical airports,” Chinese
Journal of Aeronautics, vol. 29, no. 2, pp. 512–519, 2016.

[10] M. Zanin, S. Belkoura, and Y. Zhu, “Network analysis of
Chinese air transport delay propagation,” Chinese Journal of
Aeronautics, vol. 30, no. 2, pp. 491–499, 2017.

[11] W. Du, B. Liang, G. Yan, O. Lordan, and X. Cao, “Identifying
vital edges in Chinese air route network via memetic

11000

10500

10000

9500

9000

8500

N
et

w
or

k 
to

po
lo

gy
 p

ot
en

tia
l

0 2 4 6 8 10 12 14 16 18 20
The number of removed nodes

Random
Degree
Betweenness

Closeness
Eigenvector
Bonacich

(c)

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

To
po

lo
gy

 p
ot

en
tia

l r
el

at
iv

e e
nt

ro
py

0 2 4 6 8 10 12 14 16 18 20
The number of removed nodes

Random
Degree
Betweenness

Closeness
Eigenvector
Bonacich

(d)

Figure 8: Comparison of robustness measures for different attacks on ARRN, and the top-20 nodes are removed by the order of descending
metric values.

10 Journal of Advanced Transportation



algorithm,” Chinese Journal of Aeronautics, vol. 30, no. 1,
pp. 330–336, 2017.

[12] X. Zhang, E. Miller-Hooks, and K. Denny, “Assessing the role
of network topology in transportation network resilience,”
Journal of Transport Geography, vol. 46, pp. 35–45, 2015.

[13] X. Sun, S. Wandelt, and F. Linke, “Topological properties of
the air navigation route system using complex network
theory,” in Proceedings of the International Conference on
Research in Air Transportation, Tampa, FL, USA, September
2014.

[14] S. Shao, Robustness and Structure of Complex Networks,
Dissertations &,eses, Boston University, Boston, MA, USA,
2015.

[15] N. Davendralingam and W. Crossley, “Robust approach for
concurrent aircraft design and airline network design,”
Journal of Aircraft, vol. 51, no. 6, pp. 1773–1783, 2014.

[16] O. Lordan, J. M. Sallan, and P. Simo, “Study of the topology
and robustness of airline route networks from the complex
network approach: a survey and research agenda,” Journal of
Transport Geography, vol. 37, pp. 112–120, 2014.

[17] O. Lordan, J. M. Sallan, N. Escorihuela, and D. Gonzalez-
Prieto, “Robustness of airline route networks,” Physica A:
Statistical Mechanics and Its Applications, vol. 445, pp. 18–26,
2016.

[18] O. Lordan, J. M. Sallan, P. Simo et al., “Robustness of airline
alliance route networks,” Communications in Nonlinear Sci-
ence & Numerical Simulation, vol. 22, no. 1–3, pp. 587–595,
2015.

[19] M. Hossain, S. Alam, T. Rees et al., “Australian airport net-
work robustness analysis: a complex network approach,” in
Proceedings of the Australasian Transport Research Forum,
Brisbane, Australia, October 2013.

[20] P. Peng Wei, G. Spiers, and D. Dengfeng Sun, “Algebraic
connectivity maximization for air transportation networks,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 15, no. 2, pp. 685–698, 2014.

[21] K.-C. Pien, K. Han,W. Shang, A. Majumdar, andW. Ochieng,
“Robustness analysis of the European air traffic network,”
Transportmetrica A: Transport Science, vol. 11, no. 9,
pp. 772–792, 2015.

[22] B. Yan, Q. Zhou, and R. Luo, “Vulnerability analysis of
complex transportation network,”Advances in Transportation
Studies, vol. 32, pp. 3–8, 2013.

[23] X. Sun, V. Gollnick, and S. Wandelt, “Robustness analysis
metrics for worldwide airport network: a comprehensive
study,” Chinese Journal of Aeronautics, vol. 30, no. 2,
pp. 500–512, 2017.

