
Research Article
Shared Mobility for Transport and Its Environmental Impact
VeSIPreS: A Vehicular Soft Integrity Preservation Scheme for
Shared Mobility

Valaenthin Tratter ,1,2 Mudassar Aslam ,1,3 and Shahid Raza 1

1RISE Cybersecurity, Stockholm, Sweden
2Department of Electrical and Computer Engineering, Technical University of Munich (TUM), Munich, Germany
3Department of Cybersecurity, National University of Emerging Sciences (FAST NUCES), Islamabad, Pakistan

Correspondence should be addressed to Valaenthin Tratter; valaenthin.tratter@tum.de

Received 19 February 2021; Accepted 31 May 2021; Published 23 June 2021

Academic Editor: Qi-zhou Hu

Copyright © 2021 Valaenthin Tratter et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Car manufacturers are noticing and encouraging a trend away from individual mobility, where a vehicle is owned and driven by
one or only a few other persons, and towards shared-mobility concepts.*at means that many different people use and have access
to the same vehicle. An attacker disguised as a regular short-time user can use the additional attack vectors (s)he gets by having
physical access to tamper the vehicle’s software. *e software takes a continuously more crucial role in cars for autonomous
driving, and manipulations can have catastrophic consequences for the persons on board. Currently, there is no mechanism
available to the vehicle owner to detect such manipulations in the vehicle done by the attacker (short-time user). In this work, a
novel vehicle attestation scheme called Vehicular Soft Integrity Preservation Scheme (VeSIPreS) is proposed to detect tampering
in the software stack of a vehicle and guarantee the upcoming driver that the previous user has not changed the software of the
vehicle. *e solution consists of a software module in the vehicle and a mobile-based user application for the vehicle owner to
monitor the vehicle’s soft integrity. Inside the vehicle, the software module is implemented in the central gateway, which acts as
the primary security component. VeSIPreS uses Trusted Platform Module (TPM) in the central gateway, which anchors trust in
our proposed solution. *is paper also provides a proof-of-concept implementation with a TPM, demonstrating its application
and deployment feasibility and presentig a security analysis to show the security of VeSIPreS.

1. Introduction

Safety in vehicles has always been an essential aspect of
automotive development; however, vehicles have changed a
lot since their invention in the 19th century. *e first in-
troduction of an electronic control unit (ECU) in 1975 by
Ford started the process of automating functions in the
vehicle to make existing systems more efficient and add new
features. *e introduction of safety features such as antilock
braking system (ABS) or electronic stability control (ESC)
were essential milestones in car history and were only made
possible by introducing ECUs. With the continuous intro-
duction of electronic components in the vehicle, securing
these components got increasingly more important and

hence the vehicular security became an important re-
quirement in the automotive development. Future trends in
automotive industry include autonomous driving of the
vehicles and shared use models for the cars. All of these
trends will add further electrical components, interfaces, and
software in the vehicle.

*e trend towards shared mobility will significantly
change travelling in the future [1]. A vehicle is thereby
used by many persons who are not always trusted and can
be potential attackers. *ey can use the extended access
they gain for manipulations on the software that harm
upcoming drivers. *e same is true for increasingly
connected and autonomous cars, which provide more
interfaces that can be used as attack vectors. An increase in

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 5569331, 18 pages
https://doi.org/10.1155/2021/5569331

mailto:valaenthin.tratter@tum.de
https://orcid.org/0000-0001-5290-4552
https://orcid.org/0000-0003-3223-4234
https://orcid.org/0000-0001-8192-0893
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5569331


attack vectors also increases the probability of malicious
software manipulations. At the same time, it gets always
more crucial to secure the software due to the ever-in-
creasing tasks and corresponding functional safety re-
sponsibility. *is paper proposes a scheme that allows
detecting such scenarios (VeSIPreS).

1.1.Use-CaseScenario. *is paper targets applications such
as car-sharing, rental cars, or company fleets, where many
people have physical access to a vehicle. A car-sharing (a
list of some major commercial car-sharing providers
includes http://www.zipcar.com, http://www.share-now.
com, or http://www.sunfleet.com) or rental car company
(a list of some well-established rental car companies in-
cludes http://www.europcar.com, http://www.sixt.com or
http://www.hertz.com) has a high number of different
users that use vehicles from it. Since they can never trust a
client that he is not manipulating anything in the car and
at the same time must guarantee that the vehicle is intact
for the next user, they need a mechanism to check the
software in a car for eventual changes quickly and reliably.
*e considered threat scenario is that an attacker rents a
vehicle from the rental company. He then installs mod-
ified software on one of the controllers (ECU or Gateway)
in the car intending to compromise the security of an
upcoming driver or the vehicle itself. He returns the
vehicle to the rental company who cannot detect the
modification and hence rents it out again to the next user.
*e manipulation can then harm this user by either
compromising the privacy or functional safety of the
vehicle. A demonstration of the workflow sequence is
shown in Figure 1.

1.2. Major Contribution. TPM chips are already well-estab-
lished cryptographic coprocessors used in desktop computers,
servers, and smartphones. *ese chips allow to attest a system
and bring the concept of a trusted platform to it. Vehicles are
evolving towards “smartphones with wheels” where it is essential
always to assure the system’s safety. *ere is not yet much
research done on how the benefits of a TPM can be used for the
special needs and circumstances in a vehicle. Most research
focuses on securing the remote update capability of the vehicle.

In this paper, we study potential application fields of TPM
2.0 security modules in an automotive environment. Based on
the attestation capabilities offered by TPM chips, we propose a
protocol which allows the user to attest a vehicle for possible
software manipulations. We believe to the best of our
knowledge that the proposed idea of VeSIPreS is not presented
before. Main contributions in this paper are the following:

(i) Present a novel approach using TPM capabilities to
preserve the soft integrity of the modern vehicles

(ii) Provide a proof-of-concept implementation to
present application potential of TPM in state-of-
the-art and future vehicles

(iii) Allow shared vehicle user to detect any software
manipulations in the vehicle (VeSIPreS) by the
previous user

(iv) Implement a proof-of-concept prototype of the
VeSIPreS scheme which includes a vehicle simu-
lator representing the vehicle internals and a mobile
user application

(v) Perform a detailed security analysis of the proposed
scheme (VeSIPreS) to show its security

*e rest of the paper is organised as follows: Section 2
gives an overview of the state of the art in the field of vehicle
tampering, system health attestation, and remote firmware
update, so-called over-the-air (OTA) update. *e addressed
problem is presented in Section 3 by describing a typical use-
case scenario (Section 5). A detailed description of the
proposed solution, the VeSIPreS protocol, is given in Section
6. We evaluate the feasibility of the proposed solution,
followed by a proof of concept presented in Section 7. Fi-
nally, the solution is analysed from security perspective in
Section 8; and we conclude the paper with an outlook to
possible future extensions in Section 9.

2. Related Work

*e automotive industry faces the trend towards continuously
more connected and automated vehicles and self-driving cars.
With the introduction of more complex computers, interfaces,
and other in-vehicle systems, the potential attack surface also
widens up for vehicles. In [2–4], classifications and examples
of possible attack scenarios are given and illustrate the broad
variety of such attacks.*e following sections give an overview
of famous attacks on vehicles from the past and illustrate some
modern automotive technology’s vulnerabilities and describe
state-of-the-art prevention attempts for such attacks. An
important countermeasure for such attacks is the capability to
modify the software and fix potential weaknesses quickly.
*erefore, over-the-air updating is needed. Furthermore, this
paper will give an overview of the field of remote attestation, a
crucial component of VeSIPreS.

2.1. Vehicle Tampering. Koscher et al. [5] showed experi-
mentally what hackers could do after they infiltrated the ve-
hicle at a particular entry point. *is marked a transition from
theoretical research contributions towards a practical dem-
onstration of the vulnerabilities of the cars. According to their
experiment, the insertion of messages on the Controller Area
Network (CAN) bus can perform physical changes to a car and
affect the functional safety of it. Original equipment manu-
facturers (OEMs) such as Toyota appease the problem, arguing
that physical access is needed to perform such attacks and an
attacker would have in such a case easier ways of tampering the
car, such as manipulating the break wires [6]. OEMs focused
on the past more on fixing remote attack threats on vehicles
electronic systems rather than on physical attacks. Checkoway
et al. extended their research and released in [7] an exploi-
tation of vulnerabilities in the infotainment system. *is ex-
ploit allowed them by using the remote interfaces (Bluetooth
and telematics unit) to inject arbitrary commands (CAN
frames) into the vehicle network. *at means that the attacks
which were only possible through physical access to the car
were now also made executable remotely.

2 Journal of Advanced Transportation

http://www.zipcar.com
http://www.share-now.com
http://www.share-now.com
http://www.sunfleet.com
http://www.europcar.com
http://www.sixt.com
http://www.hertz.com


In 2014, Miller and Valasek [8] surveyed different car
models and their attack surface. *ey looked at the internal
network architecture of different vehicles and discussed
possible attack vectors and found several security threats.
*ey identified several reasons that lead to the found attack
surface: the increase of ECUs in a typical car from around 10
in 2010 to 100 in 2014, the implementation of more complex
features with tools that are already known to attackers from
desktop PCs, and a large variety of different architectural
approaches. Such surveys were also performed by other
groups and showed a wide variety of different attack vectors
[2, 4]. Miller and Valasek in 2015 [9] used a series of exploits
in the communication interface of a 2014 Jeep Cherokee’s
infotainment system to enter and take over the control of the
car remotely by using a cellular network. *e access to the
infotainment system allowed them to change infotainment-
related settings such as the volume or the view of the in-
fotainment display, but also to get car information like the
current location of the vehicle. *ere is a separated proxy
chip in the infotainment system of the Jeep which accesses
the two CAN buses of the car. *is proxy can be compared
with the gateway in the considered scenario of this paper.
Since the proxy was not adequately protected, the re-
searchers were able to install manipulated software on the
proxy chip which allowed them to send arbitrary CAN
messages to the vehicle. With access to the CAN bus, they
could affect the functional safety of a car by sending
commands which perform physical changes to essential car
components (e.g., in the breaks, steering, engine control, and
airbags). Chrysler reacted to this exploitation and conse-
quently recalled 1.4 million vehicles [10].

