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Public transport is amongst critical infrastructures in modern cities, especially megacities, home to millions of people. /e
reliability of these systems is highly crucial for both citizens and service providers. If service providers overlook system reliability, a
considerable amount of expenses will be wasted. Several factors such as vehicle failure, accident, lack of budget weather factors,
and traffic congestion cause unreliability, among which vehicle failure plays a prominent role. /e brake system is the most
vulnerable and vital component of a public transportation bus. Brake reliability depends on driver’s expertise, component quality,
passenger loading, line situation, etc. Driver’s expertise and components’ quality are the most important factors for brake system
reliability. /is study aims to implement a hybrid machine learning and optimization model to minimize the total investment and
reliability-related costs in a bus rapid transit (BRT) system. A regression analysis method is proposed to capture the main
attributes of a joint brake system, including the level of education, training, and drivers’ experience./e failure rate is modeled as a
linear function of ETE and the quality of brake system subcomponents using a Lasso regression model. MILP optimization is then
provided for optimizing the total expected costs for a bus rapid transit (BRT) system. Furthermore, a practical case is studied to
investigate whether this optimization can reduce costs. /e results confirm the efficiency of the hybrid optimization approach.

1. Introduction

Nowadays, cities are growing in size, and their populations
are increasing rapidly. As citizens need to travel inside their
cities more frequently, public transportation systems are
getting ever-increasing importance in society. Many pas-
sengers travel by bus rapid transit (BRT), a left-side door bus
operating in a fully separated lane. BRTreliability studies are
pivotal because an interruption in such systems would result
in passenger dissatisfaction and stakeholders would have to
deal with vast economic losses. To overcome this challenge,
the reliability of this transportation system is analyzed and
then optimized. Reliability refers to the probability that a
device performs its purpose adequately for the period
intended under the operating conditions encountered [1]. A

high level of reliability would be an excellent incentive for
citizens to choose public transport [2]. Several works ana-
lyzed in detail in the next section aim to quantify and en-
hance the reliability of urban bus systems as a backbone to
public transport.

/ere are several reasons for BRT system irregularity,
including suboptimal scheduling, accident, bus failure, etc.
Based on the analysis of historical data, the main reason for
BRT irregularity and latency is bus failures, which is due to
brake failure in most cases. Not only is brake failure the
primary reason for bus failure, but also it completely in-
terrupts the bus. /e driver cannot even take the bus to the
repair shop. /erefore, brake component reliability opti-
mization is vital in enhancing overall reliability. However,
system owners have limited financial resources; therefore,
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such enhancements should be constrained to available
budgets and prospective future costs. To the best of our
knowledge, this paper, for the first time, presents an ana-
lytical cost-benefit optimization for the brake system reli-
ability considering the total costs imposed on the owners. At
the first step, the brake failure rate is modeled as a function
of subcomponent types and the education, training, and
experience (ETE) indicators of the drivers. /e former
represents that a high-quality subcomponent lasts longer,
while the latter represents the effect of driver skills in a better
brake system. /is is followed by modeling the primary
investment, operation, and maintenance costs, including
repair, replacement, HR training, and salary. Finally, convex
mixed-integer linear programming (MILP) is provided to
decide on the type of brake subcomponents of buses ac-
quired for BRT lines and the ETE indicator of their drivers.
/e objective is to minimize the total cost, including in-
vestment, driver salaries, replacement costs, and economic
loss due to bus interruptions and failures. To summarize, the
main contributions of this paper are as follows:

(i) Modeling the brake failure rate based on subcom-
ponents and associated drivers

(ii) Modeling various brake-related investments, op-
eration, and maintenance costs

(iii) Optimizing subcomponents and driver planning to
minimize total costs

/e rest of this paper is organized as follows: related
research materials are reviewed in Section 2; the general
structure of the proposed approach is briefly introduced in
Section 3; in Section 4, the failure rate is modeled as a
function of the ETE indicator and the brake system quality;
the formulation of the optimization problem is discussed in
Section 5; a case study for a practical BRTsystem is presented
in Section 6; results and Section 7 presents results and
discussion, and finally, the conclusion is drawn in Section 8.

