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*is study deals with the elderly fare pricing issue for taking express buses in the morning peak period. Asmany elderly passengers
are not commuters, fare discount policy may not be an opportune option when buses get overcrowded. Imposing surcharge on the
elderly becomes a potentially beneficial measure that encourages an appropriate number of elderly passengers to circumvent the
most crowded buses. *e elderly pricing surcharge problem is formulated as a bilevel model, in which the upper-level model is to
make the pricing surcharge decision, and the lower-level model is the equilibrium passenger assignment that represents pas-
sengers’ bus choice behavior. It is classified into the special case and the generic case depending on the number of buses that
impose surcharge. Several useful properties of two cases are analyzed, and a trial-and-error solution method is later developed to
solve these two cases. Numerical experiments show that the elderly pricing surcharge scheme is not always applicable to all the
demand scenarios, which owns a certain effective interval.

1. Introduction

Public transit exerts a crucial part in sustainable urban
development, which is recognized as an effective way to
alleviate the problems attributed to the automobile, such as
road congestion and air pollution. In the past decades,
transit planners and operators are devoted to enhancing
service efficiency and attractiveness by introducing a wide
variety of instruments that encompass governmental poli-
cies, planning process, and control strategies (e.g., [1–10],
among many others). For bus service, fare discount policy is
commonly implemented in cities worldwide, e.g., the elderly
are privileged to take buses using discount bus tickets. *is
policy instrument aims to attract more elderly passengers
and hence increase ridership. Since aging society is emerging
as a ubiquitous phenomenon, fare subsidy is conducive to
cultivating the elderly passenger demand in the long run.

*e analysis pertinent to spatiotemporal travel charac-
teristics of the elderly is now receiving increasing attention

[11, 12]. *e elderly people’s travel modes vary between
different countries and regions; for example, the most fre-
quently used mode by the elderly is car in western developed
countries whereas it becomes public transit in Asian cities
(e.g., Hong Kong and Seoul). In the public transit-oriented
city, elderly passengers generally prefer to use the transit
service during off-peak hours so as to stay away from
commuting crowds in peak period [13]. Nevertheless, Shao
et al. [14] presents an intriguing finding that contradicts this
generic rule. *ey find that the percentage of elderly people
taking buses is similar with that of younger people (around
10%) during the morning peak period. It is probably that
many elderly passengers want to buy cheaper and fresher
foodstuffs at morning markets in other communities or to
exercise at a faraway park.

Express bus is a bus service that may manifest the above
phenomenon; that is, both adults with full-price ticket and
elderly passengers have analogous percentage to choose. It is
primarily intended to operate between residential
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communities and city centers (e.g., central business district
or CBD for short). Many passengers using express buses
usually travel on a daily commuting basis, and meanwhile,
some elderly passengers arrive at morning markets or parks
in city centers. When express buses have large passenger
demand during the morning peak period, a part of pas-
sengers alter their departure time choice in order to board
less crowded neighboring buses. Nonetheless, the level of
service for certain buses is still low which engenders pas-
senger complaint due to the overcrowded riding experience.
Current fare discount policy may be nomore appropriate for
this pattern of bus service since trip purposes of elderly
passengers are varied, and many of them belong to the
noncommuting travel (e.g., recreational activities). In con-
trast, imposing surcharge on the elderly is a potential
measure that encourages some elderly passengers to cir-
cumvent the most crowded buses. *is paper focuses on the
elderly pricing surcharge problem.

1.1. Literature Review. Policy instruments for public transit
service aim at increasing the transit serviceability and at-
tractiveness. Fare-related policy is one of the most common
and effective policy instruments for transit operation
management [15].

A large number of studies have been conducted on the
issue of transit fare change from different points of view. For
example, Nuworsoo et al. [16] compared the effect of dif-
ferent fare increase options on social equity based upon
onboard survey data from the agency AC Transit, Canada.
Nahmias-Biran et al. [17] used the Gini index to examine
whether fare changes were equally distributed among dif-
ferent passenger groups. From the angle of accessibility, Ma
et al. [18] applied the cumulative opportunity measure and
found that the loss in work accessibility resulting from
transit fare increase is inversely proportional to trip length,
given the flat fare structure. In the work of Yang and Tang
[19], the difference-in-differences model was utilized to
assess the influence of transit fare increase on environment
using data of Beijing, China. Results show that fare increase
yields around 16% growth of air pollution in the short term,
while it has no long-run effect on air quality. In addition, fare
change is carried out in association with other transit pol-
icies, and several studies have investigated the impact of the
broader policy change on ridership, revenue, and passen-
gers’ travel behavior (e.g., [20–23]).

Various time-based pricing schemes which apply to a
specific time of day have been studied by several scholars as
well. For example, Lovrić et al. [24] proposed the activity-
based demand model to evaluate two off-peak discount
schemes and found that two schemes assist in spreading
demand peaks, especially the afternoon peak period. In the
work of Huang et al. [25], the in-vehicle crowding effect and
passenger’s departure time choice were considered. *ey
developed the bottleneck model to analyze the passenger
flow distribution at equilibrium of transit service with two
stations and discussed the impact of fare policies. Tian et al.
[26] extended this work to explore the equilibrium prop-
erties of passenger flow for the many-to-one transit system.

Yang and Tang [27] proposed a new fare-reward scheme for
managing passengers’ departure time choice in a rail transit
bottleneck, which aims to shift partial passenger demand
from peak period to off-peak period.

With an aging baby boomer population, elderly mobility
is becoming an increasingly important social issue, which
has aroused great interest in the research community. In
recent years, researchers have studied the issue of elderly
mobility from various perspectives, including public transit
accessibility [28, 29], pedestrian environment [30, 31],
driving behaviors [32, 33], and crossing road intersections
[34, 35], amongmany others. Some of these studies have also
reportedmany beneficial findings on the differences between
elderly users in the different parts of the world. Furthermore,
some studies have been dedicated to the transit service of
elderly passengers. Newmark [36] compared 10 represen-
tative cities in the US that implement fare discount policies
for the elderly and qualitatively discussed the attendant
tradeoffs. Wong et al. [37] evaluated the level of satisfaction
with different public transport modes using interview survey
data conducted among elderly passengers in Hong Kong,
China. Based on bus passenger survey in Harbin, China,
Yuan et al. [38] employed the structural equation model to
evaluate the importance of ten dimensions of bus service
quality for elderly passengers. *ese findings are useful for
understanding the elderly travel behaviors. However, none
of the previous studies have explored the time-based pricing
schemes pertinent to elderly passengers particularly. Current
fare discount policy may not be a suited option for the
crowded bus service with a large quantity of commuters.
(Some studies show the need to protect the elderly using
public transit. *e elderly is regarded as a less privileged
population with limited transport choices, and their mobility
is dependent on public transit in the public transit-oriented
city [29]. Fare discount policy is a way to protect the elderly,
which should never be readily canceled. Meanwhile, the
elderly have significantly less commuting and work-related
trips as compared to younger people. During the morning
peak period, imposing surcharge on some particular buses is
a worthwhile attempt that encourages elderly passengers to
actively circumvent the most crowded buses (these buses are
mainly used for commuting). In such case, elderly pas-
sengers still enjoy fare discounts when taking the remaining
buses.) Crowding worsens the quality of bus service and its
perception [7, 39], Björklund and Swärdh, [40], and it also
harms the health of passengers, especially the elderly.
*erefore, an analysis of the peak-hour fare pricing for the
elderly would be beneficial to potentially ameliorate the in-
vehicle crowding effect during the morning peak period.

1.2. Objectives and Contributions. *e main objective and
contribution of this study are to propose a methodology for
determining the elderly fare pricing for taking express buses
in the morning peak period. It aims to acquire the optimal
pricing surcharge of elderly passengers in comparison with
the current fare discount policy. A bilevel optimization
model is developed in which the upper-level model is to
make the pricing surcharge decision, and the lower-level
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model is the equilibrium passenger assignment that repre-
sents passengers’ bus choice behavior. *e elderly pricing
surcharge (EPS) problem is classified into the special case
and the generic case depending on the number of buses that
need to pay additional fare by the elderly passengers. Later,
we develop a trial-and-error solution method to solve two
EPS cases. It is capable of considering some practical cir-
cumstances (e.g., the crowding effect) without requiring
their explicit form.

*e remainder of this paper is organized as follows:
Section 2 describes the problem and the bilevel optimization
model. *e solution method is introduced in Section 3.
Section 4 depicts illustrative examples. Finally, conclusions
are provided in Section 5.

2. Problem Description and
Model Development

Consider an express bus service between a particular resi-
dential community and the CBD. Passengers are divided
into two categories. We indicate by k � 1 the first category
(adults with full-price ticket) and by k � 2 the second cat-
egory (the elderly with discount-price ticket). Variables used
in the model and their notation are summarized in Table 1
(see Appendix B). *e associated ticket prices of these two
passenger categories are denoted by p1 and p2, respectively.
Suppose that the timetable of bus service is predefined, and
buses are dispatched at a constant headway (denoted by h).
Let Λ � −ξ, . . . , −2, −1, 0, 1, 2, . . . , ζ{ } be the set of dis-
patched buses, and i ∈ Λ denote each bus vehicle. Param-
eters ξ and ζ in set Λ are sufficiently large to cover the entire
morning peak period.

