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Map matching can provide useful traffic information by aligning the observed trajectories of vehicles with the road network on a
digital map. It has an essential role in many advanced intelligent traffic systems (ITSs). Unfortunately, almost all current map-
matching approaches were developed for GPS trajectories generated by probe sensors mounted in a few vehicles and cannot deal
with the trajectories of massive vehicle samples recorded by fixed sensors, such as camera detectors. In this paper, we propose a
novel map-matching model termed Fixed-MM, which is designed specifically for fixed sensor data. Based on two key observations
from real-world data, Fixed-MM considers (1) the utility of each path and (2) the travel time constraint to match the trajectories of
fixed sensor data to a specific path. Meanwhile, with the laws derived from the distribution of GPS trajectories, a path generation
algorithm was developed to search for candidates. +e proposed Fixed-MM was examined with field-test data. +e experimental
results show that Fixed-MM outperforms two types of classical map-matching algorithms regarding accuracy and efficiency when
fixed sensor data are used. +e proposed Fixed-MM can identify 68.38% of the links correctly, even when the spatial gap between
the sensor pair is increased to five kilometers. +e average computation time spent by Fixed-MM on one point is only 0.067 s, and
we argue that the proposed method can be used online for many real-time ITS applications.

1. Introduction

Mapmatching is the process of correctly identifying the path
on which a vehicle is travelling [1]. It provides a promising
opportunity to upgrade the service level of various intelligent
traffic system (ITS) applications [2–4]. However, the current
map-matching algorithms are generally designed for satel-
lite-based GPS points that are provided by probe sensors
mounted on probe vehicles. +ese probe vehicles provide
spatial traffic information and direct measurements of travel
time to monitor the traffic conditions in a citywide road
network.

However, probe sensor data have limitations. +e cost of
purchasing GPS units and transferring data can severely
limit the scale of probe samples. Only a biased estimation of
the traffic information can be obtained because the probe
data are usually collected from one type of vehicle, such as
taxis. Additionally, a probe sensor system imposes an
enormous computational burden on the system

administration owing to high polling frequency and posi-
tional noise [5].

Fixed sensor data show the potential to overcome the
issues existing in the probe sensor data. Fixed sensors, such
as cameras, loops, and microwaves, are widely used in urban
traffic monitoring and management (with the development
of ITS technology, camera sensors have been improved in
terms of accuracy, cost, and ease of use. +erefore, the fixed
sensor data considered in this paper refer specifically to the
observations collected through camera-based sensors). +e
transit information of every vehicle approaching the fixed
sensor station is captured. Consequently, the movement
patterns of almost all vehicles running on a road network
with fixed sensors can be recorded. +is provides oppor-
tunities to reduce the estimation bias in traffic information.
+e fixed sensor system may also improve the efficiency of
the map-matching process with a reduced polling frequency
and more accurate location record, even for a large-scale
urban traffic system.
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Many map-matching methods have been developed, and
their reviews can be found in [1, 6]. Quddus et al. classified
the methods into four categories: geometric, topological,
probabilistic, and advanced. However, such approaches can
only perform well with high-frequency GPS data and may
become less effective for low-frequency trajectory data [6].
In recent years, two groups of methods, namely, HMM-
based algorithms and ST-Matching algorithms, have been
developed to deal with the sparsity issue of low-polling
frequency trajectory data.

(i) HMM-based algorithms: Newson and Krumm [7]
introduced a two-step map-matching algorithm
based on a hidden Markov chain for a sparse GPS
trajectory, called the HMM algorithm. First, this
method finds a set of candidate links for each GPS
point and defines a measurement probability to
describe how the GPS point is aligned with each
candidate link. +en, it connects each pair of con-
secutive candidate links with the shortest path to
generate the candidate graph. Next, a transition
probability defines the likelihood of the tracking
vehicle moving along each candidate path. Finally,
the best matching path sequence is identified using
the Viterbi algorithm.+e experimental results show
that even with sampling intervals of 30 s, the accu-
racy of this algorithm is barely degraded. However, it
has high computational complexity and becomes
slow when working with long trajectories and ex-
tended search radii. Mohamed et al. [8] employed
three filters (i.e., speed, direction, and α-trimmed
mean filters) to reduce the candidate sets for im-
proving the efficiency of the map-matching process.
Koller et al. [9] proposed a fast-HMM algorithm that
replaces the Viterbi algorithm with the bidirectional
Dijkstra to determine the optimal map-matching
solution. +is algorithm can avoid up to 45% of the
costly routing operations without negatively affect-
ing the map-matching result. Han et al. [10] parti-
tioned road networks into approximate segments
and then indexed the approximate segments into an
optimised packed R tree to improve the road-net-
work search duration. It has also been argued that
mobility in a road network is non-Markovian.
Jagadeesh and Srikanthan [11] complemented the
HMM algorithms with the concept of drivers’ route
choice.+e results show that this improves matching
accuracy further, especially at high levels of noise.

