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Recent advancements in computer science include some optimization models that have been developed and used in real ap-
plications. Some metaheuristic search/optimization algorithms have been tested to obtain optimal solutions to speed controller
applications in self-driving cars. Some metaheuristic algorithms are based on social behaviour, resulting in several search models,
functions, and parameters, and thus algorithm-specific strengths and weaknesses.,e present paper proposes a fitness function on
the basis of the mathematical description of proportional integrative derivate controllers showing that mean square error is not
always the best measure when looking for a solution to the problem. ,e fitness developed in this paper contains features and
equations from the mathematical background of proportional integrative derivative controllers to calculate the best performance
of the system. Such results are applied to quantitatively evaluate the performance of twenty-one optimization algorithms.
Furthermore, improved versions of the fitness function are considered, in order to investigate which aspects are enhanced by
applying the optimization algorithms. Results show that the right fitness function is a key point to get a good performance,
regardless of the chosen algorithm. ,e aim of this paper is to present a novel objective function to carry out optimizations of the
gains of a PID controller, using several computational intelligence techniques to perform the optimizations. ,e result of these
optimizations will demonstrate the improved efficiency of the selected control schema.

1. Introduction

Many optimization problems are nondeterministic poly-
nomial-time (NP) or NP-hard, and a high computing
power is required when trying to solve them [1, 2]. An NP-
hard problem “is a problem where a solution for it is at least
as hard as finding a solution for the hardest problem whose
solution can quickly be checked as being true. Some NP-
hard problems are ones in which a working solution can be
checked quickly (NP problems) and some are not. NP-hard
problems are also NP problems fit into a label called NP-
complete” [3]. Many of the problems arising in present-day
applications from scientific fields belong in NP-hard
problems: they involve search spaces with many dimen-
sions, they are multimodal or multiobjective, and the

optimization functions are hard to compute or are applied
on large volumes of data. Classical optimization methods
from operation research make it possible to find optimal
solutions for complex problems, but are not useful in
practice due to their excessive computational load when
applied to real-world systems [4]. For NP-hard problems,
the time required to solve a problem grows exponentially
with respect to the size of the problem, making the exact
methods unpractical.

In order to solve the disadvantages of classical trial-and-
error methods andmathematical solution search techniques,
researchers have proposed various algorithms that mimic
natural and artificial phenomena, and black-box optimiza-
tion benchmark problems are implemented to evaluate the
performance of these algorithms.
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,e research area of metaheuristic search/optimization
algorithms has an active development of finding inspiration
in nature, especially in social behaviour. Among the most
classical models are genetic algorithms [5–7], but there are
others based on the social behaviour of ants and ant colony
optimization [8–10]; in recent years, a lot of methods based
on natural heuristics have been proposed: birds [11, 12],
reincarnation [13], zombies [14], bees [15–17], etc. ,is
paper shows the application of 21 algorithms’ imple-
mentation as follows: particle swarm optimization (PSO)
[18], clonal selection algorithm (CLONALG) [19], whale
optimization algorithm (WOA) [20], shuffled frog leaping
(SFL) [21], differential evolution (DE) [22, 23], cat swarm
optimization (CSO) [24], ant lion optimizer (ALO) [25],
artificial bee colony algorithm (ABC) [26], firefly algorithm
(FFA) [27], grey wolf optimizer (GWO) [28], dragonfly
algorithm (DA) [29], grasshopper optimization algorithm
(Goa) [30], genetic algorithm (GA) [31], harmony search
algorithm (HS) [32], sine cosine algorithm (SCA) [33], moth
flame optimizer (MFO) [34], krill herd algorithm (KH) [35],
bat algorithm (BA) [36], gravitational-based search (GBS)
[37], cuckoo search (CS) [38], and black hole optimization
(BHO) [39].

Some of the most representative computational intelli-
gence algorithms today are earthworm optimization algo-
rithm (EWA) [40], monarch butterfly optimization (MBO)
[41, 42], moth search (MS) algorithm [43], slime mould
algorithm (SMA) [44], elephant herding optimization
(EHO) [45], and Harris hawks optimization (HHO) [46],
among others [47, 48].

