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Dockless sharing bikes play an increasingly significant role in transit transfer, especially for the first/last mile. However, it is not
always accessible for users to find sharing bicycles.+e objective of this paper is to assess the accessibility of dockless sharing bikes
from a network perspective, which would provide a decision-making basis not only for potential bike users but also for urban
planners, policymakers, and bicycle suppliers to optimize sharing-bike systems. Considering bicycle travel characteristics, a
hierarchical clustering algorithm was applied to construct the dockless sharing-bike network. +e social network analysis (SNA)
method was adopted to assess the accessibility of the bike network. +en, a spatial interaction model was chosen to conduct a
correlation analysis to compare the accessibility obtained from the SNA approach. +e case study of Shanghai indicates a strong
connection between the accessibility and the SNA indicators with the correlation coefficient of 0.779, which demonstrates the
feasibility of the proposed method. +is paper contributes to a deep understanding of dockless sharing-bike network accessibility
since the SNA approach considers both the interaction barriers and the network structure of a bicycle network. +e developed
methodology requires fewer data and is easy to operate. +us, it can serve as a tool to facilitate the smart management of sharing
bikes for improving a sustainable transportation system.

1. Introduction

Dockless bike-sharing has been launched in many counties
worldwide since 2015. A still-growing list of cities that provide
such service can be found at the bike-sharing world map.
Dockless bike-sharing has sprung up in China since 2016, and
the scale of shared bicycle users in China reached 235million in
2018, indicating its extensive usage among urban trans-
portation. +e dockless sharing bikes are one kind of public
transportation modes with unique strengths. However, there is
still some room for improvements reflected in the dockless
sharing-bike satisfaction survey. +e biggest problem is that
when passengers want to use sharing bikes to travel, it is
difficult to find sharing bikes within the acceptable range. +is
indicates that it is extremely important for dockless sharing
bikes to be accessible to the potential users, as accessibility is a

key indicator to evaluate the effective functioning of dockless
sharing bikes.+erefore, to improve the satisfaction of dockless
bike-sharing service, the accessibility of dockless sharing bikes
should be assessed first to inform both suppliers and users.

+is paper focuses on measuring the accessibility of
dockless sharing bikes in a network perspective within
relatively available data. Furthermore, we apply the social
network analysis approach to the evaluation of the bicycle
network, and a correlation analysis between accessibility and
SNA indicators is conducted to verify the effectiveness and
reliability of the proposed method. According to these re-
search studies, the characteristics of accessibility can be
summarized as follows: accessibility is a spatial-temporal
concept, which represents the difficulty extent of commu-
nication between spatial entities to overcome the resistance
of interactions. Accessibility includes three essential
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elements: origins, destinations, and the transportation sys-
tem. +is research could help city planners, policymakers,
and bicycle suppliers obtain information to identify areas
that need to improve infrastructure investment and bike-
sharing to create a friendly environment for nonmotorized
travel patterns and improve sustainable transport systems.
+is is in line with the concept of green and sustainable
development.

+e rest of the paper is organized as follows: the next
section is a literature review. Section 3 presents the meth-
odology, including dockless sharing-bike network genera-
tion by a new clustering algorithm and accessibility
assessment model construction based on the SNA approach.
In Section 4, the data availability is explained and a cor-
relation analysis is performed to explore the relationship
between SNA indicators and accessibility. Finally, the paper
finishes with some conclusions and proposals.

2. Literature Review

Bike-sharing allows people a healthy, enjoyable, and emis-
sion-free way to commute across small distances free from
the worries of owning a bike [1], which is the primary
motivation for sharing-bike usage [2, 3]. Particularly,
dockless sharing bikes could be used in addition to public
transit, thus providing an efficient option for first-/last-mile
trips [4]. Integrating bike-sharing into urban transport
systems is critical to mutually reinforcing sustainable
transport networks [5]. In order to enable people to use
shared bikes more, the improvement of accessibility is an
important aspect. In this way, users can be notified of the
best pick-up location in advance, and smart management as
well as improvement of bike-sharing service can be realized
by urban planners, policymakers, and suppliers [6, 7].