(ii) ST-Matching algorithms: Lou et al. [12] introduced a
map-matching algorithm for low-polling frequency
GPS trajectories based on both spatial and temporal
analysis, called ST-Matching. It modelled temporal
analysis using speed and travel time data to improve
its accuracy. +e experimental results show that ST-
Matching is more robust to the decrease in sampling
rate than the map-matching algorithm using only
spatial information, indicating that temporal con-
straints are indeed useful in map matching with
sparse trajectory data. Considering that this method

cannot handle the matching error well at junctions,
Hsueh and Chen [13] introduced directional analysis
to ST-Matching, called STD-Matching. It employs
real-time directional motion with the directional
analysis function to reflect the influence of a user’s
true movement over the GPS trajectories. +e ex-
perimental results demonstrate that the STD-
Matching algorithm significantly improves the
matching accuracy. Liu et al. [14] proposed a spatial
and temporal conditional random field map-
matching method called the ST-CRF algorithm. +e
ST-CRF model considers both spatial and temporal
accessibility between two GPS points, in addition to
consistency in the direction of travel. A series of
experiments showed that the ST-CRF method has
better performance and robustness and solves the
“label-bias” problem in the HMM algorithm.

+e above-mentioned map-matching algorithms are
mainly designed for low-frequency probe sensor data, such
as GPS trajectories. +ey may become less effective for fixed
sensor data because the fixed sensor data differ from probe
sensor data in at least two aspects:

(a) +e fixed sensor data are much sparser than the
probe sensor data. As shown in Figure 1(a), the
distance between consecutive points recorded by
fixed sensors is usually dozens of times that recorded
by the probe sensor. Hence, there are too many
possible paths to be matched between neighbouring
fixed sensors. If only the shortest path length is
considered (as in the current map-matching algo-
rithms developed for probe sensors), the realistic
paths may not be adequately evaluated.

(b) +e positions provided by the fixed sensors are fixed
and accurate, while the probe sensors move along
with the probe vehicle and generate GPS points with
random errors [15]. Figure 1(b) presents a micro-
scopic view of the trajectories between the fixed
sensors 20200906 and 10203801. One easily finds
that the fixed sensor data (green points) are located
accurately on the road links, and the probe sensor
data (red points) are always positioned several
meters away from the true path.

In this study, we developed a map-matching algorithm
designed specifically for fixed sensor data, called Fixed-MM.
For this purpose, the conventional map-matching models
for probe sensor data are abbreviated as Probe-MM. +e
contributions of Fixed-MM can be summarised as follows:

(a) It combines both route choice preferences and
temporal constraints to identify the true path of the
fixed sensor data. +e experimental results show that
the proposed method significantly improves the
matching accuracy.

(b) Fixed-MM developed a candidate-path generation
algorithm to search for a realistic path by relaxing the
assumption that the location of each point is noisy.
In this manner, the time-consuming candidate-path
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generation process can be conducted separately and
in parallel, and average computation time of the
matching process for a point is reduced to 0.067 s.

+e remainder of this paper is organised as follows. +e
problem definition and overview of the framework are
presented in the Preliminaries section. +en, the Fixed-MM
algorithm and candidate-path set generation algorithm are
proposed in the Methodology section. +e Experiment
section details the process and presents the experimental
results. Finally, we conclude the paper in the last section.

2. Preliminaries

2.1. Formulation of the Map-Matching Problem. To better
illustrate Fixed-MM, the definitions of variables and the
problem are introduced in this section.