Each of these algorithms has its own peculiarities, and
they can be used to solve various categories of optimization
problems. ,e performance of evolutionary algorithms
depends on the choice of their control parameters, which
must be tuned for each specific problem. Population-based
metaheuristic algorithms generally include two processes:
exploration and exploitation. ,e exploration process at-
tempts to analyse a wide variety of solutions and must be
random enough to ensure that it covers a large area of the
problem space. ,e exploitation process tries to improve,
through a local search, the solutions found in the exploration
process. In this phase, the optimizer focuses on the
neighborhood of the highest quality solutions found by the
exploration process, rather than the entire solution space. In
any optimization process, it is essential to find an adequate
balance between exploration and exploitation, a balance that
depends on the nature of the specific problem to be solved.

Hybrid optimization techniques are available in the state
of the art for solving complex engineering problems, which
combine several simple algorithms to obtain better opti-
mization efficiency.

In the automotive industry, especially for vehicle design
and optimized components, the Butterfly Optimization
Algorithm (BOA) is a widely used hybrid optimization
technique. Also, other hybridization proposals are available
for similar purposes, such as Harris Hawk optimization with
simulated annealing (HHOSA), which provides an
accelerated convergence. Additionally, a hybridization of the
interior search algorithm with the hill climbing algorithm

(H-ISA) has been used to optimize structural and me-
chanical design problems, among others. ,is algorithm has
been proven to work better in those cases than the ant lion
optimizer (ALO), gravitational search algorithm (GSA),
firefly algorithm (FFA), league championship algorithm
(LCA), bat algorithm (BAT), symbiotic imperialist com-
petitive algorithm (ICA), organisms search (SOS), and
charged system search algorithm (CSS).

,e key element for any of these algorithms is the fitness
function, which must meet the following conditions: (a) the
function must be clearly defined; (b) the implementation of
fitness must be as efficient as possible; since it will be
evaluated many times in the optimization process, its effi-
ciency has a strong impact on the overall performance of the
algorithm; (c) fitness must provide a quantitative measure of
the quality of a given solution; (d) the best individuals must
produce the best values of fitness function and vice versa.

,e fitness function is dependent on the problem do-
main. ,e implementation of this fitness function is the
main part when you want to apply a nature-based algorithm
to a problem, and it must be built for each specific problem.
For certain types of problems, for example, for classification
tasks with supervised learning, error metrics, such as the
Euclidean distance or the Manhattan distance, are often
used. For other optimization problems, the summation of a
set of quality indicators related to the application domain
can be used.

,is paper shows the importance of choosing a right
fitness function; it is a key point to get a good performance
regardless of the chosen algorithm. Discussion about
whether a given algorithm obtains a better result than others
is not addressed in this study.

,e main highlights of the paper are

(i) ,e evaluation of different metaheuristics tech-
niques applied to PID controllers

(ii) Showing the importance of choosing the right fit-
ness function (mean squared error is not always the
best choice)

(iii) Final fitness function that improves the mean
squared error achieving a quasi-perfect fit of desired
signal

2. Proportional Integrative
Derivative Controller

Proportional integrative derivative controllers are the con-
trollers par excellence, as well as the most studied. ,is type
of controllers is based on the old proportional controls, such
as the centrifugal regulator of Watt’s machine (1788). One
important thing is that knowledge about the process to
control is not really needed when using it with a PID
controller, which is the reason why such a mathematical
model is so broadly used.,e PID equation describes how to
control the system: it receives an error calculated from the
desired/obtained output, using this error to feed the control
loop in the next iteration. ,e aim of the controller is to
minimize this calculated error by adjusting the gains of the
PID.
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,e PID controller is based on the relation of three
components: the proportional, the integral, and the deriv-
ative. ,e tune of the gains of these components not only
generates the behaviour of the output of the controller but
also influences the others. Although those parameters are
tuned, it is quite difficult to manually define the values of the
PID gains that generate the values tending to zero of the
performance metrics (establishment times, over-oscillation,
settling, etc.). However, the best tuning of the controller tries
to get a trade-off among those error metrics, adjusting them
according to the requirements of the application.