Each passenger has his/her own desired time arriving at
the CBD which is coherent with the destination arrival time
of one bus vehicle in set Λ. Let q1i and q2i represent the
number of adult passengers with full-price ticket and elderly
passengers whose desired bus is i ∈ Λ, respectively. Let
qi � q1i + q2i . Suppose that qk

i in set Λ (k ∈ 1, 2{ }) exhibits a
weakly unimodal distribution, i.e., qk

i ≤ qk
i+1 when −ξ ≤ i≤ −

1 and qk
i ≤ qk

i−1 when 1≤ i≤ ζ. It signifies that
q0 � maxi∈Λ qi . Hence, bus 0 and its neighboring buses are
more likely to be in-vehicle crowded. Let −ξ (ξ < ξ) and ζ
(ζ < ζ) represent the first bus and the last bus whose qi al-
ready make the vehicle become crowded, respectively (e.g.,
exceed the number of seats). Define
Λ � −ξ, . . . , −2, −1, 0, 1, 2, . . . , ζ  and use subscript j to
denote crowded bus in set Λ. Note that set Λ is known
provided that the values of qi in set Λ are given. Pricing
surcharge scheme of elderly passengers is assumed to be
implemented on the buses in set Λ.

For analytical tractability, we assume that all the pas-
sengers have the identical value of travel time and valuation
of in-vehicle crowding. Let τ denote the travel time between
the suburban area and the CBD, which is assumed to be
constant for each bus. *e unit cost of passenger in-vehicle
travel time is denoted by α. For passengers whose desired bus
is j ∈ Λ, theymay take the neighboring buses instead of bus j

since bus j is crowded. *en, i< j means that passengers
select bus i which arrives early than its desired bus j and the

early arrival time is −h(i − j), while i> j means that the
selected bus i arrives late and the late arrival time is h(i − j).
Let β and c denote the schedule delay penalty of unit early
and late arrival time, respectively. When passengers whose
desired bus is j ∈ Λ select bus i ∈ Λ, the early/late arrival
penalty cost δi,j can be expressed as

δi,j �

−βh(i − j), i< j,

0, i � j,

ch(i − j), i> j.

⎧⎪⎪⎨

⎪⎪⎩
(1)

We define n1
i,j and n2

i,j as the number of adults with full-
price ticket and elderly passengers taking bus i ∈ Λ while
their desired bus is j ∈ Λ, respectively. In this study, the
crowding cost is further taken into account, which is as-
sociated with the crowdedness (denoted by g) and the in-
vehicle travel time τ. Here, g is a monotonically increasing
function of in-vehicle passenger flow and g(0) � 0. We
define Ni as the number of passengers selecting bus i. *en,
the crowding cost of taking bus i per passenger (denoted by
Ci) is given by

Ci � τg Ni( . (2)

*e elderly pricing surcharge (EPS) problem tries to shift
an appropriate number of elderly passengers to less crowded
buses by using fare instrument. It can be represented as a
leader-follower game where the local authority makes the
elderly pricing surcharge decision, which can affect, but
cannot control the passengers’ bus choice behavior. *e
passengers in two categories make choices with regard to
their selection of buses in order to minimize their individual
travel cost. Hence, EPS can be formulated as a bilevel model
as shown below.

2.1. Upper-Level Model [UM].

min ρ, (3)

subject to

Ni ≤ ϕQ, i ∈ Λ, (4)

0≤ ρ≤p1 − p2. (5)

In model [UM], objective function (3) is to determine
the minimum amount of fare increase for elderly passengers
who board crowded buses in set Λ (denoted by the decision
variable ρ). Note that the ticket price remains unchanged
(i.e., p2) if the elderly choose buses in set Λ/Λ. Equation (4)
ensures that the number of passengers in bus i should be
maintained to a certain level of service, where ϕ is a constant
parameter indicating the threshold of crowdedness degree
and Q denotes the bus capacity (i.e., the number of seats plus
standing capacity). Equation (5) restricts the range of fare
increase, namely, the elderly ticket price p2 + ρ should not
exceed the full ticket price p1.

Define n � nk
i,j|i ∈ Λ, j ∈ Λ, k � 1, 2  and

N � Ni|i ∈ Λ . *e lower-level model is the passenger as-
signment problem which represents passengers’ bus choice
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behavior. Its decision is to garner two optimal vectors n and
N at equilibrium (denoted by n∗ andN∗, respectively). Here,
we make one assumption in regard to passengers whose
desired bus i is in set Λ/Λ: they are always available to board
their desired bus regardless if other passengers from set Λ
select to take bus i or not. (Due to crowding effect, pas-
sengers whose desired bus i ∈ Λmay shift to the neighboring
uncrowded bus like bus −ξ − 1. Once bus −ξ − 1 gets
crowded, some of them may take −ξ − 2, −ξ − 3. . . *e
assumption indicates that passengers whose desired bus
i ∈ Λ/Λ (e.g., bus −ξ − 1) owns the priority to firstly board
bus i, and hence, they are always board their desired bus. In
other words, only passengers whose desired bus i ∈ Λ may
shift to bus −ξ − 1 and even earlier buses. It is amenable to
the case of late dispatched bus ζ + 1 as well. In reality, the

first boarding priority does not exist, and some passengers
whose desired bus i ∈ Λ/Λ may also possibly shift to less
crowded buses due to the influx of sufficient passengers from
set Λ. Nonetheless, this somewhat strong assumption can be
relaxed which will be particularly discussed in Proposition 3
of Section 2.1.) Under this assumption, the ticket fare and in-
vehicle travel cost of passengers whose desired buses cor-
respond to set Λ/Λ is a constant value (i.e.,


2
k�1 i∈Λ/Λq

k
i (pk + ατ)) which is hence not considered. It is

noteworthy that the crowding cost resulted from these
passengers is still influenced by ρ, which should be taken into
account.

2.2. Lower-Level Model [LM]

n∗,N∗(  ≔ argmin
n,N


i∈Λ



2

k�1


j∈Λ

n
k
i,j pk + ατ + δi,j  + 

j∈Λ

n
2
i,jρ + τG Ni( ⎛⎜⎜⎝ ⎞⎟⎟⎠ (6)

subject to


i∈Λ

n
k
i,j � q

k
j , j ∈ Λ, k � 1, 2, (7)

Ni �



2

k�1


j∈Λ

n
k
i,j, i ∈Λ,



2

k�1


j∈Λ

n
k
i,j + qi, i ∈ Λ/Λ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

n
k
i,j ≥ 0, i ∈ Λ; j ∈ Λ; k � 1, 2, (9)

Ni ≥ 0, i ∈ Λ. (10)

In model [LM], objective function (6) contains five cost
terms. *e first three terms are ticket fare, in-vehicle travel
cost, and schedule delay penalty cost of passengers whose
desired buses are in set Λ, respectively. *e fourth term
indicates the surcharge for the elderly taking buses in set Λ.
*e last term is a derivative of Beckmann’s transformation
[41], which signifies the sum of the integrals of the in-vehicle

Table 1: List of notation.

Variable Description
i, j *e index of dispatched buses

k
*e index of two passenger categories (k� 1 denotes adults with full-price ticket, and k� 2 denotes the elderly with discount-

price ticket)

Λ A set of dispatched buses Λ � −ξ, . . . , −2, −1, 0, 1, 2, . . . , ζ{ } where −ξ and ζ denote the first bus and the last bus in the morning
peak period, respectively

Λ A set of dispatched buses Λ � −ξ, . . . , −2, −1, 0, 1, 2, . . . , ζ  where −ξ and ζ denote the first bus and the last bus whose qi already
make the vehicle become crowded (e.g., exceed the number of seats), respectively

p1 *e ticket price of the first category (adults with full-price ticket)
p2 *e ticket price of the second category (the elderly with discount-price ticket)
q1i *e number of adult passengers with full-price ticket whose desired bus is i ∈ Λ
q2i *e number of elderly passengers whose desired bus is i ∈ Λ
qi *e number of passengers whose desired bus is i ∈ Λ, qi � q1i + q2i
h Constant headway of dispatched buses
τ *e travel time between the suburban area and the CBD
α *e unit cost of passenger in-vehicle travel time
ϕ *e threshold of bus crowdedness degree
δi,j *e arrival penalty cost when passengers whose desired bus is j ∈ Λ select bus i ∈ Λ
β *e schedule delay penalty of unit early arrival time
c *e schedule delay penalty of unit late arrival time
n1i,j *e number of full-price adults taking bus i ∈ Λ while their desired bus is j ∈ Λ
n2i,j *e number of elderly passengers taking bus i ∈ Λ while their desired bus is j ∈ Λ
g A monotonically increasing function of in-vehicle passenger flow and g(0) � 0
ρ *e pricing surcharge of elderly passengers who board crowded buses in set Λ
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crowding costs where G(x) equals 
x

0 g(ω)dω. Similar to the
user equilibrium models [41, 42], the term G(x) does not
have any economic interpretation. Equation (7) exhibits that
the sum of passengers in category k whose desired bus j ∈ Λ

equal qk
j . Equation (8) couples the variables nk

i,j and Ni.
Equations (9) and (10) enforce nonnegativity of variables.