Definition 1. Road network: a road network (RN) consists of
a set of road links l{ } connected in a graph format. Each road
link, l, is a directed edge with two terminal points, a length
(l.len), a level (l.lev) (e.g., an expressway, a primary road, or a

secondary road), a direction (l.di) (e.g., one-way or bidi-
rectional), and the number of lanes (l.lan).

Definition 2. Path: path P is represented by a sequence of
connected road links, P: l1, l2,. . ., lx,. . ., lX, in an RN.

Definition 3. Fixed sensor trajectory: a fixed sensor trajec-
tory, Tr, is a sequence of time-ordered points, Tr: Fid(1) , Fid(2) ,
. . ., Fid(j) , . . ., Fid(J) , where each point Fid(j) has a unique
identification number, id, geospatial coordinate, (Fid(j) · lon,
Fid(j) · lat), and timestamp, Fid(j) · t.

Definition 4. Sensor pair: a sensor pair is two neighbouring
points in a Tr, namely, (Fid(j) , Fid(j+1)), j� 1, 2, . . ., J−1, where
Fid(j) is the original fixed sensor point and Fid(j+1) is the
destination fixed sensor point.

Definition 5. Candidate path set: the candidate path set, Φj,
consists of all paths with a nonzero probability of matching
between a given sensor pair (Fid(j) , Fid(j+1)), while all unre-
alistic paths have a probability of zero.

Fixed sensor: 10100403
Timestamp: 2016-09-07 00:48:14

Fixed sensor: 10100405
Timestamp: 2016-09-07 00:44:30

Fixed sensor: 10203801
Timestamp: 2016-09-07 00:37:43

Fixed sensor: 20200906
Timestamp: 2016-09-07 00:33:48

0.9 0 0.9 1.8 2.7 3.6 km

Fixed sensor station

GPS points
Trajectory recorded by fixed sensor

True route

(a)

Fixed sensor: 20200906
Timestamp: 2016-09-07 00:33:48

Fixed sensor: 10203801
Timestamp: 2016-09-07 00:37:43

300 0 300 600 900 1200 m

(b)

Figure 1: Comparison of fixed sensor and probe sensor data. (a) Macroscopic and (b) microscopic views of one vehicle’s trajectories
recorded by the probe and fixed sensors.
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Now the problem of Fixed-MM is defined as follows.

Problem 1. Given a fixed sensor trajectory Tr and a road
network RN, for each sensor pair (Fid(j) , Fid(j+1)) in Tr, find a
path Pi from Φj with the highest probability of being a
matched path.

2.2. Framework. +e framework of Fixed-MM is illustrated
in Figure 2. +ree types of datasets, including fixed sensor
data, probe sensor data, and road network data, are used as
inputs. +e trajectory of the fixed sensor data is first
decomposed into separate sensor pairs. +e probe sensor
data are also matched with a specific path based on the
Probe-MM algorithm. Meanwhile, a candidate path gen-
eration algorithm is used to search for possible paths for each
sensor pair. +en, the matching probability for each can-
didate path is calculated, and the matching results can be
attained by finding the candidate path with the highest
matching probability.

3. Methodology

3.1. Characteristics of the Data. +e key to Fixed-MM is
finding the most likely path to connect the sensor pair. In
this section, we provide two key observations of the true
trajectories that lead to the proposed approach. Figure 3(a)
illustrates the GPS trajectory of 1365 sample vehicles trav-
elling between the sensor pair (F20507303, F20501803), and they
are taken as examples to illustrate the observed laws.

Observation 1. +e drivers prefer to travel along the path
with high utility.

Example 1. Consider path A, path B, and path C visualised
in Figure 3(a) with their attributes summarised in Table 1.
Sixty-eight percent of the samples travel path A, while only
32% of the samples travel along the other two. +us, it is
reasonable to infer that drivers prefer to choose paths with
less travel time, fewer intersections, and more high-level
road links, which indicates that the higher the utility of the
path, the more attractive the path is to the driver.

Observation 2. +e observed travel time tends to be close to
the expected travel time of the true path.