A recent attack found by L. Wouters used a vulnera-
bility in the key fob to remotely unlock and start a Tesla
Model X. He was able to rewrite via Bluetooth the firmware

on the key fob of the car and lift an unlock code that
allowed him to access the car. In the car, he used other
vulnerabilities to start the vehicle and drive away with it
[11]. Tesla faced already some other attacks in the past, for
example, a vulnerability in the infotainment system that
allowed remote access to the car [12], but similar attacks
can be found on many highly connected cars (e.g., BMW
[13]). Other prominent attacks often target the central
locking system to access the car [14, 15].

2.2. Vehicle Health Assurance. In [16], the implementation
process and benefits of using TPM in a vehicle are discussed.
*e trusted computing group (TCG) released a particular
TPM profile for vehicles, namely, the Automotive *in
Profile. Volkswagen is the first OEM that publicly an-
nounced the use of an automotive TPM from Infineon in
their vehicles [17]. *ey use the TPM to protect the external
interfaces and check the identity of the exchanged data. *e
TPM manages the cryptographic keys needed to ensure
secure communication and can be used to propose features
such as car-sharing, managing access rights, vehicle to ve-
hicle communications, and over-the-air updating.

An approach to prevent attackers from accessing the
diagnosis functionalities of the car is shown by Kleberger
and Olovsson in [18]. Access to this functionality would
allow the attacker to install malicious software on the
vehicle. According to the paper, the diagnosis interface in
modern cars is often only secured through authentication.
However, when the equipment gets lost, an attacker can
manipulate potentially any vehicle that uses this key.
Kleberger and Olovsson secure the authentication by in-
troducing a trusted third party which issues authorisation
tickets. Authorisation tickets allow vehicles to validate

Owner

Owner

Owner

Before usage
Attestation of integrity

Request
status

Status
attestation

Request
status

Request
status

Status
attestation

Status
attestation

Normal vehicle usage A�er usage

A�er usage

Integrity can be attested

Tampering and attacker identified
Attacker installs malicious

software

Figure 1: Considered scenario with normal usage on the car and an attacker which installs malicious software. *e software manipulation
can be detected afterwards by using VeSIPreS.

Journal of Advanced Transportation 3



diagnostic requests. Together with the corresponding
authorisation protocol and access control mechanisms, this
can prevent such attacks. By implementing an author-
isation method, they achieved authentication, message
integrity of diagnostics sessions, filtering of specific diag-
nostics messages, and support encryption of diagnostics
sessions. However, they have no possibility to check the
integrity of the vehicle with this method. If an attacker is
still able to tamper the software, he could potentially also
disable this functionality. Besides the security of the in-
dividual ECUs, also network security is essential. For the
widely used CAN bus, Kornaros et al. proposed in [19] a
comprehensive security concept including encryption of
the traffic on the bus to prevent attacks on the bus system
such as man-in-the-middle attacks.

2.3. Over-the-Air Update. With vehicles that transform
themselves into smartphones with wheels due to their highly
complex software, it is impossible to guarantee at
manufacturing time that the software is adequately protected
against all present and future security threats. To react to
software bugs and new security threads, the possibility to
update the system is essential. *e current approach of
physical updating vehicles via a diagnosis device in a repair
shop gets thereby quickly unpractical. It takes months to
complete the update of a full fleet and is very costly. To avoid
massive recalls for software update in the future, many
OEMs want to implement OTA updates into their vehicles.
Recalls are costly for car manufacturers and cause a security
issue due to the delay between the discovery of the issue and
the fixing of it. Beside enormous cost savings for the vehicle
manufacturer, it also reduces the turnover time and en-
hances the security as bugs can be patched relatively quickly
with updates [20]. An additional benefit is the possibility to
add other software features after sale. In modern cars exist
already, the possibility to update noncritical parts such as the
navigation maps or infotainment system of vehicles via OTA
updates. A drawback of full OTA update is that it is nec-
essary to connect all ECUs among each other for updating
via remote links, which opens new potential security threats.
Attacks in the past were made possible by changing or
modifying the software on crucial components (Tesla key fob
[11]). Advantages are lower cost, improved safety, improved
customer satisfaction, frequent updates, and increased value.
Halder et al. compared in [20] different methods on how to
implement secure OTA software updates in connected ve-
hicles. *e different possibilities vary mainly in the en-
cryption and assurance technique of the update packet.

In [21], Idrees et al. proposed a protocol using trusted
hardware for OTA updates. *ey propose an on-board
security architecture to facilitate the update process by using
security chips such as hardware security modules (HSMs) or
TPMs, which also act as a root of trust. Depending on the
type of host-platform, different security stages are consid-
ered. *is motivates the implementation of a TPM in the car
to assure the update process.

*ere are other protocols specified for firmware update
[22, 23]; however, they only focus on a secure firmware

reception without addressing remote attestation. All these
solutions only protect though the access to install new
malicious software. If an attacker is somehow still able to
manipulate the software, they provide no mechanism to
detect such changes. In [24], the authors developed a dis-
tributed remote update system for OTA updating vehicles.
Howden et al. [23] analysed some elements which are to
consider implementing automotive OTA updating.

2.4. Remote Attestation. *e main goal of an attestation
process is to decide whether the entity that is attested is
trustworthy or not. Attesting the status is needed in many
different applications, e.g., in the assessment of nodes in a
network to assure that they are not compromising the net-
work. *e Internet Engineering Task Force (IETF) is working
on Remote Attestation Procedures (RATS), a standardisation
of remote attestation [25]. *ey propose different approaches
for different applications, among others also automotive.

In principle, an attestation architecture works as follows:
the attester (the entity that must be appraised) creates ev-
idence which is sent to the verifier (the entity that appraises).
*is evidence is then processed by the verifier considering
any endorsements and policies to get an attestation result.
*is result is then forwarded to the relying party which
evaluates that result and decides how to interpret it. *e
verifier and relying party can be the same entity (see Figure 2
for a remote attestation schematic). *e actual imple-
mentation of this principle scheme depends in detail on the
real use case.*e actual remote attestation protocol differs in
the implementation from this model, depending on the
specific design specifications, and can be further extended.

*ere are two main types of environments of an attester.
*e layered attestation procedure is a concept which can, for
example, be found in a staged boot sequence. *e first
attesting environment delegates its tasks to the next attesting
environment. *is next one then measures once again the
upcoming measurement of its upcoming environment. It is
necessary to assure that the first environment is trusted and
cannot alter, and all other environments cannot alter their
own measurements.

A composite device is, on the other hand, an entity
consisting of several subentities. To determine the trust-
worthiness of the entire device, the trustworthiness of every
single component must be tested. *e evidence of the single
subentities is then collected by a lead attester that generates
the evidence for the composite device.

RATS further proposes different topologies, namely, the
Passport Model and the Background-Check model. In the
Passport Model, the attester sends the evidence to the verifier
who then creates the attestation result and sends that back to
the attester. A relying party can then request the attestation
result and decide whether it is trustworthy or not. In the
Background-Check Model, the evidence is sent from the
attester to the relying party, which forwards it to the verifier.
*e verifier creates the attestation result that is then sent to
the relying party. *ere are also combinations of the two
models possible, depending on the use case. A requirement
for both models is that the verifier must be trusted.

4 Journal of Advanced Transportation



*e originality of the data/evidence is assured using two
methods. First, a random number, usually referred to as
nonce, is generated by the remote entity. *e nonce is in-
cluded in the signed response from the attester. *e remote
entity can then verify if the right nonce is included in the
signature. Since the nonce is always different, there is no
possibility to replay or alter a message. *e second approach
uses synchronised clocks in both the remote entity and the
attester.*e timestamp can then be included in the response.
*is, however, needs accurate clocks which must be trusted
and are not suited for this work.

Table 1 gives an overview of the most relevant papers in
that field. As we see in the research and the attacks, there is a
big strive to secure the software of the cars against unwanted
changes.*ere is however no possibility for the user to check
at any moment the status of the software in the car. *e
upcoming sections will then explain the approach and
evaluate VeSIPreS in detail.

3. Use-Case Scenario

VeSIPreS considers the scenarios where a vehicle is used by
multiple users who have full access to a vehicle. Such a
scenario defines our attacker who could be an insider, as an
employee for a closed vehicle pool, or an outsider, like a
customer of a rental car company. Such an attacker can install
malicious software on the vehicle without other users noticing
the change. Few possible scenarios include the following:

(i) An attacker can rent a car from a rental car or a
leasing company. When the vehicle is returned, an
agent will check the status of the vehicle but has only
limited possibility to check the software of the car
and software manipulations will be invisible to the
agent.