2. Related Works

Several types of research in the literature concentrated on the
reliability of the public transportation system. /ose works
either modeled or proposed reliability enhancement solu-
tions using online or offline methods. In the following
sections, those research works are reviewed.

2.1. Reliability Modeling and Quantification. /e first stage
in reliability studies is modeling and quantification. Public
transportation services are categorized into two groups:
frequency-based and scheduling-based [3]. While schedul-
ing-based services operate on predefined schedules, only
headway time is of interest within the systemmanagement in
frequency-based services. Moreover, passengers are divided
into two types: commuters, who regularly travel for business
or education purposes, and noncommuters, who use public
transport for occasional travels in that specific pathas. Also,
they analyzed the methods of computing headway and
expected waiting time. Liu and Sinha [4] introduced three
reliability metrics: “travel time reliability,” “headway

reliability,” and “passenger wait time reliability.” In [5], a set
of reliability indicators from the viewpoint of customers are
introduced. /e latter expects that the indicators satisfy the
four attributes “measurability,” “ease of availability,” “speed
of availability,” and “interpretability,” in addition to being
customer-oriented. In [6], the quality of service and transit
reliability for older people (more than 65 years), counted as
vulnerable users, are computed. A data-driven reliability
study of public transportation for the Netherlands is pre-
sented in [7]. /e automatic vehicle location (AVL) data are
used for offline measuring time reliability in [8]. In [9], the
percent of passengers receiving regular service (PPR) and
percent of passengers receiving punctual service (PPP) using
AVL data are computed. /ree performance measures of
punctuality index based on routes (PIR), deviation index
based on stops (DIS), and evenness index based on stops
(EIS) have been introduced and implemented for the Beijing
transportation system in [10]./e probability that the public
transport system performance is within the acceptable range
for Beijing’s transport system reliability is computed. /e
impact of ridership on the reliability of the public trans-
portation system is modeled in [11]. A review of all influ-
ential factors in reliability, in addition to reliability metrics,
is briefly discussed in [12]. It divides the factors into two
groups: demand-side factors, including traffic flow, pas-
senger route-wise demand, and directional flow at inter-
sections, and supply-side factors, including facility design,
accidents, driver behavior, traffic management scheme,
vehicle breakdown, and weather. Next, the reliability of the
Ahmedabad city is computed using gathered GPS data. A
methodology for estimating the value of travel time reli-
ability is presented in [13]. Bunker [14] presented a prob-
abilistic reliability model for sections (the distance between
stops). Although that model investigates the financial aspects
of reliability, it does not discuss the improvement strategy.

2.2. Reliability Enhancement. Optimal reliability enhance-
ment can substantially reduce system expenses. Moosavi
et al. [15] categorized reliability enhancement strategies into
three main groups: prioritizing, operational, and control.
Prioritization approaches are those that give priority to the
public within the city. Dedicating a separate lane to buses is
an example of prioritization policies. Operational strategies
include long-term accomplishments such as driver training
and restructuring of bus routes (offline methods). Control
strategies are real-time decisions such as skipping stops
(online methods). /e impacts of various control strategies
on transportation reliability are then simulated. /e paper
does not model the economic aspects of reliability. /ere-
fore, the approach does not give the stakeholder a vision for
the financial benefits of reliability enhancement. An ana-
lytical control strategy optimization is suggested in [16]./is
approach ensures the global optimality of final results. AVL
data are utilized in [17–19] to identify routes that need
assistance and reliability enhancement. Wang et al. [20]
proposed a data-driven bus scheduling optimization to
enhance the reliability of transportation systems. In [21],
how headway variations cause an extra cost to passengers
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and how total cost (operator and user costs) will be opti-
mized by bus stop placement and dispatching headway are
discussed.