Example 2. Based on the Prob-MM algorithm, the GPS
trajectories can be matched to three paths. +e histograms of
the observed travel times for the three paths are calculated in
Figure 3(b). It is easily found that the histograms fit well to the
normal distribution, whichmeans that a path’s observed travel
time tends to be close to its expected travel time (average travel
time). If the observed travel time of a sample is 18min, wemay
infer that this trip is very likely to be matched with path C.

Based on the above observations, we propose a novel
map-matching algorithm for fixed sensor data, namely,
Fixed-MM that incorporates both (1) the utility of each route
and (2) the travel time constraint to identify the path with
the highest probabilities from the candidate path set as the

matched path. Details of the utility model, travel time
constraint, and candidate path set generation algorithm are
described in the following subsections.

3.2. Utility Model. Similar to the route choice model, the
travel behaviour preference reflected in Observation 1 is
modelled with utility theory. It assumes that the driver’s
preference for a path is captured by a value called utility, and
the driver selects the path in the candidate set with the
highest utility [16].

Let Ui,j be the utility of the ith path Pi,j belonging to the
candidate setΦj of the sensor pair: (Fid(j) , Fid(j+1)). It consists
of a deterministic term Vi,j and a random term εi,j such that

Ui,j � Vi,j + εi,j. (1)

+e random term εi,j is assumed to be independent and
identically distributed (i.i.d.) as a Gumbel distribution. +e
deterministic term is assumed to have a linear relationship
with path attributes, such that

Vi,j � βFTTx
FTT
i,j + βNSLx

NSL
i,j + βPEx

PE
i,j , (2)

where xFTT
i,j , xNSL

i,j , and xPE
i,j are vectors of the observed path

attributes and βFTT, βNSL, and βPE are vectors of coefficients
that represent drivers’ preferences on path attributes. +e
descriptions of the path attributes are presented in Table 2.

Based on the above definitions of path utility, the
matching probability of a candidate path Pi,j is given by [16]

Pr Pi,j  �
e

Vi,j

P
i′ ,j∈Φj

e
V

i′ ,j
. (3)

Equation (3) can also be transformed as

Fixed sensor
data

Probe sensor
data

Road
networks

Fixed sensor
trajectories

Decomposed as
sensor pair

Probe sensor
trajectories

Candidate-
path

generation

Calculated the
matching probability

for each candidate path

Candidate-path
set for each
sensor pair

Find the path with the highest
matching probability as the

matching result

Probe-MM

Figure 2: Framework of the proposed Fixed-MM Algorithm.
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Pr Pi,j  �
e

Vi,j

P
i′ ,j∈Φj

e
V

i′ ,j
�

1
P

i′ ,j∈Φj
e

V
i′ ,j− Vi,j

. (4)

It is easy to find that the larger the difference between the
utility Vi,j and the other Vi′,js, the higher the matching
possibility, Pr(Pi,j). +is means that the candidate path with
higher utility is more likely to be matched, which corre-
sponds to the rule reflected in Observation 1.

3.3. Temporal Constraint. To consider Observation 2, the
temporal constraint between the observed travel time and
expected travel time of a candidate path must be modelled.
+eir definitions are as follows.

+e observed travel time tj,n is the time spent by the nth
sample when travelling between sensor pairs (Fid(j) , Fid(j+1))
and can be obtained by calculating the difference between
the transit timestamps recorded by Fid(j) and Fid(j+1) :

tj,n � Fid(j+1) · t − Fid(j) · t. (5)

+e expected travel time ti,j is the average travel time of
the candidate path, Pi,j, where Pi,j ∈ Φj. +is can be cal-
culated based on probe sensor data:

ti,j � 
lx∈Pi,j


N
n�1 tx,n

Nx

, (6)

where tx,n is the travel time spent by the nth sample on road
link lx, and Nx is the total number of probe vehicles tra-
versing road link lx.