A PID controller outputs a signal using a weighted sum
of three terms:

(i) Proportional: error between the defined setpoint
and the actual process value

(ii) Integral: how much error has been accumulated
over time

(iii) Derivative: how rapidly the error is changing

,is naturally leads to P (Proportional), I (Integral), and
D (Derivative) in PID and the three weighting parameters
(Kp, Ki, Kd) that need to be computed. By modifying these
control parameters, the behaviour of these on the system will
be modified, and it will be possible to obtain a controller that
satisfies the design criteria established for a specific
application.

Each control action is responsible for producing a
specific effect on the transitional or permanent regime, or on
both at the same time.,erefore, when it comes to achieving
better control over the system, it is necessary to know which
aspect of the control is to be improved, to modify a specific
action and not to disrupt the rest of the system.

One must be aware that proportional action affects both
the transitional and the permanent regime, tending to re-
duce the error in the permanent regime when its action
increases. On the contrary, when this action increases the
system will tend to increase the oscillations in the process
variable.

,e integral action affects the permanent regime,
annulling the error. ,e error could be understood as the
difference between the reference and the value read by the
sensor. If the error is greater than zero, this means that the
value read by the sensor will be below the reference, meaning
that the control action will increase, while if the error is less
than zero, the value read by the sensor will be greater than
the reference, and therefore, the action on the system will
decrease.

,e last control action is the derivative action. ,is
action is mainly focused on the transitional regime, im-
proving the stability of the system. It can also be found in
some articles as a predictive action, and this is because this
control action is of an anticipatory nature, i.e., it anticipates
the behaviour of the system to improve its performance. ,e
main disadvantage of this action is that it amplifies the noise
of the signal and saturates the actuators in the event of
sudden changes in the set point.

When designing a PID controller, several methods can
be found in the literature. One of the most famous methods

is the Ziegler–Nichols method [49], which is proposed by
Ogata [50]. Other methods can also be found, such as those
Chien–Hrones–Reswick methods proposed by [51] and the
Cohen-Coon method proposed by [52]. In order to tune the
PID controller, using these methods, it will be necessary to
know the behavior of the system. To do this, the corre-
sponding actuator will be put into operation and wait until
the variable in question is stabilized in a permanent state.
Observing the variable to control shape (see Figure 1), the
values of the gain K, the delay L, and the time constant T

(with a � L/T) could be calculated depending on the chosen
method (see Tables 1–4).

Some authors focus on improving the response of the
PID controllers using metaheuristics, especially in problems
with a highly nonlinear behaviour, because, for them, the
traditional methods of adjusting the gains are inefficient,
obtaining results comparable or superior to conventional
techniques [53]. Valluru and Singh [54] show that the ef-
ficiency of tuning nonlinear drivers using particle swarm
optimization and other bioinspired techniques is superior to
the results with traditional tuning techniques. ,e experi-
mental results show that the overshoot and settling time of a
nonlinear PID controller can be improved while main-
taining a satisfactory system response. Recent research [55]
shows that the performance of a PID control system with
gains calculated by a symbiotic organism search algorithm
manages to minimize the steady-state error. When the
system is subjected to disturbances, this controller is capable
of reaching the set point in any situation.

,is paper does not take disturbance into account; it only
shows the importance of choosing a right fitness function.
Talking about exogenous disturbance (input disturbance)
that affects model (physical or mathematical) behaviour is
most probably assimilated to account for model-uncertainty
(inaccuracy), time-varying parameters, perturbation (as
wind-gust in aircrafts), actuator unmodelled dynamics, and
the same ilk. Input disturbance could be modelled as a
constant signalD(s) � 1/s, in Laplace domain, or d(t) � 1 in
time domain, or a sinusoidal signal, or a stochastic process,
or something like that.