(ii) *e same is valid for car-sharing, which can be
compared with the conventional rental car model.
In a public, free-floating car-sharing system, a
registered user can spontaneously rent a car and
return it anywhere inside the business area. *ere is
typically no agent who checks the car after return, so
the probability of success is even higher in this
scenario.

(iii) Transport companies with bus or truck fleets. An
insider is the attacker and installs the malicious
software while he has access to the vehicle.

(iv) Individual vehicle owners who rent their vehicles
out to an untrustworthy party. A possible scenario

can be a private person who gives its car to a repair
shop or a valet parking service. Also, if a car is
rented out to a friend, there is never certainty on
whether he manipulated the software during his
usage period.

In these scenarios, the vehicle operator needs a possi-
bility to check if the software in the car is still as intended.
Checking must be done before and after the vehicle user uses
it, so it can be assured that the software is safe before he starts
the use. An attestation protocol is optionally sent to the user
such that he can trust the software running on the vehicle.
After the usage, a software check attests that the user has not
manipulated the vehicle during his usage. *e software
checks are performed by using a smartphone application
which can take a measurement of the vehicle and aims at
finding changes in the software stack of the vehicle. *e
measurement capture can be initiated either by the user or
an agent of the vehicle company.

4. Attack Surfaces

A modern vehicle has a relatively large attack surface due to
all its sensors and interfaces. *e individual attack vectors
can be divided into physical and remote attack vectors. We
consider a strong attacker model by focusing on physical
attack vectors where an attacker has full access to the vehicle.
While an attacker with only access to remote attack vectors
cannot use physical attack, an attacker with physical access
can use both at the same time which increases the attacking
chances. Physical attack vectors are in addition typically not
as well protected as remote vectors are.

4.1. Remote Attack Vectors. Remote attack vectors are not
only accessible by the user inside the vehicle but also from an
attacker without physical access to the car. Such vectors
include vehicle-to-everything (V2X) communications, Wi-
Fi, and Bluetooth (if accessible from outside the car), cellular
communication, satellite navigation system, radio key fobs,
and remote sensors such as tire pressure measuring systems.
Vehicle manufacturers are well-aware of these interfaces and
protect them accordingly against attacks. However, studies
such as [7] show that there is still attacking potential, which
is demonstrated in attacks such as [9].

4.2. Physical Attack Vectors. *e physical attack surface
includes all attack vectors that are accessible by persons
inside the vehicle. *e attacker has full access and can

Attester
must be appraised

Endorsements
Appraisal 

policy

Evidence Verifier
decides whether to

trust or not

Attestation
result Relying party

Figure 2: General remote attestation procedure as defined in [25].

Journal of Advanced Transportation 5



connect to existing ports in the vehicle or strip down control
units or networks to tamper the components. Inside the
vehicle, he can access the on-board diagnostics (OBD-II)
port that is intended for maintenance purposes. With a
simple aftermarket OBD-II-dongle, he can access to this
interface.

*e infotainment is a crucial component in the inter-
action between the driver of the car and the vehicle. Besides a
screen and interaction interfaces (keypad, buttons, and
touchscreen) to communicate with the driver, it offers in-
terfaces to connect user devices, such as Bluetooth or Wi-Fi,
and has other interfaces such as a USB or CD drive that can
be used for inserting malicious software to the system.
Besides interfaces that are foreseen to be used by the user, an
attacker can also strip down the internal networks or use the
debugging ports in the ECUs itself. All these attack vectors
can be accessed without manipulating the vehicle. For those
attack vectors, it may be needed to remove some cover, but
no modification of the essential components is required.*e
fact that no modification on the hardware is necessary
distinguishes the attack surface from physical tampering,
which is not in the scope of this paper.

5. Attack Model

Vehicles are equipped in each model iteration with more
complex and sophisticated computers and interfaces. *ese
include remote interfaces for a remote key fob or the remote
tire pressure sensors and interfaces for the infotainment
system such as Bluetooth orWi-Fi. Furthermore, they can be
equipped with interfaces to communicate with other vehicles
(V2V) or infrastructures such as road signs (V2I), sum-
marised in V2X. *is process is mainly driven by current
trends in the automotive industry which continuously re-
quire more computing power and interfaces with the outer
world. Trends include the electrification of the drive train,
sophisticated driver aiding systems, more comfort features,
communication with other vehicles and infrastructure,

monitoring of engine parameters, and more. *ese new
developments often come with more ECUs which control
specific functions. Since these driving computers control
safety-related functions such as the brakes or steering, it is
inevitable to be sure that these computers that are needed for
the functional safety of the vehicle are not manipulated.
According to Petri et al. in [16], potential motivations for an
attacker can be as follows:

(i) *e manipulation of the firmware to compromise
the operational safety

(ii) *eft of intellectual property, such as source code
or parameters (encoded within firmware)

(iii) *eft of privacy-related data (e.g., navigation des-
tinations, driving behaviour, and address books)

(iv) Manipulation of odometers
(v) Illegal feature activation (i.e., activating software

and hardware features without payment)
(vi) Chip tuning, firmware manipulation (with safety-

critical impact), and firmware downgrade (as a
possible intermediate step for an attack)

(vii) Product counterfeiting and used part
refurbishment

5.1. Vehicle Rental Companies Attack Scenario. *is section
explains the proposed attack based on the scenario of a rental
car company. It can, however, also be ported on other
scenarios where different persons use a shared vehicle.

In the proposed attack, an agent from a rental car
company rents out the vehicle to an attacker. *e attacker
has now full access to the vehicle and installs malicious
software on at least one ECU in the vehicle which is intended
to harm the upcoming user of that car. Afterwards he returns
the vehicle again to the rental company. *e agent cannot
identify the manipulation of the software, and so the vehicle
gets rented out to the next user (see Figure 3). *e

Table 1: Overview of the relevant research literature in the field of trusted automotive, diagnosis, and over-the-air update.

Author Title Year Automotive TPM Topic
Muhammad Sabir Idrees, Hendrik
Schweppe, Yves Roudier et al.

Secure automotive on-board protocols: a case of over-
the-air firmware updates [21] 2011 Yes No OTA

update
Richard Petri, Markus Springer, Daniel
Zelle et al.

Evaluation of lightweight TPMs for automotive
software updates over the air [16] 2016 Yes Yes OTA

update
Yunshui Zhou, Xinkai Wu, Pengcheng
Wang

Secure software updates for intelligent connected
vehicles [24] 2019 Yes No OTA

update

Pierre Kleberger, Tomas Olovsson Protecting vehicles against unauthorised diagnostics
sessions using trusted third parties [18] 2013 Yes No Diagnosis

Pierre Kleberger, Tomas Olovsson Securing vehicle diagnostics in repair shops [26] 2014 Yes No Diagnosis
Ahmad MK. Nasser Securing safety-critical automotive systems [27] 2019 Yes Yes General

Geunhyoung Kim, Im Y. Jung Integrity assurance of OTA software update in smart
vehicles [28] 2019 Yes No OTA

update
Andreas Fuchs, Christoph Krauß, Jürgen
Repp

Advanced remote firmware upgrades using TPM 2.0
[22] 2016 No Yes OTA

update
George Kornaros, Dimitris Bakoyiannis,
Othon Tomoutzoglou et al.

TrustNet: ensuring normal-world and trusted-world
CAN-bus networking [19] 2019 Yes No General

James Howden, Leandros Maglaras,
Mohamed Amine Ferrag

*e security aspects of automotive over-the-air
updates [23] 2020 Yes Yes OTA

update

6 Journal of Advanced Transportation



manipulation can compromise the privacy or functional
safety of the vehicle. Compromising the privacy of the driver
includes attacks such as tracking of the vehicle, reading the
address information of the connected phone, sending ve-
hicle status updates, and more. Compromising the func-
tional safety targets to harm the vehicle or driver. Unlike
physical tampering, for example, cutting a brake wire, to
harm a person, software manipulation is much more in-
sidious and effective.*ere is no feasible possibility for a user
to detect manipulation in the software stack with state-of-
the-art methods and even more difficult to trace the attack
back to identify the attacker. For example, instead of cutting
a brake wire, the attacker can install in the break controller
modified software with the condition that disables critical
drive functions. *ese actions will lead to an attacker pro-
voked accident and harm the driver.

*e attacker uses for his attack the full physical access of
the vehicle which he has during his rental period. Physical
access is beneficial for the attacker since he can use the
intended interface to install updates on the car, on most
modern vehicles via the OBD-II port. *e OBD-II port is a
standardised interface that is mandatory for cars with a
combustion engine to read engine parameters for diagnosis
purposes on a test bench. Most car manufacturers use this
interface for diagnosis and updating of vehicle’s parameter.

Today’s vehicles have no mechanism to detect or avoid
such a scenario. ECUs and the gateway that links the dif-
ferent networks and interfaces are often not cryptographi-
cally protected against intrusions.*at means that the stated
attack would be successful. *is shows how crucial it is to
both secure the electronics against manipulation and in-
troduce a mechanism to detect such attacks and
manipulations.