Replacing Ni in equations (6) by (8), the lower-level
model only contains decision variables nk

i,j

n∗ ≔ argmin
n


i∈Λ



2

k�1


j∈Λ

n
k
i,j pk + ατ + δi,j  + 

j∈Λ

n
2
i,jρ⎛⎜⎜⎝ ⎞⎟⎟⎠

+ 

i∈Λ

τG 
2

k�1


j∈Λ

n
k
i,j

⎛⎜⎜⎝ ⎞⎟⎟⎠ + 

i∈Λ\Λ

τG 
2

k�1


j∈Λ

n
k
i,j + qi

⎛⎜⎜⎝ ⎞⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

subject to


i∈Λ

n
k
i,j � q

k
j , j ∈ Λ, k � 1, 2, (12)

n
k
i,j ≥ 0, i ∈ Λ; j ∈ Λ; k � 1, 2. (13)

*e first-order optimality conditions for the lower-level
model can be expressed explicitly as

n
1
i,j p1 + ατ + δi,j + Ci − λ1j  � 0, i ∈ Λ; j ∈ Λ, (14)

p1 + ατ + δi,j + Ci − λ1j ≥ 0, i ∈ Λ; j ∈ Λ, (15)

n
2
i,j p2 + ρ + ατ + δi,j + Ci − λ2j  � 0, i ∈ Λ; j ∈ Λ, (16)

p2 + ρ + ατ + δi,j + Ci − λ2j ≥ 0, i ∈ Λ; j ∈ Λ, (17)

n
2
i,j p2 + ατ + δi,j + Ci − λ2j  � 0, i ∈ Λ\Λ; j ∈ Λ, (18)

p2 + ατ + δi,j + Ci − λ2j ≥ 0, i ∈ Λ\Λ; j ∈ Λ, (19)

Ci �

τg 
2

k�1


j∈Λ

n
k
i,j

⎛⎜⎜⎝ ⎞⎟⎟⎠, i ∈Λ,

τg 
2

k�1


j∈Λ

n
k
i,j + qi

⎛⎜⎜⎝ ⎞⎟⎟⎠, i ∈ Λ\Λ

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩


i∈Λ

n
k
i,j � q

k
j , j ∈Λ, k � 1, 2,

n
k
i,j ≥ 0, i ∈ Λ; j ∈Λ; k � 1, 2,

(20)

where λ1j and λ2j are the Lagrangean multipliers of constraint
(12). Equations (14) and (15) unveil that if n1

i,j > 0, the gener-
alized travel cost of taking bus i equals λ1j for adults with full-
price ticket whose desired bus is j ∈ Λ. Otherwise, n1

i,j equals
zero. Hence, λ1j represents the equilibrium generalized travel
cost of passengers in the first category. For passengers in the
second category, the equilibrium generalized travel cost λ2j can
be analogously defined. Equations (16) and (17) exhibit the case
when elderly passengers whose desired bus is j ∈ Λ select one

bus in setΛ while equations (18) and (19) exhibit the case when
these passengers select the bus from set Λ/Λ. Equation (20)
presents the relation between the crowding cost Ci and decision
variable nk

i,j by substituting equation (8) into (2).

Remark 1. Given the value of ρ, the equilibrium generalized
travel costs of two passenger categories (i.e.,
λk

j , j ∈ Λ, k ∈ 1, 2{ }) are uniquely determined. Nonetheless,
the optimal solution of the lower-level model is not unique in
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terms of nk
i,j. In other words, λk

j can be achieved through
different combinations of nk

i,j. For example, suppose that in one
optimal equilibrium solution, nk

i�−ξ−1,j�−ξ
> 0 and

nk

i�−ξ−2,j�−ξ
> 0 for k � 1, 2. Let nmin

i � min nk

i,j�−ξ
 |i � −ξ − 1,

−ξ − 2; k � 1, 2}. For passengers whose desired bus is −ξ, nmin
i

elderly passengers taking bus −ξ − 1 and nmin
i passengers with

full-price ticket selecting bus −ξ − 2 exchange positions with
each other. It is easy to verify the new solution of nk

i,j yielded by
the above operation is one optimal solution as well.

2.3. A Special Case with One Bus in Set Λ. We first discuss a
special case that set Λ only contains one bus vehicle 0 (i.e.,
Λ � 0{ }). As per the definition of Λ, passengers whose desired
bus is bus 0 aremost likely to select the neighboring bus vehicles.

Proposition 1. When ρ> 0, n1
i�0,j�0 > 0 always holds in the

optimal equilibrium solution.

Proposition 2. If passengers whose desired bus j � 0 select
bus i≤ − 2 (i.e., n1i,j�0 + n2

i,j�0 > 0), the equilibrium generalized
travel costs of taking bus i′ � i, . . . − 2, −1 are identical for
each passenger category k (k ∈ 1, 2{ }).

*e proofs of Proposition 1 and 2 are provided in
Appendixes A and B, respectively.

Lemma 1. If n1
i,j�0 + n2

i,j�0 > 0 (i≥ 2), passengers in each
category k (k ∈ 1, 2{ }) whose desired bus j � 0 share the same
generalized travel cost when taking bus i′ � 1, 2, . . . , i.

Lemma 2. If i∈Λ/Λn
k
i,j�0 > 0, k ∈ 1, 2{ }, at least one of bus −1

and bus 1 contains passengers in category k whose desired bus
j � 0 at equilibrium.

Remark 2. If n1
i,j�0 > 0 where i ∈ Λ/Λ, the equilibrium

generalized travel costs of taking bus i and bus 0 are the same
for passengers with full-price ticket whose desired bus j � 0.
In contrast, if n2

i,j�0 > 0 where i ∈ Λ/Λ at equilibrium, the
generalized travel cost of taking bus i is less than (or equal to)
that of taking bus 0 for elderly passengers whose desired bus
j � 0 when ρ> 0.

Proposition 3. For passengers whose desired bus is in set
Λ\Λ, the assumption that they are always available to board
their desired bus can be relaxed, with no influence on the
objective value of the lower-level model.

*e proof of Proposition 3 is provided in Appendix
C. Here, the original condition ρ � 0 is analyzed. When ρ
equals 0, we indicate by nk

i,j�0 the optimal value of nk
i,j�0 and

by λ
k

j�0 the generalized travel cost of passengers in category k

whose desired bus is bus 0. In this study, we assume that
there exist both passengers with full-price ticket and elderly
passengers in bus 0 at equilibrium when ρ � 0, namely,
n1

i�0,j�0 > 0 and n2
i�0,j�0 > 0. *erefore, the equilibrium gen-

eralized travel cost λ
1
j�0 � p1 + ατ + C0 and hold. *e rela-

tion between λ2j�0 � p2 + ατ + C0 and λ1j�0 is λ2j�0.

Based upon the value of λ
1
j�0 − p1 � λ

2
j�0 − p2, the special

case with single bus in set nk
i�0,j�0 can be further decomposed

into two scenarios when Λ. Proposition 4 gives the ρ> 0
equilibrium solution of the lower-level model under two
scenarios.

Proposition 4. Scenario I (q10 − n1
i�0,j�0 > n2

i�0,j�0), λ
1
j�0 − p1 �

λ2j�0 − p2 and n2
i�0,j�0 � 0 hold at equilibrium given that ρ> 0;

Scenario II (q10 − n1
i�0,j�0 ≤ n2

i�0,j�0), λ
1
j�0 − p1 ≥ λ

2
j�0 − p2 − ρ

and i∈Λ/Λn
1
i,j�0 � 0 hold at equilibrium given that ρ> 0.

*e proof of Proposition 4 is provided in Appendix D.

Remark 3. As indicated in Remark 1, the equilibrium so-
lution in the case of ρ � 0 is unique with respect to λ

k

j , but
not unique with respect to nk

i,j. Due to the monotonicity of Ci

in equation (2), Ni is uniquely determined as well.*erefore,
two scenarios in Proposition 4 can be rephrased as follows:
Scenario I (q10 >N0) and Scenario II (q10 ≤N0).

Remark 4. In Scenario I, as n2
i�0,j�0 always equals zero, ρ is

irrelevant to the generalized travel cost of two passenger
categories provided that ρ> 0; in Scenario II, n1

i�0,j�0 equals
q10, and we can easily verify that an increment of ρ will result
in a monotonic decrease in the value of n2

i�0,j�0 until n2
i�0,j�0

equals zero.

2.4. A Generic Case with Multiple Buses in Set Λ

2.4.1. ρ Equals 0. Regarding the generic case with multiple
buses in set Λ, we firstly analyze the original condition ρ � 0.
Consider a hypothetical circumstance that bus capacity is
sufficiently large; for example, the number of seats is larger
than maxi∈Λ qi . In such ideal circumstance, all the pas-
sengers will unhesitatingly take their desired buses with no
concern of in-vehicle crowding. At equilibrium, the number
of passengers selecting bus i (i.e., Ni) presents the same
distribution as qi for buses in set Λ.

In the hypothetical circumstance, we then gradually reduce
bus capacity. Buses that carry maxi∈Λ qi  passengers are the
first to be crowded. (In this study, qk

i in set Λ (k ∈ 1, 2{ }) is
assumed to follow the weakly unimodal distribution, i.e.,
qk

i ≤ qk
i+1 when −ξ ≤ i≤ − 1 and qk

i ≤ qk
i−1 when 1≤ i≤ ζ. It is

possible that apart from bus 0, qi of some neighboring buses
(e.g., bus −1 or bus 1) may also equal maxi∈Λ qi .) *e degree
of crowdedness in these buses exacerbates with the decline in
bus capacity that render passengers willing to choose the
earlier/later buses. As bus capacity continues to decrease,
more passengers whose desired bus belongs to buses with
maxi∈Λ qi  and the neighboring buses consider taking the
buses which are dispatched even earlier or later. *is pattern
of chain reaction will continue in the hypothetical cir-
cumstance until bus capacity drops to the true value. It can
be verified by inspection that Ni in set Λ follows the uni-
modal (not strictly) distribution in the optimal equilibrium
solution when ρ � 0.