3. Problem Description

,ere is an electric vehicle with cameras and sensors for
speed, acceleration, LiDaR, etc. (see Figure 2). ,is vehicle
can be driven remotely through the ODBII port (see Fig-
ure 3) by adjusting the cruising speed, acceleration, and
turning the steering wheel. ,e problem is to set a cruising
speed (higher or lower than the current one) and see the
vehicle’s response under real conditions.

,e cruise control is based on a PID. A manual ad-
justment of the parameters (Kp, Ki, Kd) could be done, but
the idea is to try to find a better solution than the manual
operator or expert could achieve. ,e problem can be for-
mulated as a model of optimization in a three-dimensional
space. ,e optimization process requires an objective
function (fitness) to be minimized depending on the pa-
rameters (Kp, Ki, Kd). Mean square error is the classical
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fitness function in optimization problems, but there are
other approaches depending on the problem to solve. A
good performance can be obtained, when dealing with PID,
using a linear combination of overshoot, decay, setting time,
and steady-state error as proposed by [56, 57]. ,is paper

uses the same mathematical model of the system/process for
which the controller described in [56, 57] is employed.

A fractional-order PID controller has better control
performance than classical PID controllers. A fractional-
order controller includes the capacity of adjusting responses

tangent line at the turning pointc(t)
K

0
L T t

Figure 1: How to compute values corresponding to the gain K, the delay L, and the time constant T over the signal to control. Different
methods can be applied to obtain (Kp, Ki, Kd) parameters of the controller (see Tables 1–4).

Table 1:,e Ziegler–Nichols tuning rules create a quarter wave decay.,is is an acceptable result for some purposes, but not optimal for all
applications [49, 50].

Controller kp ki kd

P 1/a 0 0
PI 0.9/a 3L 0
PID 1.2/a 2L L/2

Table 2: ,e Chien–Hrones–Reswick autotuning method focuses on set point response and disturbance response (20% overshoot) [51].

Controller kp ki kd

P 0.3/a 0 0
PI 0.6/a 4L 0
PID 0.95/a 2.4L 0.42L

Table 3: ,e Chien–Hrones–Reswick tuning rules (20% overshoot) [51].

Controller kp ki kd

P 0.7/a 0 0
PI 0.7/a 2.3L 0
PID 1.2/a 2L 0.42L

Table 4: ,e Cohen-Coon tuning rules (0% overshoot). Note that these rules produce a quarter-amplitude damping response [52].

Controller kp ki kd

P 1/a(1 + (0.35τ/1 − τ)) 0 0
PI 0.9/a(1 + (0.92τ/1 − τ)) L(3.3 − 3τ/1 + 1.2τ) 0
PD 1.24/a(1 + (0.13τ/1 − τ)) 0 L(0.27 − 0.36τ/1 − 0.87τ)

PID 1.35/a(1 + (0.18τ/1 − τ)) L(2.5 − 2τ/1 + 0.39τ) L(0.37 − 0.37τ/1 − 0.18τ)

Figure 2: Autonomous electric vehicle used in real testing and light detection and ranging sensor (LiDAR) placed on the vehicle windscreen.
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of the control system in time and frequency. ,is feature
grants a better and more robust performance than classical
PID controllers. It is not always the case in which a frac-
tional-order PID controller used for integer-order plants will
be better than an integer-order PID. However, it has been
shown in [58, 59] that the use of a fractional-order PID could
make the entire control system perform better. ,is is be-
cause using a fractional one could satisfy 5 robustness cri-
teria (Kp, Ki, Kd, μ, δ) at most as compared to the usual
classical PID controller which only has 3 parameters to be
tuned for 3 robustness criteria. ,is paper uses a PID
controller with precalculated μ and δ values from [56, 57].