/e papers mentioned above discussed the effect of path
and control strategies on public transport reliability.
However, for a BRT service in which a specific lane is
dedicated to buses, the unwise path selection and suboptimal
control strategies are not the primary cause of unreliability.
/ese systems are highly reliable, especially in peak hours
[22]. Breakdowns of buses are the main cause of interrup-
tions and compromises to the service. A bus consists of
several vulnerable components, of which brake systems are
responsible for most interruptions.We checked the accuracy
of this fact by comparing the reasons for a practical BRT
system interruption. /e historical data confirm that brake
failure accounts for most of the buses’ interruptions. Data
analysis in [23] also confirms that the main factor that causes
an urban bus being downtime in repair is the brake system
failure. A fuzzy rule-based study of the Istanbul BRT system
also indicates that the brake component is one of the vital
components for retaining the reliability of the BRT system
[24].

Furthermore, upon brake malfunctions, a severe risk is
imposed on passengers and drivers. In this regard, the brake
system functionality is also a key to safety [25]. Hence,
analyzing the reliability of brake systems and their impact is
an important subject.

Yusupov [25] presented a serial reliability model for
brake systems. /e reliability of the brake system is then
computed based on the reliability of each subcomponent. A
maximum likelihood estimation (MLE) method is presented
in [26] for estimating the failure distribution of brake
subcomponents. Moreover, the reliability of the brake sys-
tem is computed using a fault tree. A Petri-net model for
computing the reliability of mechatronic systems is pre-
sented in [27]. /e critical reliability metrics, which are
failure rate, mean time between failures, mean time to repair,
and the brake system availability, are modeled in [28]. /e
shape of the brake piston ring is redesigned to improve the
reliability in [29]. Yusupov et al. [30] first identified the
subcomponents with the credible value of failure rates./en,
the relationship between these values and the brake com-
ponent reliability was modeled. Finally, the method was
simulated for the ABS brake system. None had studied the
brake system reliability impact on the overall bus reliability.

To conclude, none of those above papers analyzed and
optimized the brake system reliability as part of the whole.
As a result, financial studies and the cost-benefit optimi-
zation for reliability enhancement are also missed. To fulfill
this research gap, this paper presents a model for brake
failure. /e costs BRT systems endure due to brake failures
are modeled, and the BRT system’s total costs related to
brake failures are optimized.

3. Proposed Methodology: Big Picture

To enhance the reliability of the brake components, first,
the influential factor should be identified, as depicted in
Figure 1. /e drivers’ expertise and subcomponents’ quality

are discussed in Section 4. Experts can provide an ap-
proximately precise score for drivers and subcomponents.
/e relationship between the failure rate and these scores
can be modeled with machine learning (ML). Increasing the
score for these factors inevitably causes a decrease in the
failure rate. However, this increase requires extra investment
either in components or salary and training costs. Due to
limitations in available budget, the total cost, covering re-
liability enhancement budget and interruption, and opera-
tion and management (O&M) costs should be optimized.
Since O&M cost computation requires every subcomponent
failure and replacement cost, the decomposition overall
failure rate to subcomponent failure rate is necessary.

4. Failure Rate Model

To model the brake system failure rate, the features con-
tributing failure rate value should be extracted. /ese are the
features that must be modeled and qualified. /e main
reasons for brake system failure are low-quality brake
components and careless drivers. /erefore, the features are
the driver expertise score and the quality of the brake system.
A machine learning model is then trained to estimate the
failure rate based on these two features. /ese features are
brake quality scores and drivers’ expertise scores. Obviously,
the better the quality of the brake and the more skillful the
driver are, the less the failure rate of the brake component is.
/e following sections introduce both the features and
model. /is model is exploited inside our optimization
problem in Section 5.

4.1. Brake Quality Score. Subcomponent types have a sig-
nificant contribution to the failure rates of a component./e
better the subcomponents, the longer the component sur-
vives. For example, the brake system is composed of several
subcomponents, four of which are responsible for most
failures: pedal, retarder, ABS, and pad. Each falls within one
of the following quality bands: A (highest quality), B, and C
(lowest quality), with scores of 15, 10, and 5, respectively. In
the end, the sum of the subcomponent scores is scaled
between 0 and 100.