Now, let us denote by n � nk
i,j|i ∈ Λ, j ∈ Λ, k � 1, 2 

and N � Ni|i ∈ Λ  the equilibrium solution of the lower-

6 Journal of Advanced Transportation



level model when ρ equals 0. Meanwhile, we indicate by λ
k

j

the generalized travel cost of passengers in category k whose
desired bus is bus j ∈ Λ when ρ � 0. It is consistent with the
special case (see Remark 3) that the equilibrium solution is
unique with respect to λk

j and Ni, but not unique with
respect to nk

i,j.
In fact, bus with the maximum value of Ni (maxi∈Λ Ni )

is not necessarily bus 0. Figure 1 depicts four special situations
with regard to different distributions of parameter qi for buses
in set Λ. For the ease of observation, we provisionally assume
that two delay penalty parameters are equal, i.e., β � c. As can
be seen intuitively, the most crowded bus of the situation in
Figure 1(a) at equilibrium is bus 1, while bus with maxi∈Λ Ni 

in Figure 1(b) at equilibrium is bus −1. Due to the full
symmetry, there exist two buses with maxi∈Λ Ni  in the
equilibrium solution for the latter two situations (bus 0 and 1
in Figure 1(c), and bus 0 and −1 in Figure 1(d)).

In this section, we further assume that bus with maxi∈Λ Ni 

is in the set of buses with maxi∈Λ qi . Hereafter, we refer to
situations that resemble the former two situations in Figure 1 as
Situation 1 and situations similar to the latter two situations in
Figure 1 as Situation 2.*ere is a disparity between two situation
types.

In Situation 1, we indicate by j the sole bus with
maxi∈Λ Ni  boarding passengers at equilibrium. Passengers
whose desired bus is j may shift to either the early arrival
buses (e.g., bus j − 1) or the late ones (e.g., bus j + 1). Yet, for
passengers whose desired bus is j − 1, they only consider
taking bus j − 1 or earlier buses while passengers whose
desired bus is j + 1 only select bus j + 1 or later arrival buses.
*is shifting behavior is also applicable to bus i≤ j − 2 and
bus i≥ j + 2, and the associated chain reaction continues
until the in-vehicle crowding effect vanishes.

In Situation 2, we denote by j1 and j2 two most crowded
buses at equilibrium, where j2 � j1 + 1. By inspection of
Figure 1(c), passengers whose desired bus is j1 (bus 0) do not
choose to take bus j2 (bus 1) or later arrival buses. Similarly,
for passengers whose desired bus is j2, they are not likely to
board bus j1 or earlier buses. At equilibrium, passenger flow
forms two isolated branches: passengers whose desired bus
i≤ j1 only select their desired bus or earlier buses, while
passengers whose desired bus i≥ j2 prefer to the desired bus
or later buses. In each of two branches, such chain reaction
of shifting behavior continues until the buses dispatched
earlier or later get no more crowded.

Note that Figure 1 only presents four special situations where we
assumeβ � c anddemanddistribution is ideally symmetric. Inpractice,
theperceivedpenaltyof latearrival is larger than(orequal to) thatofearly
arrival (β≤ c) and distribution of parameter qi is asymmetric. *ese
practical circumstances make the shifting behaviors not intuitively
apparent.

Situation 1 and Situation 2 can be identified by the
mathematical expression in terms of Ni and qi (i ∈ Λ), as
described in Table 2. If there exists one bus j ∈ Λ which
satisfies 

j

i�−ξ(Ni − qi)< 0 and 
ζ
i�j(Ni − qi)< 0, the asso-

ciated equilibrium solution corresponds to Situation 1. In
contrast, the equilibrium solution belongs to Situation 2 if
there are two neighboring buses that simultaneously meet
the 2nd and 3rd conditions.

Similar to the special case in Section 2.1, it is assumed that
there always exist passengers in both two categories taking their
desired bus j at equilibrium when ρ � 0, namely, nk

j,j > 0
(j ∈ Λ, k � 1, 2{ }). Hence, λ

1
j � p1 + ατ + Cj and λ2j � p2 +

ατ + Cj hold. *en, we have λ
1
j − p1 � λ

2
j − p2, j ∈ Λ.

Regarding λ
k

j between two different buses, we take the
2nd and 4th conditions of Situation 2 (see Table 2) as an
example. When bus gets crowded, the first bus that pas-
sengers tend to shift is the nearest neighboring bus. In
conditions 2 and 4 of Situation 2, for passenger group k, this
trait is reflected by λ

k

j � pk + ατ + Cj � pk + ατ + βh + Cj−1.
Since λ

k

j−1 � pk + ατ + Cj−1, we obtain λ
k

j � λ
k

j−1 + βh

when j ranges from −ξ to j1. Hence, λ
k

j1
� λ

k

j1−1 +

βh � λ
k

j1−2 + 2βh � . . . � λ
k

−ξ + δ
−ξ,j1

. *en, for a bus

j ∈ −ξ, −ξ + 1, . . . , j1 , λ
k

j � pk + ατ + Cj � pk + ατ
+ δ

−ξ−1,j
+ C

−ξ−1, which implies that the generalized travel
cost of taking desired bus j equals that of taking bus −ξ − 1
due to the effect of in-vehicle crowding. Analogously, the
generalized travel cost λ

k

j associated with the other condi-
tions in Table 2 can be procured, as summarized in Table 3.

Remark 5. As previously stated, some passengers only select
their desired bus or earlier buses while some passengers
prefer to the desired bus or later buses at equilibrium in both
two situation types. It indicates that some values of nk

i,j

constantly equal 0. In Situation 1, nk
i,j � 0 always holds when

j≤ j − 1, i≥ j + 1 or j≥ j + 1, i≤ j − 1. In Situation 2, nk
i,j �

0 when j≤ j1, i≥ j + 1 or j≥ j2, i≤ j − 1.

2.4.2. ρ Exceeds 0. When ρ exceeds 0, elderly passengers are
penalized in terms of pricing surcharge if taking buses in set
Λ. Due to the fare increase, more elderly passengers consider
shifting to the buses in set Λ\Λ, and passengers in two
categories are redistributed at equilibrium. Two situations in
Section 2.2 are discussed separately.

(1) Situation 1. In Situation 1, for elderly passengers whose
desired bus j is in set Λ1 � −ξ, −ξ + 1, . . . , j − 1 , the
generalized travel cost of taking bus j equals that of taking
bus −ξ − 1 when ρ � 0 (see Table 3). Similarly, for elderly
passengers whose desired bus j ∈ Λ2 � j + 1, j + 2
. . . , ζ − 1, ζ}, the generalized travel cost of taking bus j

equals that of taking bus ζ + 1 when ρ � 0. Set Λ equals
Λ1 ∪Λ2 ∪ j .

Once ρ exceeds 0, elderly passengers begin to shift from
buses in setΛ to buses in setΛ/Λ. We concern on the shifting
sequence of elderly passengers who originally take buses in
either of two sets (Λ1 and Λ2) as ρ increases.

Proposition 5. In Situation 1, as ρ gradually increases, the
shifting sequence is that elderly passengers forgo taking bus j

prior to bus j + 1 (j, j + 1 ∈ Λ1), and instead they select bus
−ξ − 1 or earlier buses in the equilibrium solution.

*e proof of Proposition 5 is provided in Appendix E.
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Lemma 3. In Situation 1, as ρ incrementally increases, the
shifting sequence is that elderly passengers forgo taking bus j

prior to bus j − 1 (j, j − 1 ∈ Λ2), and instead they select bus
ζ + 1 or later buses in the equilibrium solution.

For elderly passengers whose desired bus is j, their
generalized travel cost of taking bus j equals that of

taking both bus −ξ − 1 and ζ + 1 when ρ � 0. With the
increase of ρ, the behavior of elderly passengers whose
desired bus is j may evolve into the following three
subsituations:

Situations 1.1: λ
2
j � p2 + ατ + δ

−ξ−1,j
+ C

−ξ−1 and
λ
2
j � p2 + ατ + δζ+1,j

+ Cζ+1 always hold as ρ increases. It
indicates that elderly passengers whose desired bus is j are

bus

. . . . . .

–2 –1 0

Λ = {–1, 0, 1, 2, 3}
q0 = q1 = q2

q–1 = q3, q–2 = q4

1 2 3 4

–

(a)

bus

. . . . . .

–4 –3 –2

Λ = {–3, –2, –1, 0, 1}
q0 = q–1 = q–2

q–3 = q1, q–4 = q2

–1 0 1 2

–

(b)

bus

. . . . . .

–2 –1

Λ = {–1, 0, 1, 2,}
q0 = q–1 = q1 = q2

q–2 = q3

0 1 2 3

–

(c)

bus

. . . . . .

–3 –2 –1

Λ = {–2, –1, 0, 1}
q0 = q–2 = q–1 = q1

q–3 = q2

0 1 2

–

(d)

Figure 1: Four special situations with regard to parameter qi.