Defining and evaluating accessibility allows us to think
about it systematically, as it relates to planning, trans-
portation, equity, and other aspects [8]. Accessibility (or just
access) for transportation planning is broadly referred to as
the ease of reaching goods, services, activities, and desti-
nations, which together are called opportunities [9]. Weibull
defines accessibility as the freedom of individuals to par-
ticipate in activities [10]. +e notion of accessibility relies on
two core concepts: location (transport infrastructures,
population, and economic activity) and distance. Accessi-
bility therefore takes into account a number of development
patterns, including density and land use [11]. Murray and
Wu believed that accessibility comprised access and geo-
graphic coverage in public transit planning. Access is the
process of getting users from their origin to the trans-
portation network, and geographic coverage is the trans-
portation network across a spatial medium [12]. Zuo et al.
defined bicycle-transit accessibility as the number of loca-
tions reachable within a time threshold [13].

In terms of quantitative evaluation of accessibility, nu-
merous methods have been developed. Researchers have
proposed several criteria to assess the usefulness and limitations
of accessibility measures for different study purposes [14], such
as reasonability, feasibility, interpretability, and usability [15].
+e commonly used methods for accessibility measurement

are spatial barrier model, cumulative opportunity model,
spatial interaction model, utility model, and space-time con-
straint model [16–19]. +e spatial interaction model and utility
model comprehensively consider land use and traffic demand,
spatial barrier, and other factors, which can be widely used in
the study of coordinated development of land use and traffic.
+e cumulative opportunity model is challenging to determine
the time threshold, and its application scope is relatively
limited, so it is mostly used in the project location, economic
center node evaluation. +e spatial barrier model and spatial-
temporal constraint model cannot reflect other information
such as land use and traffic demand, and the amount of data
needed is large and difficult to obtain, so the application scope
is limited.

Apart from these widespread models, some concepts from
social network analysis (SNA) also have been introduced to
quantify accessibility. SNA, also known as structural analysis, is
a strategy for investigating social networks and structures using
mathematical concepts abstracted from graph theory [20].
Since the first appearance in 1960, SNA has been applied
extensively in many social science areas. In the field trans-
portation, SNA techniques are first introduced to the business
logistics and transportation community to study the dynamic
flows of communication between members of a social network
[21]. Gehrke et al. believe that network connectivity can be used
as a measure of accessibility [22]. Graph theory, a useful tool of
network analysis, is a branch of mathematics with broad and
practical applications, which can also be used to model
transportation systems [23]. Batty introduced graph theory to
measure accessibility with respect to the physical transportation
infrastructure [24]. Chen et al. selected several measures of the
network topological structure to examine the accessibility of the
metro network in Guangzhou [25]. More recently, Rubulotta
et al. made comparisons between connectivity and traditional
traffic planning measurement methods, and the results dem-
onstrated the correlation between SNA centrality calculation
and traffic accessibility and closeness [26]. El-Adaway et al.
used SNA to analyze transportation networks, which proves its
effectiveness as a supplementary tool for improving trans-
portation planning [27]. Sarlas et al. proposed a newmethod by
combining the indicator of betweenness in social networks with
geographical accessibility to estimate real-life urban network
accessibility [28]. Chen and Chang illustrated the relationship
between connectivity and accessibility and proved that SNA is
valid for connectivity assessment [29]. From all the research
studies, we could find a new perspective, that is, the SNA
approach, to assess transportation networks and detect the
interconnectivity in transport networks. Conventional assess-
mentmethods evaluate individuals and attributes in an isolated
manner, whereas SNA methods evaluate individuals and their
relationships in the overall network, thus extracting the net-
work’s holistic patterns [30].

Generally, most previous research studies have been
conducted on accessibility, although there still exist some
research gaps. First, there are no best methods for acces-
sibility assessment. Among various accessibility assessment
methods, challenges are noted arising primarily from
problems such as data acquisition, data quality, determi-
nation of model parameters, and network attributes
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ignorance. Different from traditional research, the SNA
method emphasizes on structural features of networks rather
than on length and path within networks, which provides us
a new overview in accessibility assessment. What’s more,
previous studies paid more attention to motorized modes,
which could not apply to bicycles directly. Dockless sharing
bicycles are frequently chosen as an addition to public
transportation for the first/last mile. +us, the trips are
mostly short distance. Consequently, the network of
dockless sharing bikes is connected in a local rather than a
global manner compared with motorized networks. As
stated by Ting Zuo, “the access to transit by bicycling is
greatly determined by bike network connectivity” [31].

To fill these knowledge gaps, we use the SNA method to
emphasize the structural characteristics of the network and
consider more local connections in the study of accessibility.
+is article defines the network accessibility of dockless
sharing bicycles as the difficulty of using sharing bikes to
flow between origins and destinations in the network.