4.2. Driver Expertise Score. Highly skilled drivers can better
maintain and manage the brake system, and therefore, this
can be regarded as an influential factor in calculating the
failure rate. /is paper introduces the ETE indicators
representing the level of education, annual training hours,
and total years of driving experience. To calculate ETE, the
score of education level and experience are calculated
according to Table 1. /e values in Table 1 are based on the
filled surveys. /e training score is then calculated
according to (1). In this formula, hmin is the minimum
hour of required training and Sh is the coefficient of
training hour in ETE score. Finally, the sum of these three
scores is scaled between 0 and 100.

training_score � Sh ∗ h − hmin( . (1)
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4.3. Failure Rate Model. Failure rate (f) is estimated as a
function of ETE and brake quality score (Q) as shown in the
following equation:

f � g(ETE, Q). (2)

/ere is no analytical formula that relates ETE and Q to
the failure rate. /us, a data-driven model is used instead.
/e g function is estimated using machine learning
methods. Machine learning includes various models such as

linear regression, decision tree, and artificial neural network.
In this paper, the Lasso method, which fits a linear function
to an input-output relationship [31], is employed to model
failure. /e learner minimizes the mean square error be-
tween the actual and predicted output. To regularize the
coefficients and prevent overfitting, a term of the first-order
norm of the coefficients is added to the objective function
according to (3) [31]. /is trained linear failure rate model is
later used in MILP cost optimization.

Section 4

• Identifying the most influential Factors For Brake Component Failure Rate: (i) 
Subcomponent Quality, (ii) Driver Expertise

Section 4 

• Collecting Surveys from Experts to Find a Quantification Framework for Both 
Subcomponent Quality and Driver Expertise.

Section 4

• Collecting Historical Data for Drivers and Subcomponents for every Bus in 
addition to Their Failure Rate.

Section 4

• (i) Presenting a Machine Learning Model for Brake System Failure Rate 
Modeling

• (ii) Decomposing the Overall Failure Rate to Subcomponent Failure Rate

Section 5

• Identifying and Modeling the Main Costs Related to Brake Component 
Reliability: Investment Cost, Human resource cost, Outage Cost, and Replament 

Cost.

Section 5

• Optimizing the Total Cost

Figure 1: /e general structure of the brake reliability-related cost minimization approach.

Table 1: Score table for education and years of experience.

Education level Under high school High school diploma Associate degree Bachelor Master Ph.D.
Score 2 3 4 6 8 10
Years of experience 0–5 5–10 10–15 15–20 20–25 25–30
Score 2 3 4 6 8 10
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where β1 and β2 are the coefficients of ETE and Q in the
linear fitted function, and λ is the regularization factor,
which is a hyperparameter. Hyperparameters should be
assigned a value before the training task. M is the total
number of samples, and m is the index of samples. /is
optimization is solved via the scikit-learn package in the
python programming language.

/e brake component failure rate can be approximately
decomposed into subcomponent failure rates by multiplying
the failure rate with a fraction of the failure rate of that
subcomponent.

5. Modeling and Optimizing Total Cost

/is section presents the mathematical optimization model
to minimize the investment and reliability-related costs in a
BRT system under the risk of braking failure. /e main idea
is to optimize brakes and ETE factors before operating new
buses in a BRT system. It is expected that the optimized
operating plan could significantly improve the reliability of
the operations and reduces the total cost of the BRT system.
To do so, the main pillars of costs and constraints must first
be identified. /e total cost has four pillars:

(i) Investment cost (IC): the amount of money used to
buy subcomponents, subject to budget availability.

(ii) Human resource cost (HRC): driver salaries and
training costs, depending on driver education and
experience.

(iii) Outage cost (OC): cost of an interruption in bus
operations due to failure in brake components. /is
would undoubtedly incur costs as fewer passengers
are served.

(iii) Replacement cost (RC): the cost of replacing a failed
or damaged brake subcomponent with a new one.

/e objective function is the sum of the investment,
human resource, outage, and replacement costs, as asserted
in equation (4). In the following sections, details of com-
puting each cost and associated constraints are explained.