Table 2: Conditions of bus j (j ∈ Λ) at equilibrium.

No. Condition of bus j ∈ Λ Situation 1 Situation 1

1 
j

i�−ξ(Ni − qj)< 0, 
ξ
i�j(Ni − qj)< 0 j � j —

2 
j

i�−ξ(Ni − qj)< 0, 
ξ
i�j(Ni − qj)< 0 — j � j1

3 
j

i�−ξ(Ni − qj)< 0, 
ξ
i�j(Ni − qj) � 0 — j � j2 � j1 + 1

4 
j

i�−ξ(Ni − qj)< 0, 
ξ
i�j(Ni − qj)< 0 j≤ j − 1 j≤ j1 − 1

5 
j

i�−ξ(Ni − qj)< 0, 
ξ
i�j(Ni − qj)> 0 j≤ j + 1 j≥ j1 + 1

Table 3: Generalized travel cost of two situation types.

Situation 1 j ∈ Λ � −ξ, −ξ + 1, . . . , j, . . . , ζ − 1, ζ 

j � j1 λk

j � pk + ατ + Cj � pk + ατ + δ
−ξ−1,j

+ C
−ξ−1 � pk + ατ + δξ+1,j

+ Cξ+1

j≤ j − 1 λk

j � pk + ατ + Cj � pk + ατ + δ
−ξ−1,j

+ C
−ξ−1

j≥ j + 1 λk

j � pk + ατ + Cj � pk + ατ + δξ+1,j
+ Cξ+1

Situation 2 j ∈ Λ � −ξ, −ξ + 1, . . . , j1, j2, . . . , ζ − 1, ζ 

j≤ j1 λ
k

j � pk + ατ + Cj � pk + ατ + δ
−ξ−1,j

+ C
−ξ−1

j≥ j1 λ
k

j � pk + ατ + Cj � pk + ατ + δξ+1,j
+ Cξ+1
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willing to shift to either the early departure bus −ξ − 1 or the
late departure bus ζ + 1.

Situations 1.2: λ
2
j � p2 + ατ + δ

−ξ−1,j
+ C

−ξ−1 and
λ2j � p2 + ατ + δζ+1,j

+ Cζ+1 hold at the outset, whereas

λ2j <p2 + ατ + δ
−ξ−1,j

+ C
−ξ−1 when ρ is increased to a certain

value (denoted by ρ⌢j). Differed from Situations 1.1, when
ρ≥ ρ⌢j, two isolated passenger flow branches exist, which is
equivalent to the initial Situation 2, where bus j − 1 and j

correspond to bus j1 and j2 in Situation 2, respectively.
Situations 1.3: λ2j � p2 + ατ + δ

−ξ−1,j
+ C

−ξ−1 and
λ2j � p2 + ατ + δζ+1,j

+ Cζ+1 hold at the outset, whereas

λ
2
j <p2 + ατ + δζ+1,j

+ Cζ+1 when ρ is increased to a certain

value (denoted by ρ⌣j). Differed from Situations 1.1, when
ρ≥ ρ⌣j, two isolated passenger flow branches exist, which is
equivalent to the initial Situation 2, where bus j and j + 1
correspond to bus j1 and j2 in Situation 2, respectively.

In either of three above subsituations, it is easy to
verify that the most crowded bus at equilibrium is always
bus j since we assume that bus with maxi∈Λ Ni  (namely,
Nj) is in the set of buses with maxi∈Λ qi . Meanwhile, the
value of Nj monotonically decreases as ρ increases until
none of elderly passengers take buses in set Λ or ρ attains
the maximum value (i.e., p1 − p2).

(1) Situation 2. In the initial Situation 2, passenger flow
forms two isolated branches between buses j1 and j2 in the
equilibrium solution when ρ � 0. Passengers whose desired
bus is j1 (j2) are unwilling to take bus j2 (j1), which can be
expressed mathematically as Cj1

+ ch>Cj2
and

Cj1
<Cj2

+ βh. With the increase of ρ, more elderly pas-
sengers proceed to shift to buses in set Λ/Λ, and Situation 2
may evolve into the following three subsituations:

Situations 2.1: Cj1
+ ch>Cj2

and Cj1
<Cj2

+ βh always
hold as ρ increases. Two isolated passenger flow branches exist
throughout. Specifically, passengers whose desired bus j≤ j1
only choose their desired bus or earlier buses, while passengers
whose desired bus j≥ j2 choose their desired bus or later buses.

Situations 2.2: Cj1
+ ch>Cj2

holds as ρ increases,
whereas Cj1

� Cj2
+ βh when ρ attains a certain value

(denoted by ρj1
). In the case of ρ< ρj1

, two isolated passenger
flow branches exist. When ρ≥ ρj1

, this subsituation is
equivalent to the initial Situation 1, in which bus j1 cor-
responds to bus j in Situation 1.

Situations 2.3: Cj1
<Cj2

+ βh holds as ρ increases,
whereas Cj1

+ ch � Cj2
when ρ attains a certain value

(denoted by ρj2
). If ρ< ρj2

, two isolated passenger flow
branches exist. When ρ≥ ρj2

, this subsituation is identical to
the initial Situation 1, in which bus j2 corresponds to bus j in
Situation 1.

In either of three above subsituations, it can be
verified that the most crowded bus at equilibrium is either
bus j1 or bus j2, and the value of max(Nj1

, Nj2
) mono-

tonically decreases as ρ increases until none of elderly
passengers select buses in set Λ or ρ reaches the maximum
value (i.e., p1 − p2).

3. Solution Method

*e proposed bilevel EPS model aims to determine the
minimum amount of fare increase ρ for elderly passengers
who select buses in set Λ. *e rationale is to delivery one
value of ρ to the lower-level model [LM]. *en, model [LM]

obtains the optimal equilibrium solution in terms of
N � Ni|i ∈ Λ , which is the feedback to the upper-level
model [UM].

Essentially, elderly pricing surcharge scheme is designed
to alleviate the degree of in-vehicle crowdedness. It is re-
flected in constraint (4) of model [UM] that the number of
passengers taking bus i (i.e., Ni) should be not more than
ϕQ. In fact, we only need to guarantee that the most crowded
bus satisfies equation (4).

In this study, we develop a bisection-based trial-and-error
algorithm to solve the bilevel model, on the grounds that it is
difficult to procure some key parameters such as the crowding
cost function g(·) in equation (2). In contrast, given the value
of ρ, observing the number of passengers taking bus i ∈ Λ (i.e.,
Ni) at equilibrium seems to be more practicable.

3.1. Special Case. First, the special case with one bus in set Λ
is discussed. We need to identify the price adjustment
mechanism based upon each trial and observation accord-
ingly, so as to garner the optimal value of ρ (denoted by ρ∗).
*e trial-and-error algorithm to identify ρ∗ is described as
follows.

Initially, we let ρ(1) equal p1 − p2, which is the maximum
value in model [UM]. *ough the crowding cost function
and some other parameters are unknown, the number of in-
vehicle passengers at equilibrium N

(1)
i (i ∈ Λ) can be ob-

served by field observation after implementing ρ(1).
*en, we check whether the bilevel model is feasible by

comparing N
(1)
0 with ϕQ (because bus 0 is always the most

crowded bus). If N
(1)
0 >ϕQ, the model is infeasible in terms

of constraint (4). As stated in Proposition 4, the special case
(Λ � 0{ }) is classified into two scenarios, which can be
identified by the relation between N

(1)
0 and N0. If N

(1)
0 � N0,

the case is Scenario I; otherwise, it is Scenario II. Note that
Scenario I is constantly infeasible because N0 exceeds ϕQ.
*erefore, we only focus on Scenario II and N

(1)
0 ≤ ϕQ,

which ensure that the model has at least one feasible
solution.

Regarding Scenario II, N0 is monotonically decreasing in
ρ according to Proposition 4. Our task is to find the min-
imum value of ρ satisfying maxi∈Λ Ni ≤ϕQ. Due to the
monotonicity, ρ attains the optimal (i.e., ρ∗) when
maxi∈Λ Ni  � ϕQ. In the next iteration, the solution method
proceeds to solve model [LM] when ρ(2) equals the midpoint
of interval [0, ρ(1)]. Later, model [LM] returns the optimal
equilibrium solution N

(2)
i (i ∈ Λ) to model [UM]. If

N
(2)
i >ϕQ, then ρ∗ > ρ(2), meaning that the interval [0, ρ(2)]

can be discarded, and the updated interval will be [ρ(2), ρ(1)].
If N

(1)
0 ≤ϕQ, then ρ∗ ≤ ρ(2), and the search can focus on

[0, ρ(2)]. *e bisection-based trial-and-error mechanism is
to conduct iterations following the above procedure until the
size of the remaining interval is less than a given accuracy.

*e process of the algorithm is presented in Algorithm 1.
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3.2. Generic Case. Now, we focus on the solution method of
the generic case with multiple buses in set Λ. It is a bit
different from the special case in that the generic case exists
two various situations, which may further evolve into var-
ious subsituations as the value of ρ changes.