6. Vehicular Soft Integrity Preservation
Scheme (VeSIPreS)

To counter the presented attack, the ability of performing an
integrity check on all software running in the car is required.
*e proposed solution is called VeSIPreS, an acronym for
Vehicular Soft Integrity Preservation Scheme. VeSIPreS

nominates a comprehensive system consisting of software in
the central gateway and ECUs in the car and an application
installed on the smartphone of the vehicle owner. With it,
the owner can perform a software check by measuring the
entire software stack of the vehicle before it gets rented out.
After the usage by an untrusted person, or whenever he
wants to check the status of the car, the owner takes a second
measurement of the whole software stacks and compares
that one with the stored first measurement. If both mea-
surements are still the same, which corresponds to no
changes in the software, it can be guaranteed that the
previous user has not made any changes to the software. If,
however, an attacker installs malicious software on one or
more ECUs in the vehicle, the measurement that is taken
after he returned the car will no longer match with the first
measurement. In that case, the attack will be detected, and
the attacker can be identified. Measurements can easily be
performed by the owner using the VeSIPreS client app on his
smartphone. *e app connects to the vehicle and initiates a
measurement, stores it, and compares two measurements
with each other. Furthermore, the app can create a report
which is shared with the user who rents the car.

*e user app connects through a secured channel with
the gateway in the car. *e gateway is equipped with a TPM
and processes all commands. As depicted in Figure 4, the
attacker must follow this path through the gateway for an
attack (otherwise, physical modification, e.g., of the wiring is
needed, can be prevented by security stage SM and SH, see
Section 6.3 for more details). *e following sections will
describe the individual components and steps of VeSIPreS in
detail.

6.1. First Initialisation. *e gateway and, depending on their
security level, other ECUs are equipped with a TPM that
needs to be initialised.*e carmanufacturer does this during
the assembly of the car. All used notations in this paper are
explained in detail in Table 2.

6.1.1. TPM Hierarchies. A TPM comes with four different
hierarchies for cryptographic key management. *e first
hierarchy is used exclusively by the chip manufacturer and is
not intended and suited for hosting the needed keys on it.
*e second hierarchy is reserved for the platform manu-
facturer, and the third and fourth hierarchy stages are re-
served for the user. *e main difference between the third
and fourth hierarchy stage is that the third one is persistent,
while the fourth one changes with every power cycle.
*erefore, the fourth one is intended for temporary cryp-
tographic operations and not suited for VeSIPreS. *e keys
needed for the proposed solution must either be created on
the second or third hierarchy stages (platform or owner
hierarchy). *e actual choice of the hierarchy depends on
how VeSIPreS is implemented and sold as a product. In the
further course of this work, the second hierarchy (platform
hierarchy) is used for the cryptographic keys of VeSIPreS.
*is second hierarchy stage is reserved for the platform
manufacturer, which is in this case, the vehicle manufac-
turer. *e vehicle manufacturer is the only one who can

1. 2.

3. 4.

�e vehicle is rented out by a
rental company to the attacker.

�e attacker installs malicious
so�ware on the vehicle.

�e vehicle is returned to the
rental company without 

noticing the manipulation.
�e manipulated vehicle is 
rented out to the next user.

Figure 3: Possible attack scenario to manipulate a vehicle to harm
an upcoming user of the vehicle.

Journal of Advanced Transportation 7



configure this hierarchy stage which guarantees the same
cryptographic keys over the entire lifetime of the vehicle.*e
third hierarchy stage can then be used for user or owner
specific tasks and can change with every transfer of own-
ership of the vehicle.

6.1.2. Gateway Initialisation. For the initialisation of the
gateway, first, the authenticity of the TPM in the gateway
must be checked. *e TPM chip contains a certificate which
is signed by the chip manufacturer who loaded it during
manufacturing time persistently on the chip.*ismeans that

the certificate cannot be modified nor replaced by a potential
attacker once loaded in the TPM. *e vehicle manufacturer
downloads the certificate from the TPM and checks the
signature by using the public certificate of the chip manu-
facturer. After the vehicle manufacturer assured that the
TPM is genuine, he can attest the vehicle using the TPM as
the root of trust. *e vehicle manufacturer, therefore, sets a
key in the platform hierarchy stage and creates a certificate of
the vehicle using that key and its private key. *e certificate
is then persistently loaded in the TPM.*e public part of the
certificate must be public such that the user app can later
load the certificate from the TPM and verify the signature

TPM

MCU

...

OBD-II

Infotainment
system

Instrument
cluster

Central gateway

Interfaces

CAN, LIN, MOST,
FlexRay

Drivetrain
controller

Break
controller

Engine
controller

Telematics
control unit

OBD-II
interface

Wi-Fi, cellular,
Bluetooth

The owner can verify the status of
the vehicle with an app.

The attacker installs malicious
software.

Figure 4: In-vehicle network architecture with the attack path of the attacker and the communication path for VeSIPreS.

Table 2: Notations used in VeSIPreS.

Notation Description Provider
S0, S1, S2 Security stages of the ECUs (see Section 6.3).
NGW Nonce to quote gateway PCR. Client app
NEn Nonce to quote ECUn PCR. Gateway

GWK(GWKP,GWKS)

Gateway signing key. Used to sign messages from gateway to user app. GWKP is the public
key, which is used to validate the signature, GWKS is the private part of the key which is only

accessible to the TPM in the gateway.
Gateway

EnK(EnKP, EnKS)

ECUn signing key. Used to sign messages from ECUn to gateway. EnKP is the public key,
which is used to validate the signature, EnKS is the private part of the key which is only

accessible to the TPM or HSM in ECUn.
ECUn

Report Measurement report containing the status of the system and the measurements of the boot
stages (if measured boot is performed, only SH and gateway).

Gateway,
ECUn

Platform configuration register
(PCR)

Platform configuration registers. Special registers in TPM which represent the running
software.

Gateway,
ECUn

8 Journal of Advanced Transportation



using the certificate of the car manufacturer. If the signature
is valid, the user can be sure that the car is genuine and was
manufactured by the owner of the certificate (vehicle
manufacturer).

6.1.3. ECU Initialisation. Depending on their security level,
some ECUs are equipped with a cryptographic copro-
cessor. Depending on which type of coprocessor, they can
be categorised in either stage SM or SH (HSM or TPM in
general (see Section 6.3). Both stages allow secure com-
munication among the ECUs when equipped. Stage SH
enables furthermore to perform a measured boot. In the
initialisation phase, a signing key is created, which is then
later used for the communication between the ECU and the
gateway. *e same as for the gateway, the first step is to
verify the authenticity of the chip by checking the certif-
icate of it with the public certificate from the chip man-
ufacturer. *en, the actual signing key EnK for ECUn is
created in the HSM or TPM of the ECU.*e gateway needs
an exact list of all ECUs in the vehicle and of the security
level that they have. *e list contains also the public keys
EnKP of all ECUs stored in the gateway. *e keys are
needed so the gateway can request a report from all ECUs
and verify them if they are signed.

6.2. Gateway. *e gateway is a particular ECU in the car
which acts as the central interface between the internal
network of the vehicle and the connections to the outer
world. It connects the different networks and domains in the
car among each other. Typically, it is the gateway where the
OBD-II interface is connected. *is interface is used to
update the software of the ECUs locally by using a diagnostic
tool. *e second method to update the vehicle is via over-
the-air updates. In that case, the car is connected via a
telematics unit to the Internet. *e telematics unit is itself
connected to the gateway to distribute the data in the vehicle
and send relevant information in the other direction from
the car to the telematics unit. Although the concrete ar-
chitecture of the ECUs can vary from vehicle to vehicle, the
proposed concepts are still valid. *e tasks of the gateway
can be taken by another ECU, depending on the concrete
vehicle architecture. However, it is necessary to choose a
central, dedicated ECU which bridges all different networks
in the vehicle.

*e gateway is equipped with a TPM that acts as a
hardware root of trust for the vehicle.*e TPM serves for the
measured boot and afterwards the attestation of the car. A
measured boot is always performed after a power cycle of the
gateway. During that process, each boot stage of the gateway
will measure the upcoming boot stage. *e measurement is
then noted in a boot log file and reported to a PCR in the
TPM. After that, the execution is passed to the next stage in
the boot sequence. *e first executed stage in the processor,
the core root of trust measurement (CRTM), has well-
known software which is certified by the manufacturer.
Measured boot assures that the TPM contains, after the
measurement, a digest which represents the complete booted
software of the gateway. If the software in the boot chain

does not change, the resulting digest will also be same. For
verification, this measurement is sent to the user application,
which compares it with a reference value and assures that the
gateway runs the intended trusted software.

After the operating system in the gateway is booted, the
restricted RSA signing key is created. For a PCR quote, the
processor sends a nonce (random number) to the TPM
which signs the requested TPMs values together with the
nonce in one answer. *is is used to securely transmit the
values of the PCR registers to the user application. When the
gateway starts, the signing key is generated for the attes-
tation, using a persistent seed and constant template. Every
time this procedure is repeated, the key generation creates an
identical key provided that the template and seed does not
change. *is key always needs to be same because the
manufacturer certified this key in the initialisation step.
TPM only allows to store the seeds needed to generate the
key but not the key itself. After the measured boot and
initialisation of the necessary keys, the gateway can execute
its regular tasks the same as it would be without VeSIPreS
implemented (see Figure 5 for a detailed message flow di-
agram of the boot sequence).*e owner or any user can now
send a measurement request via the user application to the
gateway.*e gateway receives this command and encodes it.
When a full measurement of the vehicle is requested, the
gateway initiates the status poll from all ECUs and sends
them together with its own boot log and the PCR quote back
to the user application.