+e temporal constraint can be calculated based on the
deviation tj,n − ti,j between the observed tj,n and the expected
travel times, ti,j. +is is attributed to a combination of the
natural variation in travel times and the error in the travel time
estimate.+e deviations of the three sample paths are shown in
Figures 4–6 in Appendix A, respectively.+e travel time varies
significantly on different paths depending on the time of day,
and all the histograms of tj,n − ti,j during the morning peak fit
well to the normal distribution.+erefore, we can assume that
the deviations have a Gaussian distribution
tj,n − ti,j ∼ N(μs, σs). μs and σs are the mean and variance of
tj,n − ti,j for the candidate path Pi,j, during period s. +en, the
temporal constraint q(tj,n − ti,j) can be defined as

q tj,n − ti,j  �
e

− 0.5 tj,n− ti,j− μs/σs( 
2

P
i′ ,j∈Φj

e
−0.5 tj,n− t

i′ ,j−μs/σs 
2 . (7)

+e denominator aims at normalizing the temporal
constraint to one.

We added the temporal constraint as a correction term
for the utility function. +en, the matching probability can
be rewritten as

Pr Pi,j  �
e

Vi,j+α ln q tj,n− ti,j( 

P
i′ ,j∈Φj

e
V

i′ ,j+α ln q tj,n− t
i′ ,j 

, (8)

where α is a scale parameter. +e correct term α ln q(tj,n −
ti,j) in equation (8) describes the likelihood of compliance
between the observed tj,n and expected travel time ti,j. When
tj,n − ti,j is smaller (the observed travel time is closer to the
expected travel time), q(tj,n − ti,j) becomes larger.

Table 1: Attributes of path A and path B.

Attributes Path A Path B Path C
Length of route (m) 8239.25 9022.70 8971.15
Number of signal lights 0 0 7
Average travel time (min) 7.11 12.49 16.83
Proportion of expressway 1 1 0.37

20507303

20501803

800 0 800 1,600 2,400 3,200 m

Fixed sensor
Signal light
Path A

Path C
Path B

(a)

0.5

0.4

0.3

0.2

0.1

0.0
0 5 10 15

Travel time (min)

Histogram of path A
Histogram of path B
Histogram of path C

Fitting curve of path A
Fitting curve of path B
Fitting curve of path C

20 25

Co
m

po
sit

io
n 

ra
tio

(b)

Figure 3: +e sensor pair example. (a) +e location of the sensor pair example and the GPS trajectories. (b)+e distribution of travel times.
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According to equation (4), the matching probability in-
creases Pi,j. +is is also in line with Observation 2 in the
previous section.

3.4. Generating Candidate Path Set. Finding all possible
paths that connect each sensor pair as candidates is another
key step for Fixed-MM. +e candidate path set is usually
large, with a long distance between the paired sensors, and a
dense urban road network. In addition, preferential and
realistic paths should be included because comparing a path
to a set of highly unattractive and unrealistic candidates
would not provide much useful information [17]. In this
study, we develop a protocol for generating a realistic
candidate path set based on the following observations:

Observation 3. +ere may be certain detours on the can-
didate paths.

Example 3. Figure 7(a) illustrates the GPS trajectories of 620
samples that travel between sensors F20507301 and F20507302
near the Bao’an International Airport in Shenzhen, China.

Based on the map-matching algorithm designed for the
probe data, each GPS point was projected onto a specific
link. +e observed number of samples on each link is
represented by different colours in Figure 7(b). Most (92%)
of the samples have a large offset against the shortest path,
and the departure platform of the airport was chosen as a
destination on the way. +is indicates that there may be
certain detours on these popular paths. +ese circuitous
paths may be considered as unattractive alternatives for
route choice models. However, they are popular candidates
in the context of map-matching algorithms.

Observation 4. Trajectories captured by a sensor pair will
not pass the links monitored by other fixed sensors.

Example 4. As shown in Figure 7(a), the road link moni-
tored by the fixed sensor F20507403 has never been travelled by
any vehicle captured by the sensor pair (F20507301, F20507302).
+e reason for this phenomenon is that if a vehicle has
travelled on the link where F20507403 located, the pass in-
formation will be recorded, and then the sensor pair

Table 2: Attributes used for path utility.

Attributes Parameters Descriptions

xNSL
i,j βNSL Number of signal lights (NSL): the number of signal lights along the path

x FTT
i,j βFTT Free travel time (FTT): free flow travel time along the path (unit: s)

xPE
i,j βPE +e proportion of expressway (PE): the proportion of expressway links
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Figure 4: (a) GPS trajectories of samples. (b) Temporal distribution of the samples. (c) Histogram of the temporal constraint between 6:00
and 7:00 (fitting result: μ � 0.20 and σ � 1.02, goodness of fit: 0.99).
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(F20507301, F20507302) will be decomposed into two sensor
pairs, namely, (F20507301, F20507403) and (F20507403, F20507302).