,e first fitness function f1, see equation (1), is based on
the mean square error (MSE), that is, the average squared
difference between the estimated/target speed signal and the
actual speed signal:

f1 �
���������������������


t

(target(t) − signal(t))
2


. (1)

,e second fitness function f2, see equation (2), uses a
lineal combination of the overshoot and decay of the signal
to avoid large peaks and oscillation in the control response,
with precomputed values of α and β [56, 57]:

f2 � αΩ + βΔ. (2)

And the third one f3, see equation (3), uses a lineal
combination of the overshoot, decay, setting time, and
steady-state error of the signal to avoid large peaks and
oscillation in the control response and get an almost fit
response to the original signal:

f2 � αΩ + βΔ + cΓ + θΘ. (3)

,e overshoot Ω can be defined as the gap between the
outputs of the controller from the set point steady-state
value. Following [50], a controller gain tuning is considered
good in the case of an overdamped response with a mini-
mum overshoot, according to the application. ,e value of
the overshoot, see (4), is the difference between the system
output and the target value (with α � 10 and β � 0.9, to
obtain better results):

Ω �
max(signal(t)) − target, when e(t)> 0,

target − min(signal(t)), when e(t)< 0.
 (4)

,e decay ratio Δ is the value between two consecutive
maxima of the controller output for a step change in the set
point. ,is ratio is shown as

Δ �
c

a
, (5)

where the parameter a is the amplitude of the oscillations in
the instant t − 1 and c the amplitude of the oscillation in the
time t.

Let Γ be the settling time, that is, the time required for the
controller output to stabilize at p% of the set point.
According to literature, the recommended value of p is
0.02% [56, 57]:

Γ �
t

Tmax
, when |signal(t) − signal(t − 1)|<p, (6)

where the parameter t is the amount of time in which the
output signal is below p and Tmax is the maximum value of
the sampling time, considering the signal as the output value
of the system.

,e steady-state error Θ is the gap between the stabilized
output signal of the system and the set point, after N con-
troller iteration. In this paper, the selected value of N is 350,
time enough for the controller to reach the set point (target):

Θ � |signal(N) − target|. (7)

Figure 4 shows the desired (blue) signal and the estimated/
target (red) signal using the parameters computed by a particle
swarm optimization algorithm: (Kp � 14.1300, Ki � 4.6007,

Kd � 0.00100000) with fitness f1 value of 48.47595, (Kp �

10.899968, Ki � 51.6346372, Kd � 0.001000000) with fitness
f2 value of 103.0716, and (Kp � 10.901181, Ki � 100.000
0000, Kd � 0.001000000) with fitness f3 value of 26.21848. It
can be seen that, in Figure 4(b), the peaks are smaller and the
changes in signal are not as abrupt as in Figure 4(a), but
Figure 4(c) shows the best results if using the full fitness
function with all terms (overshoot, decay, setting time, and
steady-state error), which is the expected and desired behaviour
of the PID controller. Figure 4(c) is equivalent to the classical
computation of PID.

4. Results

,e particle swarm optimization algorithm has shown good
results, see Figure 4, combined with an objective functionf3.

Figure 3: ODBII interface for controlling the vehicle and visualization of front and rear cameras for remotely controlling speed and
direction.
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,is section shows the results obtained using other meta-
heuristics (particle swarm optimization, whale optimization
algorithm, differential evolution, clonal selection algorithm,
cat swarm optimization, artificial bee colony algorithm,
shuffled frog leaping, grey wolf optimizer, ant lion optimizer,
firefly algorithm, dragonfly algorithm, harmony search al-
gorithm, genetic algorithm, grasshopper optimization al-
gorithm, sine cosine algorithm, moth flame optimizer,
cuckoo search, bat algorithm, gravitational based search and
black hole optimization, and krill herd algorithm) and the
proposed three fitness functions f1, f2, and f3. Optimi-
zation parameters have been set to the same values for all
algorithms, 100 iterations, and a population size of 15 in-
dividuals with (Kp, Ki, Kd) ∈ [0.001, 100], in order to get a
similar testing environment for all algorithms.

,e first approach consists in using the mean square
error as a fitness function (see Table 5, equation (1), and
Figure 5). In this case, some algorithms do not get a right
solution since the output signal has a great oscillation
pattern, but the ones that get good results produce peaks in
the step function. ,is output is similar to the classical PID
mathematical computation [49–51].,is behaviour could be
considered a valid solution in other environments/problems
but not in the case of a self-driving car with autonomous or
remote speed controller as there are peaks and the car speed
is not controlled in the transitions.