6.3. ECUs. ECUs designate control units inside the vehicle
that are connected to the gateway using internal networks. A
typical car consists of dozens of different ECUs which
perform various tasks in the car ranging from engine control
and autopilot to comfort functions such as mirror adjust-
ment. In VeSIPreS, they receive requests from the gateway,
which then also receives their answers. Since they are located
inside the car and are only accessible through the gateway
from interfaces to the outer world, they are not as prone to
attacks as the gateway is. Depending on their security rel-
evance, it is however possible to add further protection to
them. *ree different security levels are therefore proposed
for the ECUs:

(i) SL: the first security stage (security stage low)
designates ECUs with no further protection by an
additional cryptographic coprocessor such as an
HSM or TPM. Since this stage offers the cheapest
and easiest implementation, it can be used for all
controllers where no special security requirements
are needed. *is includes most comfort functions in
a vehicle.

(ii) SM: the second security stage (security stage me-
dium) contains ECUs which are equipped with an
HSM coprocessor. HSMs can hold cryptographic
keys which are used for signing and encrypting
messages. Many modern processors in ECUs have
already embedded HSMs which can be used to
cheaply add this security level to a substantial part of

Journal of Advanced Transportation 9



the ECUs in the vehicle.*is allows them to sign the
communication between the ECU and the gateway
or another ECU. Signing the messages prevents
man-in-the-middle attacks, however, also increases
the computational effort and the transmitted data
on the bus. To avoid such drawbacks, only sensitive
messages such as status polls from the gateway are
signed.*is stage should be used for all ECUs which
are relevant for the driving or other safety/security
aspects of the car, such as the central locking system
or power steering controller.

(iii) SH: the group which offers the highest protection
(security stage high) contains ECUs that are, such as
the gateway, equipped with a TPM. *is allows
them to perform a measured boot like the gateway
does and get so trusted measured boot records
which assure that they run the software which is
intended to run on them. For this application, TPM
offers the same functionalities as an HSM provides
in security stage SM. *at means that the mea-
surements and other critical messages are sent
signed between the gateway and ECU. A TPM
additionally offers the measured boot capability to
its hosting ECU.*is stage should be used for highly
critical ECUs such as an autonomous driving
computer or brake controller.

6.4. User Application. In the user application, the mea-
surements of the vehicle are initiated, stored, and compared.
On the main screen of the app, a list with all stored mea-
surements from the vehicle is shown.*e user can take a new
measurement of the vehicle from there or compare two
existing measurements to detect changes between them. In a
typical use-case scenario, the owner of the car would take the

first measurement before it gets rented out for the first time.
*is measurement is automatically stored in the app and
used as the reference for all upcoming measurements. When
the software in the vehicle changes for trusted reasons, i.e.,
after a software update, the user can take a new reference
measurement afterwards and use that instead. Whenever the
owner wants to check the status of his vehicle, he can take a
measurement in the app and compare it with the reference
measurement. When a new measurement is started, VeS-
IPreS will perform the following steps:

(1) First, the app establishes a connection with the ve-
hicle. *is can be done via different interfaces. For
this implementation, a TCP/IP connection via a Wi-
Fi connection is used. *e app generates a random
number (so-called nonce, NG) which is then sent
together with the measurement request back to the
gateway. *e nonce is used to quote the measure-
ment and assure so the freshness of the returned
measurement as it prevents replay attacks.

(2) At starting a new measurement, the gateway per-
forms the measurement and sends an answer back to
the user application. After the transmission is
completed, the TCP/IP connection is closed.

(3) *e app first verifies the signature of the received
quote using the certificate of the signing key.*is key
is itself signed by the car manufacturer. *e response
from the gateway contains the TPM quote, boot log,
and report of the measurement from the other ECUs.
*e boot log contains a measurement for each boot
stage. *e digest is calculated and compared with the
PCR values to verify the authenticity of the report.

(4) If the log is authentic, the two values must match.
*e quote from the TPM contains all requested PCR
values signed with the signing key of the gateway GK,

Commands
Data

loop

User app (UA)TPMECU n (En)

Extend boot log

Gateway (GW)

For all
boot stages

Public key (GWKP)

Create restricted
RSA signing key

Extend PCR with digest

Calculate digest
of next stage

Measured boot
sequence

Figure 5: Message flow diagram of the starting sequence for the single components.

10 Journal of Advanced Transportation



together with the nonce from the app (NG). *e app
calculates the expected-value for the PCRs using the
single measurements noted in the boot log. If they
match, the boot log is trusted and gets, together with
the report of the ECU status, stored on the
smartphone.

For the verification of the boot sequence, it is not
possible to just compare the generated digest stored in the
PCR register with the reference one. Since the boot order of
some components could eventually change or individual
modules get updated, the entire PCR value would change
and cannot be used to compare it with a previous recorded
PCR digest. *e verification is rather done by comparing
the boot log with the previously taken reference boot log.
With the individual measurements written in the boot log,
the value that the PCR register should have can be cal-
culated and then compared with the actual value of the
register. If they match, it means that the boot log can be
trusted and is not manipulated.

To check the status of the vehicle, stored measurements
are compared among each other. In the considered sce-
nario, the current measurement is compared with the
reference measurement. A measurement consists of many
different individual parameters. If a compared value is not
equal to the reference value, it can be assumed that the
software in the component which does not match has
changed. If, however, the digest of the gateway does not
correspond with previous measurements, it means that
something in the executed code during boot time has
changed. *e gateway measurement comes from the
measured boot and is a digest of the code that is booted, so
if it varies, it means that there is another code running than
during the reference measurement. Since the gateway is
the central component that manages the measurements of
the other ECUs, we can only trust the vehicle measure-
ments if the measurement of the gateway is correct. *at
means that if the measurement of the gateway indicates
manipulation of it, we cannot trust the other measure-
ments as they are processed by the gateway (which is
potentially manipulated).

6.5. Protocol. *e protocol used for the data exchange is
initiated by the user in the application. A detailed message
flow diagram of this process is given in Figure 6:

(1) When the user starts a measurement, the user ap-
plication sends a RequestMeasurement command
together with a random number, the nonce (NG) to
the gateway. *e communication between user ap-
plication, which runs on amobile device and gateway
in the vehicle, is established via a TCP/TLS
connection.

(2) After the gateway receives the command, it starts the
measurement process.*e gateway requests from the
TPM a quote of the PCRs which were used during
the boot sequence. *is command includes NG,
which has afterwards to be included by the TPM in
the signed answer.

(3) In parallel, a status request is sent to all ECUs in the
vehicle. Depending on the security level of the ECUs,
a nonce NEn is attached to the request or not. *e
nonce is added to the requests for ECUs with security
level SM and SH to sign the report. It is additionally
used by ECUs with SM level to quote the PCRs used
for the measured boot.

(4) When an ECU receives the request, it will perform a
self-check and create a report which contains system
errors, measurements of predefined parameters, and
measurements of important software components. An
ECU with security stage SL will then directly send this
report to the gateway. ECUs with security stages SM
and SH sign the report including the received nonce
first in the HSM, or TPM, and then send the signed
message to the gateway. In stage SH, the ECUs send
additionally a quote of the PCRs to the gateway. *e
PCRs are signed together with the received nonce by
the cryptographic signing key. If an ECU does not
respond in a certain time, it is assumed that it is either
removed, compromised, or malfunctioning. Such an
event will, in any case, be noted in the report.

(5) *e gateway will then verify the signatures of the
received reports. All the received reports are then
combined with the boot log of the gateway, additional
values, and the nonce NG to a combined report which
is signed by the TPM and sent back together with the
quote from TPM to the user application.

7. Proof-of-Concept Implementation

A VeSIPreS proof-of-concept prototype is implemented
with the motivation to demonstrate the functionality of the
solution, show the practical feasibility, and identify during
the development and testing eventual design flaws in the
solution. *e implementation consists of two parts: the first
part is the vehicle simulator. *e vehicle simulator repre-
sents all sequences and tasks that happen inside the vehicle
and emulates the gateway and ECUs. It necessarily needs a
TPM to run. *is service can either be provided by a TPM
simulator running on the same host or by using a real TPM
the host is equipped with it. For testing, the TPM simulator
was used as it is more practical and flexible for different test
scenarios. *e architecture of VeSIPreS in a physical car
consists of software running on the ECUs and software
running on the central gateway. In the proof of concept, all
the different components in the vehicle are integrated into
one application which offers the same interface as a physical
car would do.

*e second part is the user app, which runs on a mobile
device. *e app connects to the vehicle simulator and ini-
tiates, manages, and evaluates the measurements. During the
development of the software, the focus was to work with a
platform that is widely used in the automotive industry and
can be ported easily without significant code changes. *e
app is the same as also for real use outside the simulator.
Figure 7 gives an overview of the vehicle simulator that
communicates with the user application.

Journal of Advanced Transportation 11



7.1. Used Implementation Environment. *e vehicle simu-
lator is written in C++ to run as a console application on a
Linux machine. C++ is one of the most used programming
languages and together with Linux widely used in the au-
tomotive industry. It was furthermore beneficial as also the
used API, the so-called TPM Software Stack (TSS), is written
in C such that it allows an easy implementation of it in the
vehicle simulator. *at allowed rapid prototyping and a
secure TPM implementation in the code. *e user appli-
cation was written in Kotlin and developed in Android

Studio. *e communication between the user application
and the vehicle simulator is established via a TCP/IP con-
nection whereby the vehicle acts as the server and waits for
incoming connections from the app. *e used communi-
cation protocol for the command and response message is
implemented in a JSON standard format.

*e complete source code can be accessed via GitHub at
https://github.com/valaenthin/VeSIPreS_Gateway (vehicle
simulator) and https://github.com/valaenthin/VeSIPreS_C
lient (user app).