Min IC + HRC + RC + OC{ }. (4)

5.1. Investment Cost. /e investment cost is the sum of
subcomponent costs. Referring back to Section 4, the four
subcomponents pedal, retarder, ABS, and pad are respon-
sible for the majority of brake failures. /e indices of p, r, a,
and d are used as notations for the mentioned elements. /e
set of pedal types is symbolized as P, retarder types as R, ABS
types as A, and pad types as D. Equation (5) represents the
investment cost for N buses. /e symbol |.| in this equation
and successive equations refers to the size of the set. /e
binary variable B(i,e) indicates whether a subcomponent of
type e is bought for bus i. /e parameter C (.) is the cost of
subcomponents.

IC � 
N

i�1


|P|

p�1
B(i, p)∗C(p) + 

|A|

a�1
B(i, a)∗C(a) + 

|R|

r�1
B(i, r)∗C(r) + 

|D|

d�1
B(i, d)∗C(d)⎛⎝ ⎞⎠. (5)

Since only one subcomponent type can be installed in a
bus, constraints (6)–(9) should be satisfied.



|P|

p�1
B(i, p) � 1 ∀i, (6)



|A|

a�1
B(i, a) � 1 ∀i, (7)



R

r�1
B(i, r) � 1 ∀i, (8)



|D|

d�1
B(i, d) � 1 ∀i, (9)

/e supplier can provide a limited quantity for each type
of subcomponent. /e situation is asserted in (10)–(13). /e

parameterMaxe is the maximum number of subcomponents
(of general type e) that can be supplied.



N

i�1
B(i, p)≤Maxp ∀p, (10)



N

i�1
B(i, a)≤Maxa ∀a, (11)



N

i�1
B(i, r)≤Maxr ∀r, (12)



N

i�1
B(i, d)≤Maxd ∀d, (13)

/ere is a limited amount of investment budget as stated
in (14):
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IC≤ ICmax. (14)

5.2. Human Resource Cost. Driver salaries and training
during Y years constitute the total human resource cost.
Equation (15) formalizes this fact for N buses. /is formula
neglects the fixed HR costs. In this equation, ed is the index
of education that belongs to set ED� {Under high school,
High school diploma, Associate degree, Bachelor, Master,
Ph.D.}. /e binary variable EDUi,ed indicates whether the
level of education of the ith bus driver is equal to ed. /e

index x represents the index of experience level. It can take
quantitative values of Table 1. /e set of these values is
denoted as X. EXPi,x is a binary variable, which equals one if
the driver of the ith bus has an experience level of x. /e
continuous variable hi is the total training hours of the ith bus
driver. Ch is the annual cost per hour of training. C(ed) and
C(x) are the additional monthly income that system owners
should pay to a driver with an education level of ed and
experience of x.

HRC � Y. 
N

i�1
Ch ∗ hi − hmin(  + 12 

|E D|

e d�1
EDUi,e d ∗C(e d) + 12 

|X|

x�1
EXPi,x ∗C(x)s⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭. (15)

Constraint (16) asserts there is a lower and upper band
for training hours.

hmin ≤ hi ≤ hmax ∀i . (16)

Each driver has only one specific level of education and
experience. /is fact is mathematically modeled in (17) and
(18).



|ED|

e d�1
EDUi,e d � 1 ∀i, (17)



|X|

exp�1
EXPi,x � 1 ∀i. (18)

Since regulations and policies limit the number of
employed drivers who possess a specific level of education,
constraint (19) sets the maximum number of drivers within
each level of education. In this equation, Maxed is the
maximum number of drivers with an education level of ed
that policies allow to hire.



N

i�1
EDUi,e d ≤Maxe d ∀ed. (19)

/e transportation service company would prefer not to
dedicate a tremendous amount of money to HR. /erefore,

the human resource cost is bounded as represented in
constraint (20).

HRC≤HRCmax. (20)

5.3. Outage Cost. Equation (21) states that the outage cost is
the multiplication of total duration years (Y), the brake
system failure rate of bus i (fi), the average time a bus stays in
a repair shop due to brake failure (μ), and the bus inter-
ruption cost per hour (Ii).