,e second approach consists in using the overshoot and
decay parameters (see Table 6, equation (2), and Figure 6).
Now, the results are better than in the previous case since
peaks disappear and the speed is controlled in a less abrupt
mode (smooth transitions). As in the other case, some al-
gorithms present oscillations, which is due to the lack of
iterations or population size.

Finally, fitness function f3, with the lineal combination of
overshoot, decay, setting time, and steady-state error, is tested

against the metaheuristics (see Table 7, equation (3), and
Figure 7).,e figure shows that the output signal fits the desired
signal with no peaks and with an almost exact matching.

,e main contribution of this paper is the use of the
weighted fitness function definition f3, as well as the use of
this function as the basis to perform a metaheuristics op-
timization of the gains of a PID controller. ,e results of
classical PID optimization usually generate controllers with
an oscillating output. However, this oscillating output can be
corrected using a low-pass filter, taking into account that the
performance criteria always have less quality than meta-
heuristics optimization.

,is paper has presented the results of metaheuristic
optimization algorithms, based on different error metrics
(1)–(3). ,ese equations define the error as a lineal com-
bination of the four estimators explained above.,is error is
calculated for a set point sequence instead of for a single set
point; therefore, the controller obtained is more robust in
new situations. In addition, the error is calculated over a
different sequence than that used in the tuning, so the es-
timation of the controller error is more realistic.

Using these defined fitness functions and a randomly
generated sequence of set points, a set of different gains has
been obtained for the PID speed controller of an autono-
mous vehicle through a series of metaheuristics-based op-
timization techniques.

With most of the optimization algorithms studied, the
ground truth error is improved. However, CS, CSO, and
MFO perform worse than this ground truth. ,is fact could
be due to the existence of multiple local minima in the
parameter space for PID controller gains, which means that
local search algorithms show premature convergence. In
particular, the MFO algorithm finds different optima in
some executions, seemingly indicating the existence of
multiple local minima.

(a) (b)

(c)

Figure 4: Optimization results using a PSO algorithm with 200 iterations and a population size of 20. Mean square error fitness f1:
(a) equation (1) vs. custom fitness f2, (b) equation (2) vs. improved custom fitness f3, and (c) equation (3). (a) Mean square error (equation
(1)). (b) Overshoot and decay (equation (2)). (c) Overshoot, decay, setting time, and steady-state error as fitness function (equation (3)).
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ABC ACO ALO

BA BHO CLONALG

CS CSO DA

DE FFA GA

GBS GOA HS

KH MFO PSO

SCA SFL WOA

Figure 5: Results of 21 optimization metaheuristics using the mean square error as the fitness/objective function f1: the red line is target/
output signal and the blue line is desired signal, see equation (1) and Table 5. Parameters have been set to the same values for all algorithms,
100 iterations, and a population size of 15 individuals with (Kp, Ki, Kd) ∈ [0.001, 100], in order to get a similar testing environment for all
algorithms.

Table 5: Optimization solution values using proposed metaheuristics, using fitness f1, see equation (1) and Figure 5.

Algorithm Kp Ki Kd Fitness

ABC 12.469341 4.48158890 0.00100000 48.50611
ACO 16.046610 35.68476668 0.00100000 51.17129
ALO 12.146504 4.21416994 0.00100000 48.49356
BA 5.093248 2.85260861 4.72422839 202.35233
BHO 1.734270 0.07296765 5.29040061 78.61255
CLONALG 32.463294 61.55373554 0.54027825 239.91586
CS 14.432591 12.47369880 0.00100000 49.47551
CSO 14.130092 4.60077827 0.00100000 48.47595
DA 14.130092 4.60078172 0.00100000 48.47595
DE 41.961478 1.82844085 20.91916782 490.12491
FFA 2.556885 1.04583741 0.55790335 71.08043
GA 17.332015 5.53366128 0.00100000 49.89310
GBS 27.031364 79.78306112 0.00100000 63.04356
GOA 14.132092 4.58780177 0.00100000 48.47596
HS 5.162984 1.35881040 1.38566380 84.41693
KH 17.009334 0.95704153 0.08686292 75.33240
MFO 14.130088 4.60078202 0.00100000 48.47595
PSO 26.413843 33.36398724 0.00100000 62.35269
SCA 14.209402 4.83498450 0.00100000 48.47908
SFL 5.972453 14.85325707 2.00940154 206.63336
WOA 14.128297 4.56045037 0.00100000 48.47605