TPMECU n (En)

SH:

SL:

SM:

alt

Gateway (GW) User app (UA)

Request measurement, NGW

Quote PCR, NGW

Request measurement, NEn (only SM and SH)

SignGWK{NGW, PCR}

ReportELn

SignEnK{NEn, ReportEMn}

SignEnK{NEn, PCR}, BootLogEHn

SignGWK{NGW, PCR},
BootLogGW, SignGWK{ReportE}

Commands
Data

Figure 6: Message flow diagram for taking a measurement of the vehicle, triggered by the user application.

TPM

Vehicle simulator (console application)

ECU 1 (e.g., engine
control unit)

ECU 2 (e.g.,
infotainment

controller)

ECU 3 (e.g., brake
control module)

Gateway

User application
(android app)

User application

Figure 7: Model of the developed proof-of-concept prototype, consisting of the vehicle simulator with some ECUs and the central gateway
and the user application.

12 Journal of Advanced Transportation

https://github.com/valaenthin/VeSIPreS_Gateway
https://github.com/valaenthin/VeSIPreS_Client
https://github.com/valaenthin/VeSIPreS_Client


7.2.PoCInitialisation. *e gatewaymust know already prior
to the attestation about which ECUs are in the vehicle
network and which security level they are equipped with to
prepare and address the commandmessages correctly. Based
on the stored information, a measurement is requested from
all ECUs individually, based on their cryptographic capa-
bilities (security stage). Since the vehicle simulator repre-
sents all ECUs and the gateway in one application, it directly
takes the measurements (taken from a file that represents the
corresponding ECU) with no further encryption or signing
with a nonce. *is would, however, be needed for imple-
mentation in a real vehicle.

During manufacturing, the vehicle manufacturer ini-
tialises every ECU. Depending on whether the ECU is
equipped with a HSM or TPM (security level SM and SH), it
creates and initialises the key pair used for symmetric-key
encryption. *e public keys of all used ECUs are stored in
the gateway, such that there is no need to transmit them
over the vehicle network. During manufacturing, the
certificate for the TPM in the gateway is created and signed
by the OEM.

7.3. Vehicle Simulator. A modern vehicle consists of hun-
dreds of different ECUs which handle the controlling tasks
and are interlinked by various internal networks. *ese
networks are interlinked by a gateway which provides a
diagnosis interface and is connected to the telematics unit.
*e goal of the vehicle simulator is to provide a realistic
replacement for a real vehicle to test the concepts and
provide a counterpart for the user application which is the
same as it would be in a real car. *e simulator includes all
functionalities that the gateway implements in a real car,
including a simulated measured boot, cryptographic key
management, request decoding, and report creation. In the
simulated virtual environment, single ECUs are included in
the simulator such that it is one app which simulates a
gateway with an arbitrary number of ECUs connected to it.
*e software stack of the ECUs is written in an independent
file for every single ECU so that it can be easily modified to
test the reaction of the system in that case using a text editor.
*e same as for a real vehicle, the gateway needs also in the
simulator a TPM. *e IBM TPM 2.0 simulator is a con-
venient choice for this application. Figure 8 shows the ve-
hicle simulator and TPM simulator console output after a
measurement was performed.

As discussed in [25], it is inevitable to trust the gateway,
which is the central element for the measurement process.
To assure the trustworthiness of the gateway, a measured
boot is performed. *e vehicle simulator uses the software
TPM to simulate a measured boot. *e measured boot is
embedded in the process and assumes the sequential starting
and measurement taking of the individual components that
emulate a measured boot. *e single steps that are executed
by the vehicle simulator in one iteration are as follows:

(1) Measure boot
(2) Wait for an incoming TCP connection from the user

app

(3) Handle the received command from the user app
(4) Quote PCR from the measured boot
(5) Measure ECUs
(6) Send answer back to client containing the ECU

measurements and PCR quote

7.4. Implementation of the User Application. *e user ap-
plication is a smartphone app (Figure 9) for Android op-
erating systems that allows the user to manage all
measurements taken from a vehicle. It allows to initiate a
new measurement of the vehicle, store it, and afterwards
compare two measurements (reference measurement with
the suspected one) among each other. *e application
connects via a TCP socket to the vehicle equipped with
VeSIPreS or the vehicle simulator running on a desktop PC.

*e app always starts on the main screen, where all
stored measurements are listed and can be managed. *e
user can on the main screen take a new measurement (by
pressing “+”). *en, the app changes in the “Take Mea-
surement” screen. *ere, it first connects to the gateway in
an actual vehicle or the vehicle simulator. When the
connection is successfully established, it generates a ran-
dom nonce which is sent together with the command to
take a measurement of the entire vehicle, to it. *e vehicle
will now perform the measurement and send an answer
back to the app. *e app waits during that time until it
receives an answer or eventually times out. *e received
answer is now checked on plausibility. *ereby the sig-
natures are checked, and if every test is passed, it gets stored
for an eventual upcoming comparison. A measurement
consists of the PCR value from the gateway together with
the corresponding boot log, and a report containing all
other digests from the ECUs.

*e user returns back to the main screen where the new
measurement will show up. He can now select a previously
taken reference measurement and the last taken measure-
ment. By pressing “Compare Measurements,” the app will
switch to the “Compare Measurement” screen. *e indi-
vidual components of the measurement are compared, and
the results are displayed to the user. When the digest of an
ECU is the same as it was at the reference measurement, it
means that the software running on that ECU is still the
same. If, however, the digests vary, it means that the software
has changed, and the user gets an alert displayed in the app.
When the measurement of the gateway itself (the PCR
values) is different, it indicates a modification of the gateway
firmware. In that case, the entire car cannot be trusted since
the gateway must be trusted to process all the other mea-
surements. Figure 10 gives an overview about the app by
giving a screenshot for each screen that appears in the app.

7.5. Protocol Implementation. *e communication between
the user application and the vehicle or, in this case vehicle
simulator, is done via a standard format for data object
sharing (JSON). *ere are especially two different messages
used in VeSIPreS. A request message is sent from the user
application to the vehicle simulator and contains the request

Journal of Advanced Transportation 13



Figure 8: Screenshot of the vehicle simulation running on a desktop environment. *e left console shows the running TPM simulator, and
the right one shows the vehicle simulator.

Figure 9: Launcher icon of the user application that connects to the vehicle and receives the measurements. It then manages and compares
the measurements.

Figure 10: Screenshots from the user application with the main functions (from left to right: main screen with the possibilities to take a new
measurement and compare two measurements, taking a new measurement, comparing the two measurements).

14 Journal of Advanced Transportation



identifier that designates the type of request and a nonce
used by the gateway. After the vehicle processed the com-
mand, it will answer with an answer message, containing the
boot log, the PCR value(s), and a report for every ECU. *e
following list gives a detailed definition of the transmitted
information in the request and answer message:

(i) Request message:

ID: identifier of the request type. ID 1 designates a
full-vehicle measurement.
Nonce: random number used to quote the PCR
register values.

(ii) Answer message:
(a) Boot log (structure is transmitted for every single

entry in the log):

Description: identifier of the request type. ID 1
designates a full-vehicle measurement.
Digest: random number used to quote the PCR
register values.
Digest length: length in bytes (or characters) of the
digest.
PCR register: number of the register where the
value is stored.

(b) PCR values:

Quote: quote of the PCR registers (PCR value and
nonce signed together).

(c) ECU report (structure for each ECU):

Digest: string containing the object name, version,
and other relevant information.

8. Security Analysis

*is section gives an analysis of different attack scenarios on
a vehicle and discusses how VeSIPreS can prevent such
attacks.

8.1. Security Discussion. In [2, 29] a classification and sys-
tematic search for security flaws in the electrical architecture
of vehicles is given. *e terminology security can be divided
into different categories. Information security consists of
different parts, namely, confidentiality, integrity, availability,
accountability, and assurance services. *is leads to different
attacks, such as man-in-the-middle attacks and replay at-
tacks. VeSIPreS protects against man-in-the-middle attacks
by encrypting the traffic. *e used mechanisms are
encrypting, signing, measured boot, and remote attestation.

*ere is to consider that the software of the vehicle may
change on purpose. *at happens, for example, when a
software update is installed on the car. For this case, a
specific procedure must be developed. Before a scheduled
change is performed, a measurement is taken and verified
that the vehicle is at that point (before the update) as
intended. *en, the update is installed, and afterwards, a
measurement is taken that replaces the reference mea-
surement as the new one. During the update process,

manipulations cannot be detected as they would after the
update process be measured together with the proper
software and stored as the new reference measurement. It is
necessary to either perform updates only in a trusted en-
vironment (for example, under the care of a rental agent) or
by implementing additional protection mechanisms.

Vehicles have a relatively long life cycle of well over 20
years. To ensure, at least to some extent, that the cars are still
safe at the end of their lifecycle, the vehicle uses over-the-air
updating to fix security vulnerabilities. Furthermore, the
cryptographic mechanisms of TPMs can be updated re-
motely and offer so always state-of-the-art security mech-
anisms (crypto-agility).