OC � 
N

i�1
Y∗fi ∗ μ∗ Ii( . (21)

/e failure rate is estimated with a linear model, as
discussed in Section 4. It is stated in (22):

fi � β0 + β1 ∗ETEi + β2 ∗Qi ∀i. (22)

ETE and Q, introduced in more detail in Section 4, are
calculated through equations (23) and (24). In these equa-
tions, Sx and Sed are the scores of experiences and education
for the experience level of x and education level of ed
according to Table 1 in Section 4. According to Table 1, the
maximum ETE and Q scores are 40 and 60. To scale these
scores between 0 and 100, they are multiplied by ratios 100/
40 and 100/60. /ese two coefficients can change if a dif-
ferent scoring schema is used.

ETEi �
100
40



|ED|

e d�1
Se d ∗EDUi,e d + 

|X|

x�1
Sx ∗EXPi,x + Sh ∗ hi − hmin( ⎡⎣ ⎤⎦ ∀i, (23)

Qi �
100
60



|P|

p�1
Sp ∗B(i, p) + 

|A|

a�1
Sa ∗B(i, a) + 

|R|

r�1
Sr ∗B(i, r) + 

|D|

d�1
Sd ∗B(i, d)⎡⎢⎢⎣ ⎤⎥⎥⎦ ∀i. (24)

/e total available ETE is limited due to issues such as a
limited number of high-quality candidates. Similarly, the

total quality of the brake system is limited. Constraints (25)
and (26) restate this fact.
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N

i�1
ETEi ≤ SUM ETEmax ∀i, (25)



N

i�1
Qi ≤ SUM Qmax ∀i. (26)

5.4. Replacement Cost. Replacement cost is the sum of the
expected cost of replacing each subcomponent after it fails.
/is fact is mathematically asserted in equation (27). /e
replacement cost for each component equals the cost of a
single component multiplied by the expected damages over
Y years. It can be rewritten as (28)–(31).

RC � 
N

i�1


|P|

p�1
RCi,p + 

|A|

a�1
RCi,a + 

|R|

r�1
RCi,r + 

|D|

d�1
RCi,d

⎡⎢⎢⎣ ⎤⎥⎥⎦ ∀i,

(27)

RCi,p � Y∗fi ∗ vP ∗B(i, p)∗C(p) ∀i, p, (28)

RCi,a � Y∗fi. ∗ vA ∗B(i, a)∗C(a) ∀i, a, (29)

RCi,r � Y∗fi ∗ vR ∗B(i, r)∗C(r) ∀i, r, (30)

RCi,d � Y∗fi ∗ vD ∗B(i, d)∗C(d) ∀i, d. (31)

In (28), the parameter vP is the relative failure frequency
of the pedal. /is parameter is approximated by analyzing
historical data. It can be estimated using historical data.
Other variables inside (28)–(31) are introduced in previous
sections. In (28), the multiplication of the continuous var-
iables fi and B(i,p) is nonlinear. /e same happens in
(29)–(31) for ABS, retarder, and pad, respectively. To lin-
earize these equations, a conversion, introduced in [32], is
used. According to this conversion, equation (32) is line-
arized by replacing it with (33) and (34) [32]. /is con-
version is applied to (28)–(31) for them to linearize.

multiplication � binary ∗ continuous, (32)

0≤multiplication≤ binary ∗ continuousmax, (33)

continuous +(binary − 1)∗ continuousmax

≤multiplication≤ continuous.
(34)

To summarize, the optimization problem is modeled as a
mixed-integer linear program (MILP) with the objective
function of equation (4) and constraints (5)–(27) and lin-
earized (28)–(31). Decision variables are the types of sub-
components chosen for bus brakes and driver education and
experience and training.