Journal of Advanced Transportation 7



ABC ACO ALO

BA BHO CLONALG

CS CSO DA

DE FFA GA

GBS GOA HS

KH MFO PSO

SCA SFL WOA

Figure 6: Results of 21 optimization metaheuristics using a fitness/objective function f2 with overshoot and decay components: the red line
is target/output signal and the blue line is desired signal, see equation (2) and Table 6. Parameters have been set to the same values for all
algorithms, 100 iterations, and a population size of 15 individuals with (Kp, Ki, Kd) ∈ [0.001, 100], in order to get a similar testing
environment for all algorithms.

Table 6: Optimization solution values using proposed metaheuristics, using fitness f2, see equation (2) and Figure 6.

Algorithm Kp Ki Kd Fitness

ABC 1.247355 29.8497584 2.024345564 127.5915
ACO 10.900608 64.1849888 0.001000000 103.1267
ALO 10.030650 13.1977015 0.001000000 108.4750
BA 60.898153 24.6557423 3.061338914 169.5129
BHO 6.748417 51.3241341 0.068173507 111.4488
CLONALG 4.201685 55.5608255 0.011870125 127.6016
CS 10.863056 13.4336943 0.001000000 107.0472
CSO 10.901259 100.0000000 0.001000000 103.5151
DA 10.900160 51.8360956 0.001000000 103.0721
DE 47.586536 34.9134975 3.302378887 183.9771
FFA 2.910704 35.4693957 1.001861920 129.7192
GA 10.847629 34.3291956 0.001000000 103.3316
GBS 0.417065 0.8933817 52.958178733 128.2626
GOA 10.899268 48.2122536 0.001000758 103.0773
HS 21.376061 1.3812947 49.333388968 181.5794
KH 60.249693 11.1017443 25.715143616 249.9684
MFO 10.900022 51.4431324 0.001000000 103.0715
PSO 10.899968 51.6346372 0.001000000 103.0716
SCA 10.876744 46.7826595 0.001032572 103.1077
SFL 75.568124 23.1263233 58.945069279 263.1667
WOA 10.823591 62.7439498 0.001796744 103.2075
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Table 7: Optimization solution values using proposed metaheuristics, using fitness f3, see equation (3) and Figure 7.

Algorithm Kp Ki Kd Fitness

ABC 4.317014 100.0000000 0.414558038 38.13464
ACO 10.899466 44.7705683 0.001000000 27.30494
ALO 10.465441 29.5566926 0.001000000 28.41234
BA 1.380994 10.2406319 2.940162854 50.77700
BHO 1.215425 99.6389347 1.649872970 38.02265
CLONALG 16.254893 88.6727789 0.319180483 51.81580
CS 9.001000 9.0010000 0.001000000 33.31014
CSO 10.901176 100.0000000 0.001000000 26.21848
DA 2.181195 16.8407815 0.924729639 37.82754
DE 76.884508 65.8029157 0.692211458 74.54958
FFA 9.095726 99.9275577 0.019747615 27.25296
GA 100.000000 27.9241829 1.851140432 77.36712
GBS 32.971795 68.7382582 0.001000000 44.95544
GOA 10.801275 100.0000000 0.001930287 26.26413
HS 6.971770 3.4059226 1.211073046 45.29076
KH 8.067583 12.4642292 2.274522387 52.22566
MFO 10.901181 100.0000000 0.001000000 26.21848
PSO 27.551768 25.0129883 35.913471627 134.51197
SCA 10.775543 100.0000000 0.001000000 26.27785
SFL 2.687796 3.1262379 1.112656001 39.43179
WOA 61.659377 0.6926213 76.733240892 84.92107