3. Methods

A network comprises nodes (vertices) and links (edges). +e
dockless sharing bikes have no fixed locations, and they could
be parked anywhere, resulting in the difficulty in node de-
termination. To abstract the dockless sharing-bicycle network,
a novel clustering algorithm based on riding distance was
proposed to generate nodes in a network, and the links were
defined according to both the riding distance and the bike
volume between two nodes. Based on the network, we con-
structed a model to assess accessibility stemmed from the SNA
approach. To verify the proposed approach, we first calculated
the accessibility with the commonly used method (spatial
interaction model, Section 3.1) and compared the results of the
two methods to check the efficiency of the new approach.

3.1. Spatial Interaction Model. In order to verify the effec-
tiveness of the SNA method, this paper introduced the
spatial interaction model as a control. In this model, ac-
cessibility was defined as the potential for interaction be-
tween two points, indicating the impedance between nodes
and affected by the scale of traffic activities on the network.
+e calculation formula was based on the potential model
proposed by Hansen [19]:

Acci � 􏽘
j

Dj

d
α
ij

, (1)

where Acci represents the accessibility of node i, dij rep-
resents the impedance between two nodes in the network,
and Dj is the number of opportunities provided by node j

within a specific impedance acceptable range. In this article,
impedance was measured by the nonlinear distance between
network nodes, where Dj is the number of bicycles provided
(output) by node j (in other words, the number of bicycles
that start from node j), dij represents the impedance be-
tween two nodes in the network, and α is a parameter
reflecting the degree of impedance influence, which could be
selected according to the empirical value.

3.2. Accessibility Model Based on Social Network Analysis

3.2.1. Node Generation. +e registration points of dockless
sharing bikes present significant discontinuity and ag-
glomeration in space. A hierarchical clustering method
based on spatial distance was applied in this paper for two
main reasons: the original dataset is too large to analyze as
every bike could be a point on the map, and sharing bikes
usually accumulate around POIs. +erefore, it will be
convenient and reasonable to aggregate close locations in the
same class. When it comes to the clustering criteria, the
spatial distance was selected considering characteristics of
dockless sharing bikes. Bike users generally choose dockless
sharing bicycles to travel within one kilometer (seen in
Figure 1), and they are usually not willing to walk long
distances to find a dockless sharing bike. Distance is the
primary factor that users might consider in bike usage. In
this way, the spatial distance was selected as the standard for
the clustering of origins and destinations, and the criteria
scope should be constrained within the range of passengers’
acceptable walking distances.

+e iterative procedure of the distance-based clus-
tering algorithm is presented in Figure 2, which combines
the location of public transportation stations. Different
from other clustering methods, there is no need to assign
an exact number of final clusters in this paper. Circles with
the same color denote bike origins and destinations that
belong to the same group. Figure 2 represents the traversal
order of these points. In the first iteration, each point did
not belong to a cluster since no clusters had been defined.
In every iteration, the algorithm searched for a point and
determined if it belonged to an existing group based on
the distance threshold. When the distance between this
point and any center of existing clusters was less than the
distance threshold, it would be put in this cluster set, and
the center point coordinates would be updated. Other-
wise, the algorithm created a new group whose center was
the same as this point. After iterations, each point would
be defined in a cluster that consisted of some spatially
related points.

3.2.2. Network Construction. +e travel of dockless sharing
bikes presents evident uneven and geographically aggrega-
tive distribution in spatial as bicycles will gather and flow
between different zones spontaneously. To be simplified, we
assumed the clustering centers to be network nodes. After
counting bike flow between clustering centers, reasonable
flow impedance function could be set up to calibrate links in
the network. In this paper, a bicycle network based on flow
relationships and distances between different traffic zones
was established:

G � (V, E), (2)

whereV represents the center nodes of dockless sharing-bike
traffic zone, and E represents the link of nonmotorized traffic
network, that is, the connection between nodes, which re-
flects the connection between traffic zones.
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Since the traffic flow between two zones is usually
asymmetric, in other words, there is commonly a sig-
nificant flow direction between the two zones. +us, G is
actually a directed weighted graph. +ere are several
unique features of a dockless sharing-bike network. First
of all, a network is considered to be connected globally. In
contrast, the dockless sharing-bike network is locally
connected as it consists of multiple connected subgraphs
responding to short-distance travel. +us, the nodes far
away from others are not connected. Moreover, the weight
of links in this network is calibrated for accessibility as-
sessment, which differs from that of conventional auto-
mobile networks. +e higher the bike flow between two
nodes is, the stronger the connection will be, while the
longer the distance is, the weaker the link will be. And the
weight will be infinitely great if the distance between two
nodes exceeds the threshold of travel distance. According
to the characteristics of a dockless sharing-bike network,
the weight of links should be considered in two facets. In
this paper, the weight of links was calculated as follows:

weight �

d

q
, d≤d0,

∞, d>d0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where d denotes the nonlinear distance of two nodes, which
equals to Euclidean distance multiples nonlinear parameter
(which is 1.3 according to the Code for Design of Urban
Road Engineering (CJJ37-2012)); d0 is the threshold of
dockless sharing-bike travel distance (6 km); and q denotes
the bicycle flow of a link.

3.2.3. Model Index Selection. +ere are several reasons for
social network analysis to be applied to dockless sharing-bike
accessibility assessment. First, substantial similarities could be
observed between dockless sharing-bike networks and social
networks from a structural perspective. +e three components
of a social network are actors, ties, and boundaries. Similarly,
the three elements also exist in the network of dockless sharing
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Figure 2: Iterative procedure of the distance-based clustering algorithm.
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Figure 1: Distribution of dockless sharing bikes: travel distance distribution.
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bikes in the form of nodes (cluster centers), links, and
boundaries of research regions. Second, the purpose of social
network analysis and accessibility analysis is consistent. +e
most prominent objective of the two studies is to discover the
interdependence and connections between individuals (nodes)
and display these connections in a network. +erefore, we
assumed that it is reasonable to apply the approach of SNA in
the accessibility analysis of a dockless sharing-bike network.

In social network analysis, different measures of cen-
trality are commonly introduced to reflect the degree of
connectivity of nodes in the network. Some scholars have
already applied the SNA method in transportation network
analysis, and “betweenness,” “connectivity,” and “centrality”
are frequently selected as measurements. In this paper, the
accessibility of a dockless sharing-bicycle network is defined
as the difficulty of using sharing bikes to flow between
origins and destinations in the network, which could be
evaluated when the following questions are addressed:

(i) To what extent is a node connected to other nodes?
(ii) How far is the distance between the connected

nodes?
(iii) What is the role of the node in a network (a hub to

connect other nodes or an endpoint)?

On this basis, we chose the following five indexes to reflect
the characteristics of a sharing-bike network. +e first two
indexes deal with the first question, while the second and the
last could be addressed by index 3, 4, and 5 independently.

(1) Out-Degree Centrality. +e number of links out of the
node in the directed graph, which represents the expansion
force of the node, also known as integration.

D
out
i � 􏽘

j≠i∈E
outi,j, (4)

where j represents any node except the node i, E represents
the set of all network nodes, and outi,j represents whether
there is a reachable edge from i to j, when it is yes, outi,j � 1,
otherwise, outi,j � 0.

(2) In-Degree Centrality. +e number of links entering the
node in the directed graph, showing the attraction of a node,
or being expressed as radiality.

D
in
i � 􏽘

j≠i∈E
ini,j, (5)

when there is a reachable edge from j to i, ini,j � 1; oth-
erwise, ini,j � 0.

(3) In-Closeness Centrality. +e reciprocal of the sum of the
shortest distances from a node to all other nodes, showing
the difficulty of a node to other nodes.

C
in
i �

1
􏽐

n
j�1 d(i, j)

, (6)

where d(i, j) represents the length of the shortest path from i

to j.

(4) Out-Closeness Centrality. +e reciprocal of the sum of the
shortest distances from all other nodes to the node, showing
how easy it is for other nodes to reach the node.

C
out
i �

1
􏽐

n
j�1 d(j, i)

, (7)

where d(j, i) represents the length of the shortest path from
j to i.

(5) Betweenness Centrality. +e ratio of the shortest path
passing through this node to all shortest paths, which reflects
the degree of the close connection between this node and
other nodes (Equation 8).

Bk � 􏽘
(i,j)∈E

Pk(i, j)/P(i, j)

(n − 1)(n − 2)/2
, (8)

where P(i, j) represents the shortest paths between node i

and j, Pk(i, j) denotes the number of shortest paths between
node i and j, including node k, and n is the number of nodes
in the network. Visually, it can be found that the be-
tweenness centrality reflects the importance of the node as
an intermediate bridge, which indicates the degree of
closeness.