In Situation 1, bus j is always the most crowded bus (i.e.,
maxi∈Λ Ni ) at equilibrium as ρ increases, and Nj experi-
ences a monotonic decreases as ρ increases until
j∈Λn

2
j,j

� 0. Hence, we only need to find the bus with

maxi∈Λ Ni  when ρ � 0, which corresponds to bus j.
In Situation 2, there are two most crowded buses when

ρ � 0, namely, bus j1 and j2. Regardless of which sub-
situation it may evolve into, the value of max(Nj1

, Nj2
) is

monotonically decreasing (not strictly) in ρ until none of
elderly passengers select buses in set Λ.

Actually, two situations are not intuitive to be distin-
guished. At the same time, either situation may further evolve
into various subsituations as ρ increases. Nevertheless, we
propose one approach that simultaneously fits in two situa-
tions. Firstly, it is consistent with Situation 1 that we seek out
the most crowded bus when ρ � 0 (which is still denoted by
j). *en, three neighboring buses (bus j − 1, j, and j + 1)
compose one bus subset, denoted by Λj (when Situation 2
takes place, bus j1 and j2 must be in subset Λj, which
correspond to either the former two neighboring buses (j − 1
and j, respectively) or the latter two buses (j and j + 1, re-
spectively)). It can be verified that in both two situations,
max

j∈Λ
j

(Nj) is monotonically decreasing (or at least non-
increasing) in ρ until elderly passengers no longer select buses
in set Λ or ρ reaches the maximum value (i.e., p1 − p2).

On this basis, the proposed algorithm in Algorithm 1 can
be employed to address the generic case through minor
adjustments: let N

(κ)
0 and N0 be substituted by

max
j∈Λ

j

(N
(κ)
j ) and max

j∈Λ
j

(Nj), respectively, from Step 1 to
Step 3. It is worth noticing that the modified trial-and-error
algorithm is suitable for both two situations and potentially-
realizable subsituations in the generic case.

4. Numerical Examples

*e proposedmodel and solution method are verified using
two examples which are performed on a personal computer
with Intel Core i7-4700 CPU and 8.00G RAM. Two nu-
merical examples are based upon one express bus service in
Yancheng bus terminal, located at the Tinghu District of

Yancheng, China. A total of five-workday morning peak
demand data were obtained from field investigations of the
ticket hall at bus terminal. Related parameters are set as
follows: for the express bus service, suppose that the in-
vehicle travel time τ is taken as 0.5 h and bus headway is
0.1 h. *e following values of cost parameters are used: the
unit cost of travel time α� 10 ($/h), the unit penalty cost
parameters (β, c) � (18, 20) ($/h), and the initial ticket
prices of two passenger categories are (p1, p2)� (6, 3) ($/h).

For buses i ∈ Λ/Λ, q1i and q2i are set to equal 20 and 10,
respectively. *e unknown crowding cost function g(·) is
utilized to simulate the choices of passengers in two categories
after each trial of pricing surcharge ρ, described as follows:

g Ni(  �

0, Ni ≤Ns,

−ϑ × ln 1 −
Ni − Ns

Q − Ns + ζ
 , Ns <Ni ≤Q,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(22)

where Ni is the number of in-vehicle passengers taking bus
i ∈ Λ. Vehicle capacity Q is taken as 90, and Ns denotes the
number of seats, which is taken as 30. Parameters ϑ and ζ are
set to be 4 and 0.01, respectively.

4.1. Example 1. We first consider a simple example which
corresponds to the special case with one bus in set Λ, i.e.,
Λ � 0{ }. As previously stated in Section 2, parameter ϕ
indicates the threshold of bus crowdedness degree, and ϕQ

in equation (4) represents the maximum number of in-
vehicle passengers, which is intimately related with the level
of service. Figure 2 exhibits the results of elderly pricing
surcharge scheme for different values of q0 when ϕ is taken
as 0.7 and 0.8, respectively. Here, the number of elderly
passengers q20 is supposed to be fixed, which equals 40.

Pricing surcharge scheme does not work on all the values
of q0. For instance, when ϕ � 0.7, the range of q0 can be
divided into three areas, as described on the left-hand side of
Figure 2(a). In the green shaded area, there is no need to
implement the pricing surcharge scheme because the
number of passengers at equilibrium for most crowded bus 0
(i.e., N0) does not exceed ϕQ when ρ � 0. *e blue shaded
area represents the effective interval where pricing surcharge
scheme is indeed in effect. In such area, q0 ranges from 64 to
103 when ϕ � 0.7, and its interval length happens to equal q20.

Step 1: set the iteration number κ � 0. Let ρ(κ) � 0 and obtain the result of Ni (i ∈ Λ). Set κ � κ + 1. Step 1: let ρ(κ) equal p1 − p2. Solve
model [LM] and obtain the optimal equilibrium solution N

(κ)
i (i ∈ Λ). For bus 0, if N

(κ)
0 > ϕQ, the model has no feasible solution;

otherwise, let the initial interval [ρLB, ρUB] equal [ρ(κ− 1), ρ(κ)] and go to Step 2.
Step 2: set κ � κ + 1. Let ρ(κ) be the midpoint of the current interval. Solve model [LM] and obtain the current optimal equilibrium
solution N

(κ)
i (i ∈ Λ).

Step 3: if N
(κ)
0 >ϕQ, then ρ∗ > ρ(κ), meaning that the interval [ρ(κ− 2), ρ(κ)] can be discarded, and the updated interval [ρLB, ρUB] will be

[ρ(κ), ρ(κ− 1)]. If N
(κ)
0 ≤ ϕQ, then ρ∗ ≤ ρ(κ), and update the interval [ρLB, ρUB] as [ρ(κ− 2), ρ(κ)].

Step 4: check whether the size of the updated interval is less than a given accuracy (denoted by ε). If ρUB − ρLB ≤ ε, ρUB is the
approximately optimal solution and stop; otherwise, go to Step 2.

ALGORITHM 1: Bisection-based trial-and-error algorithm.
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Meanwhile, ρ attains the optimal value when equation (4) is
binding, which monotonically increases from 0.24 $ to 1.12 $
as q0 increases from 64 to 103. It is worth noting that for the
elderly passengers taking bus 0, the resulting growth of
generalized travel cost (λ20 − λ

2
0) is significantly lower than ρ,

as shown on the right-hand side of Figure 2(a).
*e red shaded area denotes the interval in which the

proposed bilevel model has no feasible solution since
equation (4) cannot be satisfied. *is area can be further
divided into two conditions depending on the relation be-
tween N0 and q10. *e first condition is that q0 ranges from
104 to 115. In such condition, q10 ≤N0 when ρ � 0 which
corresponds to Scenario II as described in Section 2.1.
*ough pricing surcharge strategy fails to directly meet the
required level of service in equation (4), it is still conducive
to alleviating the in-vehicle congestion to some extent. Yet,
N0 increases as q0 increases.*en, the potentially influenced
passengers (elderly passengers who take bus 0) by

implementing pricing surcharge scheme get less, and the
value of ρ sharply drops off to 0 when q0 attains 115.
*erefore, the benefit of elderly pricing surcharge fades away
with the growth of q0. *e second condition is q0 > 115 in
which q10 >N0 when ρ � 0. It corresponds to Scenario I in
Section 2.1. According to Remark 4, ρ is irrelevant to the
generalized travel cost of two passenger categories, and
hence, elderly pricing surcharge scheme becomes useless.

When ϕ � 0.8, the effective interval (the blue shaded
area) is apparently narrowed as compared to the case of
ϕ � 0.7. It is because when q0 ranges from 72 to 98, N0 in the
equilibrium solution in case of ρ � 0 (i.e., N0) is less than
ϕQ � 72. It indicates that though q0 exceeds ϕQ, passengers
spontaneously select the neighboring buses due to in-vehicle
congestion of their desired bus 0 without conducting pricing
surcharge scheme. Hence, this interval belongs to the green
shaded area. At the same time, the optimal value of ρ when
ϕ � 0.8 is generally less than that when ϕ � 0.7. Moreover,
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Figure 2: Results of example 1.
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the more the pricing surcharge is imposed on elderly pas-
sengers, the higher the level of service in terms of in-vehicle
crowdedness bus 0 can get at equilibrium within the blue
shaded area.

4.2. Example 2. We now pay attention to the generic case
with multiple buses in set Λ. In example 2, set Λ contains
four buses. Table 4 lists four different cases and associated
demand parameters of each bus in set Λ. *e crowdedness
threshold parameter ϕ in equation (4) is set to be 0.9.