ABC ACO ALO

BA BHO CLONALG

CS CSO DA

DE FFA GA

GBS GOA HS

KH MFO PSO

SCA SFL WOA

Figure 7: Results of 21 optimization models using a fitness/objective function f3 with overshoot, decay, setting time, and steady-state error
components: the red line is target/output signal and the blue line is desired signal, see equation (3) and Table 7. Parameters have been set to
the same values for all algorithms, 100 iterations, and a population size of 15 individuals with (Kp, Ki, Kd) ∈ [0.001, 100], in order to get a
similar testing environment for all algorithms.
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5. Conclusions

,is paper shows the performance of the computation power
of several evolutionary algorithms to optimize the gains
(Kp, Ki, Kd) of the speed PID controller of a self-driving
vehicle. ,ree fitness functions have been used to optimize
the controller gains. ,ose functions are based in a com-
bination of classic error metrics of the controller: overshoot,
decay ratio, settling time, and steady-state error. ,e results
of the different optimizations of the PID speed controller
gains have been compared with each other, both for the
sequence of step set points uses as the target of the opti-
mization and for a totally new randomly generated sequence,
unknown by the system. ,is system has been implemented
by means of a dynamic model of the vehicle in simulation
that represents the speed behaviour in a realistic way.

,e fitness function proposed to measure the quality of a
PID controller according to the traditional PID quality
metrics reported by the literature, meaning that the mini-
mization of this fitness implies the joint optimization of
these metrics, since some can imply disturbances in the rest.
,e weight of each of them has been carefully tuned to find
an optimal overall solution.

Except for the methods used in the paper, some of the
most representative computational intelligence algorithms
can be used to solve the problem, such as earthworm op-
timization algorithm (EWA) [40], monarch butterfly opti-
mization (MBO) [41, 42], moth search (MS) algorithm [43],
elephant herding optimization (EHO) [45], Harris hawks
optimization (HHO) [46], and slime mould algorithm
(SMA) [44].

6. Future Research

As possible future research lines, coefficients in equation (3)
could be tuned using different algorithms of literature,
analysing the optimization rate compared to the methods
presented in this paper. ,e results of this paper have been
tested in simulation; as future work, we propose to test the
optimized controllers in real physical autonomous vehicles
as well as to implement an online optimization using the best
techniques studied in this paper.

Some dynamic metaheuristic optimization models, such
as multilayer neural networks (MLP), could be implemented
using the particular structure of MLPs. ,e MLP benefits
from the complex architecture of the neural networks and its
transformations in order to achieve new optimal solutions.
In terms of convergence, the relationship between random
exploitation and each parameter under asymmetric interval
is derived and an iterative convergence of neural networks is
proved mathematically [60]. Other optimization techniques
such as the water cycle algorithm could also be applied to
solve the problem proposed [61].

Abbreviations

ABC: Artificial bee colony algorithm
ALO: Ant lion optimizer
BA: Bat algorithm

BHO: Black hole optimization
CLONALG: Clonal selection algorithm
CS: Cuckoo search
CSO: Cat swarm optimization
DA: Dragonfly algorithm
DE: Differential evolution
EHO: Elephant herding optimization
EWA: Earthworm optimization algorithm
FFA: Firefly algorithm
GA: Genetic algorithms
GBS: Gravitational-based search
GOA: Grasshopper optimisation algorithm
GWO: Grey wolf optimizer
HHO: Harris hawks optimization
HS: Harmony search algorithm
KH: Krill herd algorithm
LiDAR: Light detection and ranging sensor
MBO: Monarch butterfly optimization
MFO: Moth flame optimizer
MS: Moth search algorithm
NNA: Neural network algorithm
NP: Nondeterministic polynomial-time
PID: Proportional integrative derivative
PSO: Particle swarm optimization
SCA: Sine cosine algorithm
SFL: Shuffled frog leaping
SMA: Slime mould algorithm
SSA: Salp swarm algorithm
WCA: Water cycle algorithm
WOA: Whale optimization algorithm.
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