+e shortest path algorithm (Dijkstra algorithm) was
involved in the index calculation. We determined a
threshold of the shortest path solution, considering the
characteristics of dockless sharing-bicycle travel. +en, the
nonlinear distance between the origins and destinations was
calculated based on the shortest path. When the result was
larger than the threshold value, the path would be invalid.
+e threshold was set to be 6 km, as shown in Figure 1.

3.2.4. Calculation of Accessibility. +e five indexes dem-
onstrate the centrality of every node conclusively and exert
different impacts on accessibility. In order to facilitate
comparison, it is necessary to fuse the five indicators into
one indicator as a measure of accessibility. We simplified the
accessibility model that was quantitatively expressed as
follows:

Acci � 􏽘
5

j�1
wjCij, (9)

where Acci denotes the accessibility of sharing-bike clus-
tering center i, wj denotes the weight of the jth indicator,
and Cij denotes the jth indicator value of sharing-bike
clustering center i.

+e entropy method is usually employed to evaluate the
influence of various indicators on comprehensive mea-
surement. Information theory claims that the value of en-
tropy is a measure of uncertainty. +e entropy declines with
the increasing amount of information, as well as the dis-
persion degree of an index. +erefore, the entropy method
was selected in this paper to determine the weight of each
indicator (coefficient wj). +e calculation process consisted
of three steps.
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(1) Normalization of Indicators. It is necessary to standardize
the original data as the units and dimensions of various
indexes are of differences. Moreover, the order of magnitude
of each index differs considerably. +e maximum-minimum
standardization method was used to convert the initial
measurement values into nonunit variables (equation (10)).

E
j

i �
X

j
i − minX

j

maxX
j

− minX
j
, (10)

where E
j
i is the standardized value of the index jof research

unit i, X
j
i is the initial value of the index j of research

unit i, min Xj is the minimum value of the index j of all
research units, and max Xj is the maximum value of the
index j of all research units.

(2) Index Entropy Calculation

δj
i �

E
j
i

􏽐
n
i�1 E

j
i

,

ej � −
1

ln n
􏽘

n

i�1
δj

i ln δj
i ,

(11)

where δj
i is the proportion of the index j in the research unit

i, n denotes the number of research units, and ej represents
the entropy value of index j.

(3) Weight Calculation of Indicators

wj �
1 − ej

m − 􏽐
m
j�1 ej

, (12)

where wj is the weight value of indicator j, and m represents
the number of indicators.

4. Case Study

4.1. Data Availability. Shanghai is an international me-
tropolis where dockless sharing bikes gain broad popularity,
and the network of sharing bikes is relatively stable.
+erefore, we chose Shanghai as a case study. Data used in
this paper consisted of three types: dockless sharing-bike
dataset of Shanghai, Shanghai administrative division data,
and points of interest (POI) data.

4.1.1. Data Sources

(1) Dockless Sharing-Bike Dataset. +e dockless sharing-bike
data used in this paper have approximately 20 million pieces
of record in 14 days from August to September 2018 in
Shanghai after decryption. +e single-day data include bike
ID, data time, lock status, and location (longitude and
latitude) records of all dockless sharing bicycles in Shanghai.

Bike identification is used to identify bikes, and then the
single-day running data record chain of a bicycle can be
detected. Lock status is the state quantity of shared bicycles,
which indicates whether the bike is in usage. Data generation
times, as well as latitudes and longitudes, provide spatial and

temporal information of dockless sharing bicycles, which
makes it possible to analyze the trajectory of dockless sharing
bicycles quantitatively.

Due to the error of transmitting signal equipment of
dockless sharing bikes, there may be time vacancies in the
DATA_TIME field, and these records need to be removed to
ensure information integrity in subsequent processing.
Furthermore, the latitude and longitude data of sharing
bicycles may drift away from the actual data points because
of the errors of the GPS. +is could be solved by removing
the records whose longitude and latitude are not located in
the Shanghai administrative region.

(2) Points of Interest (POIs) Data. POI data are obtained
from Baidu Map. +ere are approximately 550,000 POI
records in Shanghai, which could be divided into 12 cate-
gories, containing catering, landscapes, public facilities,
transportation facilities, education, finance districts, busi-
ness residence, automobile services, sports, leisure, medical
services, and accommodation. POIs could be used to verify
the reliability of node generation.