In this paper, we believe that historical GPS trajectories
contain useful information about the composition of popular

candidates. +us, the candidate path does not necessarily
conform to behavioural assumptions but must be realistic; we
use a biased randomwalk algorithm, which was first proposed
by [17] to generate the candidate set. It draws a candidate path
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Figure 5: (a) GPS trajectories of samples. (b) Temporal distribution of the samples. (c) Histogram of the temporal constraint between 6:00
and 7:00 (fitting result: μ � 0.18 and σ � 2.13, goodness of fit: 0.98).
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Figure 6: (a) Trajectories of samples. (b) Temporal distribution of the samples. (c) Histogram of the temporal constraint between 6:00 and 7:
00 (fitting result: μ � 0.25 and σ � 1.22, goodness of fit: 0.99).
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through a succession of random turns. +e pseudocode of the
candidate set generation algorithm is presented in Algo-
rithm 1. +e key to this algorithm is how the probability of
turning is defined. In contrast to the original random walk
algorithm, we set the turning probability of the links where
other fixed sensors are located at 0 to satisfy the rule contained
inObservation 4. In other situations, the turning probability is
calculated based on field-test probe sensor data rather than
the shortest path assumption. In this manner, the candidate
path with the destination described in Observation 3 can be
generated.

Based on the above analysis, the turning probability is
defined as

Pr lx, ly  �

0, ly ∈ ΦFS and ly ≠ ls, le,

Nxy

l
y′ ∈Φx

Nxy′
, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

whereΦFS is the set of links monitored by the fixed sensors, ls
is the start link where the origin fixed sensor is located, le is
the end link where the destination fixed sensor is located,
Nxy is the number of GPS trajectories traversing from link lx
to ly, andΦx is the set of outgoing links that connect the sink
link lx.

4. Experiment

4.1. Experimental Dataset. To examine the proposed Fixed-
MM algorithm, both fixed and probe sensor data were used
with the basic digital road network.

Road Network: the shapefile of the road network in
Shenzhen, China, was used [18]. +e network graph
contained 237,440 vertices and 215,771 road links. As
shown in Figure 8, the road network covers a
40× 50 km spatial area, with a total length of 21,985 km.
Fixed sensor dataset: A fixed sensor dataset generated
by 715 cameras in Shenzhen from September 1 to
October 31, 2016, was used. +e transit information of
vehicles was recorded, including license plate, time-
stamp, and detector ID.
Probe sensor dataset: we used a GPS trajectory dataset
generated by 14,230 taxicabs during the same time
range (from September 1 to October 31, 2016) as a
probe sensor dataset. +e GPS records include license
plates, timestamps, and coordinates. +e average
sampling rate was set at 15 seconds per point.

With identical license plate information, we can extract
the probe and fixed sensor data of the same taxicab as
observed samples to train and test our model.

In the implementation, we removed noncontinuous
driving trips. +e main reason is that this noncontinuous
driving part of the sample trips contains great uncertainty
and will increase the estimation error of the Fixed-MM.
Finally, 1,485,476 samples were extracted as a training
dataset for estimation, while 156,192 samples were used as
the testing dataset for evaluation. +e estimation and
evaluation of the Fixed-MM are introduced in the following
sections.

4.2. Model Estimation. +e coefficients of the Fixed-MM
reflect the matching results’ sensitivity to the variables. +e

20507301

20507302

20507403

GPS trajectories
Fixed sensor

(a)

20507403

20507301

20507302

0 - 92
Volumes of each link

92 - 183
275 - 366
366 - 458

183 - 275

(b)

Figure 7: Example of realistic path generation. (a) GPS trajectories. (b) Volumes of each link.
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values of the unknown parameters based on the training
dataset must be identified. In this study, we consider the
most widely used estimation procedure: the maximum
likelihood technique [19].