8.2. Design Choices. In the RATS standard [25], they de-
scribed two types of attestation environments which are used
in this work. *e vehicle is modelled as a composite device
according to the definition where the single ECUs are
interlinked by different networks and represent subentities.
For attesting the software of the vehicle, a measurement of
every single ECU in the car must be created. A lead attester,
in the case of VeSIPreS the central gateway, collects all
measurements and creates a report containing all mea-
surements of the vehicle and a measurement of its own
status. To trust the composite device, the lead attester
(central gateway) takes the main role as the measurement of
the vehicle can only be trusted if the lead attester is trusted.
*e central gateway (lead attester) is protected by layered
attestation. *e concept of layered attestation is applied only
on a single ECU and measured boot therefore implemented.
*e gateway is equipped with a TPM that acts as the root of
trust. *e boot sequence of the gateway starts with a CRTM,
a piece of software that is immutable and measures the next
executed boot stage and passes then control to it. Starting
with the first boot stage, each sequential stage measures the
next stage before passing control to it. *is guarantees that
every executed code is measured and a representation in the
form of a digest is forwarded to the TPM which extends the
PCR register with the digests. Whenever the user initiates a
measurement, the response contains a quote of the PCR
registers so that the verifier can be sure that the gateway has
not changed. If the gateway is not trusted, also all other
measurements in the report cannot be trusted as the gateway
could potentially modify them.

It must be assured that a tampered gateway cannot send
a previously recorded measurement captured in a healthy
state to the verifier and pretend so to be as intended. To
assure that this will not happen, nonces are used. A nonce is
a random or pseudorandom number created by the verifier.
It ensures that the same message cannot be used multiple
times in a replay attack. When the user app requests a
measurement of the vehicle, it will include to the command a
nonce. *e gateway will forward the received nonce in a
quote-command to the TPM which includes it in the re-
sponse message and makes a signature of the message in-
cluding the nonce. *e generated signature is then verified
by the user app using the public signing key of the gateway
(provisioned by the TPM). As the private part of the signing

Journal of Advanced Transportation 15



key is only known to the TPM and cannot be extracted, a
manipulated gateway cannot imitate this message such that
an eventual manipulation would be detected.

*e other ECUs in the vehicle do not necessarily need
such strong security like the gateway because the only way
to access them to change their software is through the
gateway.*e gateway hosts all interfaces which can be used
to install new software on an arbitrary ECU in the vehicle,
such as the OBD-II port and the telematics unit. *e
gateway can implement a firewall and log system that can
deny and log all attempts to modify the firmware of an
ECU. To manipulate the software, the attacker would have
to first modify the gateway to penetrate through it to install
the software on an ECU. *e implemented mechanisms
successfully protect against attacks through the classical
updating channels. *ey will, however, not protect against
physical attacks. An attacker could, for example, attach a
programming device to the internal network that connects
the gateway with the ECU and bypass so the protection
provided by the gateway. Although manipulation of the
ECUs or networks in the vehicle is not the scope of this
work, a possible extension is proposed in the form of three
security stages SL, SM, and SH. ECUs with security stage
SL have no cryptographic coprocessor or other crypto-
graphic feasibilities. SM is ECUs which are equipped with
an HSM or similar module that allows them to encrypt
data. ECUs from these categories can encrypt critical traffic
between the gateway and the ECU such that a man-in-the-
middle attack on the internal bus will fail. Since encrypting
the entire traffic from the ECU requires a lot of perfor-
mance only sensitive data like critical measurements,
firmware update or the measurement of the software are
encrypted. Time-critical commands cannot be encrypted
due to the induced delay. Highly sensitive ECUs should be
protected by level SH. *ese ECUs are equipped with a
TPM that allows them to perform a measured boot, like the
gateway. *e measurement which is taken by the ECU also
contains a quote of the PCR register. *e gateway produces
therefore for every ECU with level SH an individual nonce
which is included in the signed answer from the TPM in
the ECU.

*e communication between the gateway and the user
application is passed through a secure and encrypted
channel, for example, Transport Layer Security (TLS), to
prevent attacks between these two entities.

For the ECUs to evaluate their health status, they will
take in security level SL and SM a measurement of the code
they run. *is measurement is generated by a part of the
code that could theoretically also be manipulated such that it
always returns the measurement value of a known software
image. However, to manipulate the component in the code
that generates the measurement, the firmware must be
updated, which is protected by the gateway.

A benefit of the direct communication of the user ap-
plication with the gateway is that no internals of the car must
be shared, and the app does not have to be adapted explicitly
on a specific car model. *e gateway takes the task of
checking the measurements of the single ECUs and com-
pares them with the stored reference measurements. *e

measurements are provided by the OEM and together with
the corresponding version number stored in the gateway.
*e gateway can then send an attestation to the user ap-
plication that the ECU has not tampered and since in the
same moment also a measurement of the gateway is
transmitted, it can be assured that the attestation is trusted if
the gateway is secure.

8.3. Limitations. *e proposed solution offers comprehen-
sive protection against software tampering attacks. *is
includes the installing of new software or the modification of
existing parameters. However, it protects only to a limited
extend against physical tampering. If, for example, an at-
tacker uses a man-in-the-middle attack at the internal
network (CAN bus) between the gateway and the ECU, he
can update the ECU without going through the gateway or
modify the communication between the gateway and ECU
during a measurement such that the gateway gets trusted
measurements although it is compromised. *is can either
be achieved by installing a device in the network which
always replaces the answers with trusted ones, or by
updating the software of the ECU such that it always replies a
trusted measurement. *is is possible since the measure-
ment of its own software stack is performed by the ECU
itself. Although such a scenario is physical tampering and
requires already a vast technical understanding, it is possible
to protect against it by protecting the ECUs with crypto-
graphic functions. *e security stage SH can successfully
prevent such attacks and security stage SM adds significant
protection to prevent such attacks.

9. Future Work

*e shown solution can effectively detect software modifi-
cations performed by an attacker which has physical access
to the vehicle or are caused by a malfunction in the ECU that
corrupted the software. For use in a real-world environment,
the proposed protocol must be systematically checked for
common design flaws. *is is done by using already
established tools such as ProVerif, Tamarin, or AVISPA.*e
protocol will be modelled in these tools and afterwards
checked against predefined parameters. Besides the theo-
retical proof, it is also crucial to verify the proposed solution
in a real environment in a vehicle. Although a proof-of-
concept prototype consisting of the vehicle simulator and
user application was developed during this work, practical
testing is inevitable for further testing.

9.1. Possible Extensions in the Future. *e current version of
VeSIPreS is only intended for one vehicle that is measured
by the app on one specific smartphone that belongs to the
user. In a car-sharing scenario, however, this is infeasible.
*ere are many cars and many users who want to use them
and verify the vehicles before they use them. To solve this, a
cloud-based central storage for the vehicles reference
measurements is proposed. All the reference measurements
are stored on a server. If the user wants to verify the software
status of a car, he takes the measurement as usual. As

16 Journal of Advanced Transportation



reference measurement, he does not use a previous mea-
surement stored on the phone, but rather download the
reference measurement from the car-sharing provider. *is
extension brings more flexibility in the system and can be
implemented without significant changes.

A requirement is that the reference measurements are
securely stored in the cloud. If they are not trusted, the
entire attestation cannot be trusted. Keeping the references
on a central cloud server is a potential weakness as if an
attacker can compromise the stored reference values, he
can also change the software in the vehicles without no-
ticing by the app. To prevent this, blockchain technology
[30] can be used to secure this weak link. Blockchains allow
a decentralized storage of reference measurements where
the suppliers from the single components in the vehicle can
add the reference measurement for their components
software directly without a central entity that collects and
stores the measurements.

A further possible extension includes the use of physical
unclonable functions (PUFs). *is allows to secure addi-
tional sensors and actuators which cannot be fitted with a
TPM against tampering. Implementing these extra safety
mechanisms allows to verify an even more comprehensive
part of the vehicle and protects against some physical
tampering attacks. VeSIPreS provides a framework to add
these additional security mechanisms.

9.2. Perspectives Involving OEMs and Mobility Services.
*e proposed solution needs, besides the implementation
of additional software for the measurements in the software
of the gateway and ECUs, no further support by the
manufacturer or mobility provider. However, there can be
two significant additional possibilities with a collaboration
of the OEM:

(1) Instead of taking a measurement before the car is
rented out as the reference measurement, a refer-
ence can be provided by the manufacturer. *e
manufacturer will therefore provide for different
versions and the different ECUs in the vehicle the
digest they should produce if everything is inten-
ded. *is allows not only to measure the integrity
over a certain period but rather over the whole
lifetime. Additionally, measurements can then be
taken by the user and compared with the reference
provided by the OEM. *is allows that the owner
has not to take a reference measurement. *is
would further increase the use case as it is then
possible for a user without trust in the previous user
or owner to check the status. An example will be if a
private person buys a second-hand car from an-
other person. He can check the software of the
vehicle with the reference from the OEM and can so
be sure that the software has not changed.

(2) Whenever it comes to a manipulation or tampering
attack, the OEM can get a detailed report about the
occurrence. After a manipulation is detected, the
gateway collects all relevant data, eventually

anonymizes them, and sends the bundle encrypted to
the car manufacturer. *e OEM can then evaluate
the occurrence and identify potential security flaws
in the vehicle. If necessary, he can then react to it by
releasing an update with fixed security
vulnerabilities.

*e gateway includes nonvolatile storage which holds all
certificates and is set up by the OEM. *e stored certificates
contain the public key of the ECUs that can communicate
protected (security level SM and SH).