(3) Shanghai Administrative Division Data. +e data of
Shanghai administrative divisions in Esri Shapefile format
for 2018 include the boundary data of 16 municipal districts
in Shanghai. +is kind of data could be used in determining
network boundaries.

4.1.2. Characteristic of Dockless Sharing Bikes. +e charac-
teristics and distribution of dockless sharing-bicycle trips are
shown in Figure 3. Figure 3(a) indicates that the travel
distance of sharing bicycles is mainly within 3 km (95.2%)
and will not exceed 6 km. +e highest frequency of travel
distance ranks between 0.5 and 1.0 km, accounting for 38.3%
of total trips. Figure 3(b) shows that 85.5% of the bike travel
time is within 20 minutes, of which 35.3% is 5–10 minutes,
corresponding to the travel distance of 0.5–1.0 km. It can be
concluded that sharing bicycles provide a new choice for the
first/last mile of urban travel, and most users choose sharing
bikes for short-distance trips. In this case, sharing bikes are
an essential part of the connection transportation method of
subway and buses. +e speed of sharing bicycles in
Figure 3(c) approximately obeys a normal distribution with
the mode of 7–8 km/h and relatively small discreteness.
From Figure 3(d), a bimodal distribution of sharing bikes
could be observed. +e peak time of sharing-bike trips is at 9
a.m. and 7 p.m., which coincides with the peak time of
commuting trips. It is worth mentioning that the duration of
the morning peak and evening peak is different. +e evening
peak of sharing-bicycle usage is about three hours, while the
morning peak is only one hour. +is also reflects the di-
versity of get-off work hours, and the freedom of travel in the
evening is relatively higher than morning. At the same time,
the usage of sharing bicycles in the morning peak is sig-
nificantly lower than that in the evening peak. +is may be
due to people’s higher requirements for time reliability when
traveling in the morning. +ere is a certain degree of ran-
domness in finding sharing bicycles, and people tend to
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choose more reliable travel modes to avoid being late. It can
be inferred that most bicycle trips are commuting trips-
connecting subways and buses in the first/last mile. +ese
features of dockless sharing-bike travel can be applied to the
calibration of model parameters.

4.2. Results and Discussion. +e clustering algorithm was
applied to cluster about 20 million origin and destination
points of dockless sharing-bike travel records in Shanghai
within two weeks, and approximately 8,000 sharing-bike
traffic zones were obtained. +e information of this network
is displayed in Table 1. Each zone is a convex polygon with
an area of about 0.25 km2 (Figure 4). Comparing these
clustering centers with POIs, we could find that most of
them are coincident with POIs, indicating that bikes
spontaneously gather around POIs. +e division of bike
traffic zones not only lays a foundation for the follow-up
research of this paper but also provides a new idea for
dealing with the network distribution of nonmotorized
traffic.

Based on the data of bike travel flow and travel district
division obtained by clustering analysis, a sharing-bike
network was established. Afterward, the SNA method was

applied to calculate the in-degree, out-degree, in-closeness
centrality, out-closeness centrality, and betweenness cen-
trality of each node before the entropy method was intro-
duced to compute the weight of each index. On this basis, the
accessibility of each sharing-bike traffic zone was obtained.
+e final model is in the format of equation (9) and could be
expressed as equation (13). +e in-closeness centrality and
betweenness centrality indexes exerted a stronger influence
on the accessibility, which demonstrated that the difficulty of
reaching other nodes and closeness are the critical factors in
accessibility assessment.

Accei � 0.160D
out
i + 0.172D

in
i + 0.208C

in
i + 0.200C

out
i + 0.260Bi.

(13)

+e five indicators and accessibility values of each clus-
tering zone based on the SNA approach are displayed in
Figure 5. +e five indicators show a decreasing trend from the
city center to the periphery. In addition to the city center, there
are other subcenters, which also have relatively high centrality
and availability. Observing figures of the five indicators, we
could discover that there was a big difference in the evaluation
of the peripheral areas. +e values of closeness centrality and
betweenness centrality in the city periphery were almost close
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Figure 3: Distribution of dockless sharing bikes: (a) travel distance distribution, (b) travel time distribution, (c) travel speed distribution,
and (d) 24-hour travel distribution.
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Thiessen polygon
Node
Edge

Figure 4: +e sharing-bike network of Shanghai (part of the network).

Table 1: +e information of the sharing-bike network.