Given the high number of sensor pairs, it is impossible to
present detailed estimation results for each pair. +erefore,
we only provide the detailed estimation results of the ex-
ample sensor pair: (F2010002, F1010403).+e GPS trajectories of
the samples between this sensor pair are shown in Figure 9 in

Appendix B. +e candidate path set generated by the al-
gorithm proposed in this paper is illustrated in Figure 10.

Both the Fixed-MMmodel without temporal constraints
(defined by equation (3)) and the Fixed-MM with temporal
constraints (defined by equation (8)) are estimated. +e
estimation results of the twomodels are presented in Table 3,
and several findings can be obtained.

Finding 1: as expected, the estimated parameter of “free
travel time” and “number of signal lights” has a

Input: +e road network RN and the link pair (ls, le), where ls and le are the links where the origin fixed sensor Fid(j) and destination
fixed sensor Fid(j+1) are located.
Output: +e candidate set Φj for sensor pair (Fid(j) , Fid(j+1) ).
Initialization
Set the candidate set: Φj � ∅
Set the size of the candidate set: DN

Turning Probability
For lx in road network RN:

Calculate the turning probability Pr(lx, ly) based on equation (9).
Random Walk
While n<DN do

lx � ls
P� [ls]
While ly ≠ le do
Randomly select a next link ly based on the turning probability Pr(lx, ly)

Update the generated path: P.append(ly)
Update the current link: lx � ly

End while
n+� 1
Update the candidate set: Φj � Φj ∩P

End while

ALGORITHM 1: Candidate set generation algorithm.
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Figure 8: Distribution of observed trips.
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Figure 9: GPS trajectories between the example sensor pair: (F2010002, F10100403).

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p)

Figure 10: (a–p) Generated candidate paths between the example sensor pair: (F2010002, F10100403).
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negative sign and the “proportion of expressway” has a
positive sign in each case. +e negative sign and
t-statistic of βNSL and βFTT suggest that the freer travel
time and signal lights the path has, the less likely it is to
be matched. +e positive sign and t-statistic of βPE
imply that a path with a higher proportion of ex-
pressways will be more attractive to travellers.
Finding 2: the temporal constraint parameter, α, is very
large, which means that the correct term has a sig-
nificant effect on the matching results.
Finding 3: when the temporal constraint term,
α ln q(tj,n − ti,j), was considered, the Fixed-MM model
with temporal constraints had a much lower log-
likelihood. +us, we can infer that it has a better model
fit and is closer to the true model.

4.3. Model Evaluation. In this section, we describe our al-
gorithm on the testing dataset. Two classical Probe-MM
algorithms are used as benchmarks, details of which are
introduced as follows:

HMM algorithm [7]: given that the positions of the
fixed sensors are located without noise, the measure-
ment probability is set to 1 and only the transmission
probability is considered
ST-Matching algorithm [12]: similar to the HMM-
based algorithm, the observation probability in the
spatial analysis of this method was set to 1 because of
the accurate positions of the fixed sensors

In this study, two indexes for expressing matching ac-
curacy were used. One is the accuracy length ratio of paths
(ALRP) index, defined as follows:

ALRP �
lx∈Pi,j

δxlx · len

Ptrue · len
× 100, (10)

where lx · len is the length of link lx in the matched path, Pi,j

Ptrue · len is the total length of the true path, and δx � 1 if lx is
also in the true path, and otherwise is 0.

+e other index is the accuracy number ratio of paths
(ANRP) index, which is defined as

ANRP �


Nx

n�1 δx

Nx

× 100, (11)

where Nx is the total number of links in the true path Ptrue.
Figures 11(a) and 11(b) show the ALRR and ANRR of

the proposed Fixed-MM algorithm and two classical Probe-
MM algorithms with regard to the spatial gap between fixed
sensors. It can be seen clearly that our Fixed-MM outper-
forms both HMM and ST-Matching significantly. Mean-
while, the performance of two Probe-MM algorithms
degrades sharply when the spatial gap decreases while Fixed-
MM is more robust to the change of spatial gap. +e pro-
posed Fixed-MM can correctly identify 68.38% of the links,
even when the spatial gap between the sensor pair increases
to 5 km.