[24] A. Reggiani, P. Nijkamp, and D. Lanzi, “Transport resilience
and vulnerability: the role of connectivity,” Transportation
Research Part A: Policy and Practice, vol. 81, pp. 4–15, 2015.

[25] A. Voltes-Dorta, H. Rodŕıguez-Déniz, and P. Suau-Sanchez,
“Vulnerability of the European air transport network to major
airport closures from the perspective of passenger delays:
ranking the most critical airports,” Transportation Research
Part A: Policy and Practice, vol. 96, pp. 119–145, 2017.

[26] M. Bellingeri and D. Cassi, “Robustness of weighted net-
works,” Physica A: Statistical Mechanics and Its Applications,
vol. 489, pp. 47–55, 2018.

[27] J. L. Caldu-Primo, E. R. Alvarez-Buylla, and J. Davila-Vel-
derrain, “Structural robustness of mammalian transcription
factor networks reveals plasticity across development,” Sci-
entific Reports, vol. 8, Article ID 209528, 2018.

[28] M. Bellingeri, D. Bevacqua, F. Scotognella et al., “,e het-
erogeneity in link weights may decrease the robustness of real-

world complex weighted networks,” Scientific Reports, vol. 9,
no. 1, 2019.

[29] M. Bellingeri, D. Bevacqua, F. Scotognella et al., “A com-
parative analysis of link removal strategies in real complex
weighted networks,” Scientific Reports, vol. 10, no. 1, 2020.

[30] Y. Shang, “Subgraph robustness of complex networks under
attacks,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 4, pp. 821–832, 2019.

[31] F. Safaei, H. Yeganloo, and R. Akbar, “Robustness on topology
reconfiguration of complex networks: an entropic approach,”
Mathematics and Computers in Simulation (MATCOM),
vol. 170, 2020.

[32] W.-Y. Gan, N. He, D.-Y. Li, and J.-M. Wang, “Community
discovery method in networks based on topological poten-
tial,” Journal of Software, vol. 20, no. 8, pp. 2241–2254, 2009.

[33] Recently, “An improved topology-potential-based commu-
nity detection algorithm for complex network,” &e Scientific
World Journal, vol. 2014, no. 12, 7 pages, Article ID 121609,
2014.

[34] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” &e Annals of Mathematical Statistics, vol. 22, no. 1,
pp. 79–86, 1951.

[35] Q. Zhang, M. Li, and Y. Deng, “Measure the structure sim-
ilarity of nodes in complex networks based on relative en-
tropy,” Physica A Statistical Mechanics & Its Applications,
vol. 491, 2017.

[36] S.-P. Wan, Z. Jin, and J.-Y. Dong, “Pythagorean fuzzy
mathematical programming method for multi-attribute
group decision making with Pythagorean fuzzy truth de-
grees,” Knowledge and Information Systems, vol. 55, no. 2,
pp. 437–466, 2018.

[37] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[38] L. C. Freeman, “Centrality in social networks conceptual
clarification,” Social Networks, vol. 1, no. 3, pp. 215–239, 2008.

[39] G. Sabidussi, “,e centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[40] Y. Du, C. Gao, Y. Hu, S. Mahadevan, and Y. Deng, “A new
method of identifying influential nodes in complex networks
based on TOPSIS,” Physica A: Statistical Mechanics and Its
Applications, vol. 399, no. 4, pp. 57–69, 2014.

[41] C. Dangalchev, “Residual closeness in networks,” Physica A:
Statistical Mechanics and Its Applications, vol. 365, no. 2,
pp. 556–564, 2006.

[42] P. Bonacich and P. Lloyd, “Eigenvector-like measures of
centrality for asymmetric relations,” Social Networks, vol. 23,
no. 3, pp. 191–201, 2001.

[43] S. P. Borgatti, “Centrality and network flow,” Social Networks,
vol. 27, no. 1, pp. 55–71, 2005.

[44] P. Bonacich, “Power and centrality: a family of measures,”
American Journal of Sociology, vol. 92, no. 5, pp. 1170–1182,
1987.

Journal of Advanced Transportation 11