Number of nodes Number of edges Mean closeness Mean betweenness Mean clustering coefficient
8061 106297 3.205×10−4 7.179×10−4 0.292
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(b)

Figure 5: Continued.
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to zero, which may result from the relatively small supply of
bikes in the peripheral area and the longer distances between
POIs. However, the connection function of nodes (the number
of links of a node) in the network is ignored in those indexes.
+erefore, the accessibility calculation model that integrates

various indicators can evaluate the accessibility of the entire
research area from multiple angles.

To explore the relationship between different indicators,
we conducted a Pearson correlation analysis (Table 2). As
shown in the table, there is a relatively strong correlation
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0.444 – 0.556
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(c)
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(e)

Figure 5:+e distribution of indicators from SNA for the dockless sharing-bike network in Shanghai: (a) out-degree centrality distribution,
(b) in-degree centrality distribution, (c) out-closeness centrality distribution, (d) in-closeness centrality distribution, and (e) betweenness
centrality distribution.
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between accessibility (measured by the spatial interaction
model) and the closeness centrality (correlation coef-
ficient� 0.84). Accessibility (measured by spatial interaction
model) is moderately correlated with betweenness centrality
and poorly connected with node degrees. Since closeness

centrality is the reciprocal of the sum of the shortest dis-
tances between two nodes, the high correlation indicates that
accessibility primarily deals with the travel barrier, in other
words, distance plays a vital role in accessibility assessment.
+e entropy value of accessibility based on SNA shows a

Table 2: Correlation matrix of accessibility measures.

In-degree
centrality

Out-degree
centrality

In-closeness
centrality

Out-closeness
centrality

Betweenness
centrality Acc_SNA Acc_SIM

In-degree
centrality 1

Out-degree
centrality 0.642∗∗ (0.000) 1

In-closeness
centrality 0.302∗∗ (0.000) 0.328∗∗ (0.000) 1

Out-closeness
centrality 0.289∗∗ (0.000) 0.329∗∗ (0.000) 0.982∗∗ (0.000) 1

Betweenness
centrality −0.023 (0.000) −0.003 (0.000) 0.754∗∗ (0.000) 0.760∗∗ (0.000) 1

Acc_SNA 0.544∗∗ (0.000) 0.571∗∗ (0.000) 0.929∗∗ (0.000) 0.928∗∗ (0.000) 0.721∗∗ (0.000) 1

Acc_SIM 0.319∗∗ (0.000) 0.350∗∗ (0.000) 0.847∗∗ (0.000) 0.841∗∗ (0.000) 0.502∗∗ (0.000) 0.779∗∗
(0.000) 1

∗∗Correlation is significant at the 0.01 level (2-tailed). Acc_SNA represents that the accessibility is obtained by the SNA approach, while Acc_SIM represents
that the accessibility is by the spatial interaction model.
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Figure 6: Accessibility map of dockless sharing bikes in each administrative region of Shanghai.
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relatively high correlation with that from the spatial inter-
action model. In this way, we could believe that this pro-
posed method could be complementary for accessibility
assessment. +ese five indicators, as part of the accessibility
assessment, provide a more comprehensive perspective for
accessibility evaluation. Apart from the distance between
origins and destinations, the newmethod also pays attention
to the characteristics of the dockless sharing-bike network
and considers the threshold of bicycle travel to determine
whether the nodes are connected or not. +erefore, acces-
sibility assessment based on the SNA approach could be
more in line with reality.

To be more intuitive for decision-makers, we display the
accessibility of an administrative region, which was defined
in this paper as the summary of accessibility of each traffic
zone divided by the total number of traffic zones in this
administrative region. +en, the accessibility of each ad-
ministrative region in Shanghai can be seen in Figure 6.
From the figure, the accessibility of dockless sharing bikes in
Jing’an District, Huangpu District, Hongkou District, and
Minhang District ranked the highest, which meant that it
was more convenient for passengers to use dockless sharing
bicycles in these areas, that is, these areas were more friendly
to nonmotorized traffic. However, peripheral administrative
regions such as Jinshan District, Qingpu District, Jiading
District, and Chongming District were less accessible, in-
dicating that nonmotorized transport in these zones was
underdeveloped. +e results illustrated the unbalanced de-
velopment of nonmotorized transportation, which was
primarily because of differences in infrastructure supplies,
bike numbers, and geographical locations. More research

could be conducted to find the principal causes based on
accessibility results. Urban planners, policymakers, and
bicycle suppliers could obtain information for optimization
decisions.