Figure 3 presents the results of Ni and Ci with respect to
four different cases in example 2. As can be seen, these four
cases embody various situation types either when ρ equals 0
or when ρ attains the optimal value ρ∗:

Case a: when ρ equals 0, bus 0 is the most crowded bus
and the shifting behavior of passengers at equilibrium is
consistent with Situation 1 described in Section 2.2. For
elderly passengers whose desired bus is bus 0, the
generalized travel cost of taking early arrival bus (bus
−3) and late arrival bus (bus 2) is identical. Once
pricing surcharge strategy is performed, elderly pas-
sengers increasingly shift to buses in set Λ\Λ as ρ
increases. Case a evolves into Situation 1.2 in which
ρ⌢j � 1.22 is the demarcation point. *e blue line in
Figure 3(a) depicts the distribution of Ci when ρ equals
1.21. Once ρ≥ 1.22, two isolated passenger flow
branches arise. Passengers whose desired bus is bus −1
or −2 only consider taking bus −3 or even earlier buses,
while passengers whose desired bus is bus 0 or 1 only
consider bus 2 or even later arrival buses. *e optimal
value ρ∗ equals 2.81, and its equilibrium results of Ni

and Ci correspond to the green part in Figure 3(a). It
signifies that elderly passengers need to pay 5.81 $ when
they wish to take buses i ∈ Λ in the morning rush hour.
Case b: similar to Case a, the shifting behavior of
passengers at equilibrium is Situation 1 when ρ � 0.
Case b evolves into Situation 1.1, which means elderly
passengers whose desired bus is bus 0 prefer to take

either bus −3 or bus 2 in set Λ/Λ as ρ increases. When ρ
attains 2.70, the bilevel model is optimal since the
number of in-vehicle passengers in most crowded bus
(i.e., bus 0) at equilibrium equals ϕQ.
Case c: coherent with Cases a and b, bus 0 is the most
crowded bus, and situation type of passenger shifting
behavior is Situation 1 when ρ � 0. Differed from the
above two cases, Case c evolves into Situation 1.3 in
which ρ⌢j � 1.75 is the demarcation point. *e blue part
drawn in Figure 3(c) describes the distribution of Ci

and Ni given that ρ equals 1.74. When ρ≥ 1.75, there
exist two isolated passenger flow branches. It means
that elderly passengers whose desired bus is bus 0 only
consider shifting to bus −2 or even earlier buses. In this
case, the optimal pricing surcharge ρ∗ equals 2.27.
Case d: from the outset, passenger flow in Case d forms
two isolated branches between bus 0 and bus 1 when
ρ � 0, which corresponds to Situation 2. Afterwards,
Case d evolves into Situation 2.1, which means that two
isolated passenger flow branches exist throughout as ρ
increases. Passengers whose desired bus i≤ 0 prefer
their desired bus or earlier buses, while passengers
whose desired bus i≥ 1 prefer to choose their desired
bus or later buses. In this case, the bilevel model is
optimal when ρ∗ equals 2.27.

Additionally, a sensitivity analysis is conducted on the
effect of demand parameters. Case a differs from Case b in
q1−1 and q2−1 of bus −1. Here, q2−1 is supposed to be fixed,
which equals 30. Table 5 presents the variation of situation
type with respect to changes in q1−1. When the values of q1−1
are in different interval, the associated situation types are
different. Note that two intervals ([45, 72] and [73, 80])
share the same ρ∗. It is because when ρ � ρ∗, there exist
two isolated passenger flow branches. Bus −1 is located in
the less crowded branch, whereas ρ∗ is dependent upon
the other branch which are identical for these two in-
tervals. Analogously, the difference between Case c and
Case d is the values of q11 and q21 of bus 1. Here, q21 is
supposed to be fixed, which equals 30. *ere are also three

Table 4: Demand parameters of buses i ∈ Λ in example 2.

Case a

Bus i ∈ Λ −2 −1 0 1
q1i 50 60 80 70
q2i 20 30 30 30
qi 70 90 110 100

Case b

Bus i ∈ Λ −2 −1 0 1
q1i 50 50 80 70
q2i 20 20 30 30
qi 70 70 110 100

Case c

Bus i ∈ Λ −1 0 1 2
q1i 70 80 50 40
q2i 30 30 20 20
qi 100 110 70 60

Case d

Bus i ∈ Λ −1 0 1 2
q1i 70 80 60 40
q2i 30 30 30 20
qi 100 110 90 60
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Figure 3: Results of Ni and Ci in example 2.

Table 5: Situation type with respect to changes in demand parameters.

Case (a, b)
q1i�−1 Situation type (ρ � 0) Situation type (ρ> 0)
[40, 44] Situation 1 Situation 1.1
[45, 72] Situation 1 Situation 1.2
[73, 80] Situation 2 Situation 2.1

Case (c, d)
q1i�1 Situation type (ρ � 0) Situation type (ρ> 0)
[30, 35] Situation 1 Situation 1.1
[36, 52] Situation 1 Situation 1.3
[53, 80] Situation 2 Situation 2.1
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possible situation types in regard to the changes in q11, as
described in Table 5.

5. Conclusion

*is study focused on the elderly fare pricing issue for taking
express buses in the morning peak period. Compared with
the current fare discount policy, imposing surcharge on the
elderly is a potentially beneficial instrument that encourages
partial elderly passengers to circumvent the most crowded
buses. *e elderly pricing surcharge (EPS) problem was
formulated as a bilevel optimization model, in which the
upper-level model is to make the pricing surcharge decision,
and the lower-level model is the equilibrium passenger
assignment that represents passengers’ bus choice behavior.
*e proposed model of EPS was classified into the special
case and the generic case depending on the number of buses
that impose surcharge.We analyzed several useful properties
of two cases and developed a trial-and-error solution
method to solve these two cases. Numerical examples
present that the elderly pricing surcharge scheme does not fit
in all the demand scenarios, which has a certain effective
interval. Moreover, we found that for elderly passengers, the
resulting increase of generalized travel cost due to surcharge
is apparently lower than the surcharge ρ per se. *is study
could serve as one of the management tools for alleviating
the in-vehicle crowding of express buses during the morning
peak period.

Admittedly, our proposed model comes with some
limitations, and the following improvements are suggested:
(i) passengers are assumed to have the identical value of
travel time and valuation of in-vehicle crowding, and it
could be considered to extend the model by incorporating
the discrete choice model to reflect passengers with het-
erogeneous characteristics; (ii) overcrowding, namely, the
case of passengers who fail to board is not considered in this
study, and research is needed to propose a more generalized
model which is capable to consider overcrowding issue that
passengers who do not get on a bus continue to wait for the
next bus; (iii) unimodal distribution assumption could be
relaxed to consider other different distributions; and (iv) the
elastic demand could be incorporated into the model as it is
possible to lose passengers or attract new users when user
acceptability is considered (i.e., passengers may decide to use
a different mode of travel or forgo their trips). *e authors
recommend that future studies could focus on these issues.

Appendix

A. When ρ > 0, n1i�0,j�0 > 0 always holds in the
optimal equilibrium solution

Proof. It is proven below by contradiction. Consider the case
that n1

i�0,j�0 � 0 in the optimal equilibrium solution. As
q10 > 0, passengers in the first category shift to the neigh-
boring buses. Assume that some of these passengers choose
bus i ∈ Λ/Λ, namely, n1

i≠j,j�0 > 0. Based on equations (14)
and (15), λ1j�0 � p1 + ατ + δi≠j,j�0 + Ci and λ1j�0 ≤p1

+ ατ + C0. Hence, C0 ≥ δi≠j,j�0 + Ci > 0, which means that
Ni�0 > 0.

For the elderly, p2 + ρ + ατ + C0 ≥p2 + ρ+ ατ + δi≠j,j�0 +

Ci >p2 + ατ + δi≠j,j�0 + Ci given that ρ> 0. It signifies that
n2

i�0,j�0 � 0. Based on equation (8), Ni�0 � n1
i�0,j�0 + n2

i�0,j�0 �

0 which yields a contradiction because Ni�0 > 0. □

B. If passengers whose desired bus j � 0 select
bus i≤ − 2 (i.e., n1

i,j�0 + n2
i,j�0 > 0), the equilibrium

generalized travel costs of taking bus
i9 � i, . . . , − 2, − 1 are identical for each
passenger category k (k ∈ 1, 2{ })

Proof. We prove this proposition by contradiction. Sup-
pose that there exist some passengers whose desired bus
j � 0 choose bus i (i≤ − 2), whereas the generalized travel
cost of taking bus i and i + 1 is not the same. Apparently,
the associated cost of bus i is lower than bus i + 1; oth-
erwise, passengers whose desired bus j � 0 would not
select bus i.

First, consider the case that n1
i,j�0 > 0 (k � 1). Based on

equations (14) and (15), we obtain that
λ1j�0 � p1 + ατ + (−i)βh + Ci <p1 + ατ + (−i − 1)βh + Ci+1,
and n1

i+1,j�0 � 0. *en, Ci + βh<Ci+1. For the elderly, p2 +

ατ + (−i)βh + Ci <p2 + ατ + (−i − 1)βh + Ci+1 which means
n2

i+1,j�0 � 0. Based on equation (8), Ni+1 � qi+1, and hence,
bus i + 1 is an uncrowded bus.

Passengers prefer to take their desired bus when it is in
an uncrowded condition, even though the neighboring buses
are empty. *is character can be expressed mathematically
as τg(max

i∈i∈Λ/Λqi)<min(βh, ch), because max
i∈i∈Λ/Λqi

passengers cannot make one bus be crowded if no
other passengers select it. Since Ni+1 � qi+1, Ci+1 � τg

(qi+1)<min(βh, ch)≤ βh which yields a contradiction as
Ci + βh<Ci+1.