10. Conclusion

*is work looked at different attacks on vehicles in the past
and identified the software stack of a car as a huge attack
surface. OEMs make a big effort by securing the processes
and close newly found vulnerabilities. Still, there is yet no
actual possibility to check the software stack of a car to be
sure that there is no manipulated software running on an
ECU in the vehicle. Especially regarding the trend towards
shared mobility, where multiple users use a car, and the fact
that computers take an increasingly more critical role in the
vehicle, a mechanism to check the software running on the
car gets essential. An attacker has physical access to the car,
which allows him to use many more attack vectors than he
would have without physical access. Especially, the diagnosis
interface (OBD-II) allows the installation of modified
software on the ECUs. By using a TPM as a root of trust for
cryptographic operations, we proposed a solution to take at
any time a reliable measurement of all software stacks in the
vehicle. In the electronic architecture of a car, the central
gateway is the module that connects different ECUs and
interfaces among each other.*e OBD-II diagnosis interface
is directly connected to the gateway, which forwards the
commands. Implementing a TPM in the gateway allows it
secure boot and remote attestation of the gateway. A mobile
app allows the user to take a measurement of the entire
software stack of the car, store it, and compare it with other
measurements if they are still the same.*e app connects via
a secured connection (can be local Wi-Fi or cloud-based) to
the gateway, which is trusted due to the measured boot. *e
gateway will then perform the measurements of all ECUs in
the car and send the result back to the app. *e imple-
mentation of a proof of concept based on a virtual vehicle
(vehicle simulator) running on a desktop PC and the user
application showed the practical feasibility and effectiveness
of the solution.

Data Availability

No datasets were used. *e source code can be accessed via
GitHub at https://github.com/valaenthin/VeSIPreS_Gateway
(vehicle simulator) and https://github.com/valaenthin/VeSIP
reS_Client (user app).

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Journal of Advanced Transportation 17

https://github.com/valaenthin/VeSIPreS_Gateway
https://github.com/valaenthin/VeSIPreS_Client
https://github.com/valaenthin/VeSIPreS_Client


Acknowledgments

*e work of Valaenthin Tratter was partially funded by the
European Union’s Erasmus SMP Program. *is work has
received funding from the European Union’s Horizon 2020
Research and Innovation Programme through the nIoVe
Project (https://www.niove.eu/) under grant agreement No
833742.

References

[1] G. Laporte, F. Meunier, and R. Wolfler Calvo, “Shared mo-
bility systems: an updated survey,” Annals of Operations
Research, vol. 271, no. 1, pp. 105–126, 2018.

[2] F. Sommer, J. Dürrwang, and R. Kriesten, “Survey and
classification of automotive security attacks,” Information,
vol. 10, no. 4, p. 148, 2019.

[3] J. Petit and S. E. Shladover, “Potential cyberattacks on au-
tomated vehicles,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 16, no. 2, pp. 546–556, 2014.

[4] C. Riggs, C.-E. Rigaud, R. Beard, T. Douglas, and K. Elish, “A
survey on connected vehicles vulnerabilities and counter-
measures,” Journal of Traffic and Logistics Engineering, vol. 6,
no. 1, 2018.

[5] K. Koscher, A. Czeskis, F. Roesner et al., “Experimental se-
curity analysis of a modern automobile,” in Proceedings of the
2010 IEEE Symposium on Security and Privacy, pp. 447–462,
IEEE, Oakland, CA, USA, May 2010.

[6] A. Greenberg, “Hackers reveal nasty new car attacks–with me
behind the wheel (video),” 2013, https://www.forbes.com/
sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-
car-attacks-with-me-behind-the-wheel-video/
#2370c801228c.

[7] S. Checkoway, D. McCoy, B. Kantor et al., “Comprehensive
experimental analyses of automotive attack surfaces,” in
Proceedings of the USENIX Security Symposium, vol. 4,
pp. 447–462, San Francisco, CA, USA, August 2011.

[8] C. Miller and C. Valasek, “A survey of remote automotive
attack surfaces,” Black Hat USA, vol. 2014, p. 94, 2014.

[9] C. Miller and C. Valasek, “Remote exploitation of an unal-
tered passenger vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[10] Fiat Chrysler recalls 1.4 million cars after Jeep hack, 2015,
https://www.bbc.com/news/technology-33650491.

[11] A. Greenberg, “*is bluetooth attack can steal a Tesla model X
in minutes,” 2020, https://www.wired.com/story/tesla-model-
x-hack-bluetooth/.

[12] M. Rogers and K. Mahaffey, “How to hack a Tesla model S,”
DEFCON, vol. 23, pp. 37–116, 2015.

[13] Z. Cai, A. Wang,W. Zhang, M. Gruffke, and H. Schweppe, “0-
days & mitigations: roadways to exploit and secure connected
BMW cars,” Black Hat USA, vol. 2019, p. 39, 2019.

[14] L. Wouters, E. Marin, T. Ashur, B. Gierlichs, and B. Preneel,
“Fast, furious and insecure: passive keyless entry and start
systems in modern supercars,” IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, vol. 2019, no. 3,
pp. 66–85, 2019, https://tches.iacr.org/index.php/TCHES/
article/view/8289.

[15] S. Kamkar, “Drive it like you hacked it: new attacks and tools
to wirelessly steal cars,” DEFCON, vol. 23, 2015.

[16] R. Petri, M. Springer, D. Zelle, I. McDonald, A. Fuchs, and
C. Krauß, “Evaluation of lightweight TPMs for automotive
software updates over the air,” in Proceedings of the 4th
ESCAR USA, Detroit Metropolitan, MI, USA, June 2016.

[17] S. McMahan, “Volkswagen deploys infineon TPM 2.0 for
vehicle communication security,” 2019.

[18] P. Kleberger and T. Olovsson, “Protecting vehicles against
unauthorised diagnostics sessions using trusted third parties,”
in Proceedings of the International Conference on Computer
Safety, Reliability, and Security, pp. 70–81, Springer, Toulouse,
France, September 2013.

[19] G. Kornaros, D. Bakoyiannis, O. Tomoutzoglou, M. Coppola,
and G. Gherardi, “Trustnet: ensuring normal-world and
trusted-world can-bus networking,” in Proceedings of the 2019
IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (Smart-
GridComm), pp. 1–6, IEEE, Beijing, China, October 2019.

[20] S. Halder, A. Ghosal, and M. Conti, “Secure OTA software
updates in connected vehicles: a survey,” 2019, https://arxiv.
org/abs/1904.00685.

[21] M. S. Idrees, H. Schweppe, Y. Roudier, M. Wolf,
D. Scheuermann, and O. Henniger, “Secure automotive on-
board protocols: a case of over-the-air firmware updates,” in
Proceedings of the International Workshop on Communication
Technologies for Vehicles, pp. 224–238, Springer, Oberpfaf-
fenhofen, Germany, March 2011.

[22] A. Fuchs, C. Krauß, and J. Repp, “Advanced remote firmware
upgrades using TPM 2.0,” in Proceedings of the IFIP Inter-
national Conference on ICT Systems Security and Privacy
Protection, pp. 276–289, Springer, Gent, Belgium, May 2016.

[23] J. Howden, L. Maglaras, and M. A. Ferrag, “*e security
aspects of automotive over-the-air updates,” International
Journal of Cyber Warfare and Terrorism, vol. 10, no. 2,
pp. 64–81, 2020.

[24] Y. Zhou, X. Wu, and P. Wang, “Secure software updates for
intelligent connected vehicles,” Electrical Engineering and
Computer Science (EECS), vol. 3, pp. 109–112, 2019.

[25] H. Birkholz, D. *aler, M. Richardson, N. Smith, and W. Pan,
“Remote attestation procedures architecture: internet-draft
draft-ietf-rats-architecture-07, internet engineering task
force,” In press, 2020.

[26] P. Kleberger and T. Olovsson, “Securing vehicle diagnostics in
repair shops,” in Proceedings of the International Conference
on Computer Safety, Reliability, and Security, pp. 93–108,
Springer, Delft, Netherlands, September 2014.

[27] A. Nasser, Securing safety critical automotive systems, Ph.D.
thesis, University of Michigan-Dearborn, Dearborn, MI, USa,
2019.

[28] G. Kim and I. Y. Jung, “Integrity assurance of OTA software
update in smart vehicles,” International Journal on Smart
Sensing & Intelligent Systems, vol. 12, no. 1, 2019.

[29] M. Ring, J. Dürrwang, F. Sommer, and R. Kriesten, “Survey on
vehicular attacks-building a vulnerability database,” in Pro-
ceedings of the 2015 IEEE International Conference on Ve-
hicular Electronics and Safety (ICVES), pp. 208–212, IEEE,
Yokohama, Japan, November 2015.

[30] J. Kang, R. Yu, X. Huang et al., “Blockchain for secure and
efficient data sharing in vehicular edge computing and net-
works,” IEEE Internet of @ings Journal, vol. 6, no. 3,
pp. 4660–4670, 2018.

18 Journal of Advanced Transportation

https://www.niove.eu/
https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/#2370c801228c
https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/#2370c801228c
https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/#2370c801228c
https://www.forbes.com/sites/andygreenberg/2013/07/24/hackers-reveal-nasty-new-car-attacks-with-me-behind-the-wheel-video/#2370c801228c
https://www.bbc.com/news/technology-33650491
https://www.wired.com/story/tesla-model-x-hack-bluetooth/
https://www.wired.com/story/tesla-model-x-hack-bluetooth/
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://tches.iacr.org/index.php/TCHES/article/view/8289
https://arxiv.org/abs/1904.00685
https://arxiv.org/abs/1904.00685