4.3. Model Evaluation. +e five indicators and accessibility
values of each clustering zone based on the SNA approach
are displayed in Figure 7(a). +e accessibility measured by
the spatial interaction model is displayed in Figure 7(b),
which shows a similar distribution with closeness centrality.
Its ability to evaluate the accessibility of the peripheral areas
is weak since it cannot reflect the differences of the pe-
riphery. More abundant data may be required to support the
study of the entire region.

5. Conclusions

+is paper investigated the problem of dockless sharing-bike
network accessibility from a network perspective. +e SNA
was applied to estimate the accessibility, considering the
interaction barriers and the network structure of a bicycle
network. +e developed methodology requires fewer data
and is easy to operate.

A dockless sharing-bike traffic network was founded on
the basis of a hierarchical clustering algorithm according to
the geographical correlation of origins and destinations. +e
algorithm was based on the characteristic of bike users, who
would only be willing to find a sharing bike within his/her
acceptable walking distance. Different from the k-means
clustering algorithm, there is no need to assign a k-value in
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Figure 7: Accessibility map of the dockless sharing-bike network in Shanghai: (a) accessibility based on the SNA approach and
(b) accessibility based on the spatial interaction model.
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advance, which otherwise would result in excessive clustering
radius and inconsistency with user psychology. As a result,
this algorithm clustered origins and destinations of bike travel
from 20 million to approximately 8,000 sharing-bike traffic
zones, which were regarded as nodes of the bike network.
Compared with POI data, these zone centers almost over-
lapped with transit stops, schools, office buildings, shopping
malls, etc., which indicated the reasonability of the algorithm.

An accessibility assessment model of sharing-bike net-
work was constructed based on the SNA approach. Five
indexes of social network analysis were introduced to
evaluate accessibility, and the weight of each index was
calculated according to their impacts on accessibility. +is
method considered not only the spatial barrier between
origins and destinations but also focused on the node
connectivity from a network perspective, thus providing a
relatively comprehensive perception of sharing-bike net-
work accessibility. +e correlation analysis with the com-
monly used model (spatial interaction model) revealed that
there exist some correlations between SNA indicators and
accessibility. +erefore, it is reasonable to apply the SNA
approach to assess the accessibility of sharing-bike network.
+e results suggested that the central districts like Jing’an,
Huangpu, Hongkou, andMinhang District in Shanghai have
higher sharing-bike accessibility than those peripheral ad-
ministrative regions. Unlike other studies, the data required
in this paper are easy to obtain as we could retrieve running
data from bike-sharing companies to do real-time com-
puting and present these results to both users and suppliers.

+is paper assessed and mapped the accessibility of the
dockless sharing-bike network in Shanghai, and the main
work could be divided into two parts. A novel and promising
perspective from SNA is proposed in accessibility assess-
ment by analyzing the relationship between accessibility and
different centralities. +e objective of this paper is to provide
information for the optimization of sharing-bike network, so
accessibility was selected as an evaluation of a network
current status. +e results of accessibility could provide
information for both users and decision-makers. +e real-
time assessment could be completed to display immediate
accessibility for users to judge which place nearby is of
higher accessibility. For urban planners, policymakers and
bicycle suppliers could obtain information to identify areas
where improving infrastructure investment and sharing
bikes are of necessity, thus creating a user-friendly envi-
ronment for nonmotorized travel mode and improving a
sustainable transportation system. As the primary travel
mode of nonmotorized traffic, sharing bikes are in line with
the concept of green travel and sustainable development.

One of the limitations of this paper is that the data were
collected in two weeks, which is not typical enough, and the
estimation model cannot be extended to other seasons. In
the future, it is essential to admit that one limitation of our
approach is that the two-week data used in our research were
not typical enough. +e characteristics of cyclists may vary a
little according to seasons, weathers, and holidays. Further
investigations could be carried out to explore the thresholds
used in different parts. Additionally, the proposed accessi-
bility assessment model is mainly based on the

characteristics of network topology, and more concentration
could be laid on the combination of different methods to
understand and interpret the accessibility of a nonmotorized
network thoroughly. Due to the limited data and time, the
research does not focus on the other modes and types of
networks to verify the extrapolation of the accessibility
indicator weights. Based on collecting bike-sharing opera-
tion data in multiple cities, the future study can focus on
extrapolating of the results.
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