*e case of n2
i,j�0 > 0 (k � 2) can be proved in an anal-

ogous way. *e above procedure is implemented recursively
to obtain that the generalized travel cost of taking bus i′ �
i, . . . , −2, −1 is identical. □

C. For passengers whose desired bus is in set
i ∈ Λ/Λ, the assumption that they are always
available to board their desired bus can be
relaxed, with no influence on the objective
value of the lower-level model

Proof. When passengers in set Λ do not shift to bus i in set
i ∈ Λ/Λ (i.e., n1

i,j�0 + n2
i,j�0 � 0), it is intuitive that all the qi

passengers can take their desired bus. In case that n1
i,j�0 +

n2
i,j�0 > 0 and i≤ − 2, we obtain thatCi+1 � βh + Ci according

to Proposition 2. Let mi ≤min(n1
i,j�0 + n2

i,j�0, qi+1). Suppose
that mi passengers whose desired bus is bus 0 while selecting
bus i at equilibrium and mi passengers whose desired bus is
bus i + 1 exchange positions with each other. *is operation
yields no change in terms of Ni and Ni+1 in equation (8), and
hence, the in-vehicle crowding cost term in equation (6) is
also fixed. Meanwhile, due to Ci+1 � βh + Ci, it is easy to
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verify that the generalized travel cost of passengers whose
desired bus is either 0 or i + 1 keeps the same as the original
result at equilibrium. Similarly, passengers whose desired
bus i′ � i + 1, . . . , −2, −1 can take the earlier bus. It fits the
situation in n1

i,j�0 + n2
i,j�0 > 0 and i≥ 2 as well. Even though

partial passengers whose desired bus i′ � 1, 2, . . . , i − 1 select
the later bus, the objective function value of the lower-level
model can be invariant at equilibrium. □

D. Scenario I (q10 − n1
i�0,j�0 > n2

i�0,j�0),
λ1j�0 −p1 � λ2j�0 −p2 and n2i�0,j�0 � 0 hold at
equilibrium given that ρ > 0; Scenario II
(q10 − n1i�0,j�0 ≤ n2

i�0,j�0),λ
1
j�0 −p1 ≥ λ2j�0 −p2 − ρand

i∈Λ/Λn1
i,j�0 � 0 hold at equilibrium given

that ρ > 0

Proof. According to the relation between q10 − n1
i�0,j�0 and

n2
i�0,j�0, we distinguish the following two scenarios.
Scenario I: q10 − n1

i�0,j�0 > n2
i�0,j�0.

We provide a proof of this scenario by contradiction.
Assume that n2

i�0,j�0 > 0 at equilibrium when ρ> 0.
According to Proposition 1, n1

i�0,j�0 > 0. At equilibrium,
λ1j�0 � p1 + ατ + C0 and λ2j�0 � p2 + ρ + ατ + C0. By these
two equations, we obtain p2 � λ2j�0 − λ1j�0 + p1 − ρ.

For an arbitrary bus i ∈ Λ/Λ, equation (19) presents that
λ2j�0 ≤p2 + ατ + δi,j + Ci. Substituting p2, λ2j�0 ≤ (λ2j�0 −

λ1j�0 + p1 − ρ) + ατ + δi,j + Ci, and then λ1j�0 ≤p1 +

ατ + δi,j + Ci − ρ. Due to ρ> 0, λ1j�0 <p1 + ατ + δi,j + Ci. We
obtain that n1

i,j�0 � 0 based on equation (14). It is easy to
verify that n1

i�0,j�0 � q1i�0 at equilibrium. Ci(ρ> 0) �

τg(Ni) � τg(q10 + n2
i�0,j�0)> τg(q10). In contrast, Ci(ρ � 0)

� τg(n1
i�0,j�0 + n2

i�0,j�0)< τg(q10). *erefore, the minimal
generalized travel cost of passenger category k at equilibrium
(denoted by λk

j�0(ρ> 0)) is larger than λ
k

j�0.
Next, based on nk

i,j�0 and λ
k

j�0 when ρ � 0, we devise a
feasible solution for the case of ρ> 0. As
n2

i�0,j�0 ≤ q10 − n1
i�0,j�0 � i∈Λ/Λn

1
i,j�0, let n2

i�0,j�0 elderly pas-
sengers who take bus 0 exchange positions with n2

i�0,j�0 pas-
senger with full-price ticket whose desired bus is bus 0 while
selecting bus i ∈ Λ/Λ. *is operation enables that the objective
function value of model [L2] does not change, and meantime,
the modified solution becomes one feasible equilibrium so-
lution for the case of ρ> 0. We denote by λ

1
j�0(ρ> 0) the

generalized travel cost of passengers with full-price ticket whose
desired bus is bus 0, which equals λ

1
j�0.

We get λ
1
j�0(ρ> 0)< λ1j�0(ρ> 0). *is contradicts with

the fact that λk
j�0(ρ> 0) is the minimal generalized travel cost

of passenger category k at equilibrium. *us, n2i�0,j�0 � 0
holds given that ρ> 0. At the same time, we can easily verify
that the above modified solution is the optimal equilibrium
solution for the case of ρ> 0, and λ1j�0 − p1 � λ2j�0 − p2 holds.

Scenario II: q10 − n1
i�0,j�0 ≤ n2

i�0,j�0.
We also consider a proof by contradiction. First, one

feasible solution is designed for the case of ρ⟶ 0+. As q10 −

n1
i�0,j�0 ≤ n2

i�0,j�0 and q10 � i∈Λn
1
i,j�0, i∈Λ/Λn

1
i,j�0 ≤ n2

i�0,j�0.

Based on nk
i,j�0 and λ

k

j�0, let all the i∈Λ/Λn
1
i,j�0 passengers

with full-price ticket whose desired bus is bus 0 while taking
other buses in set Λ/Λ exchange positions with i∈Λ/Λn

1
i,j�0

elderly passengers who take bus 0. By this operation, the
objective function value of model [L2] and the generalized
travel cost of two passenger categories do not change when
ρ � 0. In the modified solution, n1

i�0,j�0 � q10, n2
i�0,j�0 �

n2
i�0,j�0 − i∈Λ/Λn

1
i,j�0, and λ

k

j�0 � λk

j�0.
Now suppose there exists an arbitrary bus i ∈ Λ/Λ that

n1
i,j�0 > 0. According to Proposition 1, n1

i�0,j�0 > 0. At equi-
librium, λ1j�0 � p1 + ατ + C0 � p1 + ατ + δi,j + Ci, it means
C0 � δi,j + Ci. *en, p2 + ρ + ατ + C0 >p2 + ατ + δi,j + Ci as
ρ> 0. Based on equation (16), n2i�0,j�0 � 0 and
i∈Λ/Λn

2
i,j�0 � q20. Compared with the above modified solution

(i∈Λ/Λn
2
i,j�0 � q20 − n2

i�0,j�0), it is intuitive that the generalized
travel cost of passengers with full-price ticket whose desired bus
is bus 0 while taking bus i is larger than λ

1
j�0 since more elderly

passengers shift to buses in set Λ/Λ. Moreover, passengers
taking bus 0 equals n1

i�0,j�0 which is less than n1
i�0,j�0 + n2

i�0,j�0,
and hence, λ1j�0 < λ

1
j�0. Obviously, bus 0 is a better option for

associated n1
i,j�0 passengers with full-price ticket, which yields

the contradiction. *us, 
i∈Λ/Λn

1
i,j�0 � 0 when ρ> 0.

Based upon Proposition 1 and equation (14), λ1j�0 � p1 +

ατ + C0. Equation (17) indicates that λ2j�0 ≤p1 + ρ + ατ + C0.
Hence, in Scenario II, λ1j�0 − p1 ≥ λ

2
j�0 − p2 − ρ hold at

equilibrium given that ρ> 0. □

E. In Situation 1, as ρ gradually increases, the
shifting sequence is that elderly passengers
forgo taking bus j prior to bus j+ 1
(j, j+ 1 ∈ Λ1), and instead they select bus −ξ − 1
or earlier buses in the equilibrium solution

Proof. It is proven by contradiction. Suppose that there
exists one value of ρ (denoted by ρ) that some elderly
passengers select bus j (j ∈ Λ1/ j − 1 ), whereas none of
elderly passengers are willing to take bus j + 1. Mathe-
matically, we have 

j

j′�j
n2

j,j′ > 0 and 
j

j′�j+1 n2
j+1,j′ � 0.

Based on Remark 1, the optimal solution is not unique
with respect to n. Since 

j

j′�j
n2

j,j′ > 0, it is easy to verify that
one optimal solution n exists which satisfies n2

j,j > 0. With

equation (16) and Table 3, λ
2
j � p2 + ατ + δ

−ξ−1,j
+ C

−ξ−1 �

p2 + ρ + ατ + Cj holds. Meanwhile, elderly passengers shift
from bus j + 1 to bus −ξ − 1 or earlier buses because of the
higher generalized travel cost. Namely, n2

j+1,j+1 � 0 and

λ2j+1 � p2 + ατ + δ
−ξ−1,j+1 + C

−ξ−1 <p2 + ρ + ατ + Cj+1.*en,
we obtain Cj + βh<Cj+1.

For passengers whose desired bus is bus j′ ∈ j + 1,

j + 2, . . . , j}, p1 + ατ + δj+1,j′ + Cj+1 > , p1 + ατ + δj,j′ + Cj,
and p2 + ρ + ατ + δj+1,j′ + Cj+1 > p2 + ρ + ατ + δj,j′ + Cj

given that Cj + βh<Cj+1. It means that n1
j+1,j′ � 0 and

n2
j+1,j′ � 0 hold. Hence, Nj+1 � 

2
k�1 

j

j′�j+1 nk
j+1,j′ � 0 which

yields a contradiction because Nj+1 > 0.
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As can be seen, elderly passengers firstly forgo taking bus
−ξ and then bus −ξ + 1, ..., j − 1 in sequence in set Λ1 with
the continuous increase of ρ. □
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