Because the candidate generation process and model
training process can be conducted separately and in parallel,
a comparison of the latency of the matching process may be
more meaningful for online applications. In this study, the
computation time for one point (ACTOP) was used to
measure the computational latency of the map-matching
algorithm.

As shown in Figure 12, the ACTOP of the two Probe-
MM approaches increases dramatically as the spatial gap
between the fixed sensors increases. Conversely, the
ACTOP of Fixed-MM increases slowly. +e main reason,
therefore, can be deduced from two factors. +e HMM and
ST-MM algorithms assume that the position of the sensor
is stochastic and noisy, and the candidate set must be
regenerated for every sensor pair. It involves several
shortest path computations between states at the previous
and current time steps, which consumes most of the
computation time. Conversely, the candidate set genera-
tion of the proposed method can be run in parallel and
does not increase the computation time because the
projection of the fixed sensor data is known and fixed. In

Table 3: Estimation results of Fixed-MM.

Parameters Fixed-MM (without temporal constraint) Fixed-MM (with temporal constraint)
Number of signal lights βNSL −0.185 −0.188
t-test −21.442 −11.579
Free travel time βFTT −0.273 −0.101
t-test −9.574 −1.839
Proportion of expressway βPE 0.074 4.140
t-test 49.532 10.925
Temporal constraint α — 67.395
t-test — 12.417
Log-likelihood −17851.898 −1049.901
Adjusted likelihood ratio 0.511 0.971
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fact, the average ACTOP of Fixed-MM is only 0.067 s, and
we argue that Fixed-MM can be performed online for
many real-time ITS applications.

5. Conclusions

In this paper, we proposed a new map-matching algorithm
called Fixed-MM to match vehicle trajectories recorded by
fixed sensors onto a digital map. First, utility theory was
employed to model the traveller’s behaviour preference.
Second, Fixed-MM was modified by adding a travel-time
constraint term based on the observed and expected travel
times. Moreover, a candidate path generation algorithm was
designed for Fixed-MM.

Fixed sensor data and probe sensor data were collected as
the experimental dataset. Both the Fixed-MM without a
temporal constraint and Fixed-MM with a temporal

constraint were estimated. +e statistical results of the es-
timated parameters prove that the path attributes correlate
significantly to the true path, and the Fixed-MM with the
temporal constraint having a better model fit. +e Fixed-
MM algorithm was also compared with two classical Probe-
MM algorithms in terms of matching accuracy and com-
putational efficiency. Fixed-MM outperforms the two
Probe-MM algorithms in both number (ANRR) and length
(ALRR) accuracy indexes. Meanwhile, the Fixed-MM is
more robust to changes in the spatial gap between fixed
sensors. Fixed-MM also has a huge improvement in com-
puting efficiency and exhibits potential for online applica-
tions. +e experimental results demonstrate that the
proposed Fixed-MM algorithm is both effective and efficient.

More research is needed in the future to determine the
potential application value of Fixed-MM. Although the
travel time and speed can also be estimated by the Probe-
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Figure 11: (a) ALRP and (b) ANRP with respect to the spatial gap.
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MM algorithm with probe sensor data, the Fixed-MM
provides a more diverse and credible estimation of travel
time and speed. +is is because the fixed sensor data covers
almost all types of vehicles using the road network, while the
probe sensor data can only be collected from one type of
vehicle, for example, taxicabs. Meanwhile, with the appli-
cation of Fixed-MM, more traffic information can be mined
from the fixed sensor data. If all the observed trips of every
fixed sensor can be matched to the road network, the traffic
volumes of each path or link can be estimated, which is the
key input value for traffic planning and management. +us,
our next research focus is to utilise the Fixed-MM to mine
more reliable and accurate traffic state information from
fixed sensor data. Moreover, since the fare gate in the AFC
system is fixed, applying the proposed map-matching al-
gorithm to learn the route choice behavior of subway
passengers [20, 21] also presents great practical application
values and is worthy of further study.

Appendix

A. Estimated Results of Temporal Constraint

GPS trajectories of samples are presented in Figures 4, 5, and 6.

B. Generated Candidate Path Set

GPS trajectories between the example sensor pair and
generated candidate paths between the example sensor pair
are presented in Figures 9 and 10, respectively.
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