6. Case Study

To verify the efficiency of the method, a real case study of a
BRT service is presented. /e first BRT system in Tehran,
Iran, was initiated in 2007. Currently, ten routes are oper-
ating in Tehran. Buses operate in specially dedicated routes

in which other vehicles are not allowed. Moreover, in the
case of a junction, BRT buses have priority. Additional
routes are planned and added as required./e data for brake
system failures, subcomponent types, and drivers of 183
buses were collected. However, costs were modified for
security reasons. /is case will decide the types of sub-
components and ETEs for ten buses planned to be
exploited in three BRT lines for 20 years. Subcomponent
prices are shown in Table 2. Recall from Section 4 that
types A, B, and C components have 15, 10, and 5 scores,
respectively. Due to the supplier limitations, no more than
two subcomponents of type A can be provided. /e av-
erage repair times for each subcomponent and relative
failure frequencies are listed in Table 3. /e brake system
average repair time is the average repair time for each
subcomponent weighted by the relative failure frequen-
cies. Each hour of training per year costs 6.7 USD. /e
maximum training hours per year for each driver is
120 hours. /e salaries of drivers are listed in Table 4. /e
company’s policy allows a maximum of one Ph.D. driver,
two masters, and three holding any other degrees.

/e transportation company has a budget of 1,800,000
USD for driver salaries and training over 20 years. Sim-
ilarly, no more than 9000 USD is available for the brake
system of these ten buses. Each hour of bus interruption
costs 201.289 USD for line 1, 196.2 USD for line 2, and 150
USD for line 3. /erefore, the maximum total score of 900
is considered available for both subcomponents and
driver ETEs.

7. Results and Discussion

As demonstrated in Table 5, the training is at the maximum
possible level. It is mainly because training is relatively
cheaper. Subcomponents of type A are only installed at buses
4 and 5, belonging to line 1. On the contrary, buses 9 and 10
possess subcomponents of less quality. /is is because the
interruptions in line 3 result in lower outage costs. In the
optimal strategy, the salary and brake investment costs are
1,799,427.795 and 8,970.461 USD, close to their maximum
values. /e total expected replacement and outage costs are
2,857,811.418 and 5,690,168.350 USD, respectively. /ere-
fore, the total cost is 10,356,378.86 USD.

7.1. Sensitivity Analysis. /e transport company may hy-
pothesize whether increasing the brake system investment or
training and salaries would lower total costs over 20 years. To
investigate this, several cases of sensitivity analysis are
performed. First, the effect of brake investment limitation is
investigated. Next, an analysis is performed to identify
whether an enhancement in the HR cost limitation would
change the optimal total cost. It is assumed that the sum of
brake investment and HR costs is constant. Finally, the
effects on the total expected cost are evaluated.

7.1.1. Brake Investment Limitations. If constraint (14),
which limits the brake investment cost, is omitted, the
total cost would be 10,064,524.85 USD, and the
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investment cost would be 10350.356 USD, which is
1350.365 USD more than the current investment budget.
/erefore, if the transportation service provides an ad-
ditional 1350.365 USD financial resources for investing in
the brake system, the total cost would decrease by
291,854.01 USD. Figure 2 depicts the effect of changing
the brake investment cost on the total expected cost over
20 years.

7.1.2. HR Cost Limitations. Similar to the procedure used
in the previous section, constraint (20) is omitted to
analyze the effects of HR cost limitations. In this case, the
HR cost would be 2587994.854 USD, and the total ex-
pected cost would be 9275496.72 USD. /erefore, an
increase of 787,994.854 USD in the HR cost would result
in 1,080,882.14 USD benefits in the total expected cost.
Since the interval of spending HR and total expected costs
are almost simultaneous, the BRT service can revise its
policy based on the results of this optimization. /e
variation of total expected cost during 20 years versus the
HR cost during the same interval is depicted in Figure 3.

7.1.3. HR Cost Limitation and Brake Investment Budget Joint
Analysis. As seen in previous sections, an increase in HR
limitation or brake investment would decrease the expected
cost. If the transport company questions whether decreasing
one limitation in favor of the other would reduce the ex-
pected cost, another sensitivity analysis should be per-
formed. Table 6 provides more insights into this question. It

Table 2: Price of subcomponents (USD).

Subcomponent Type A Type B Type C
Retarder 247.678 201.238 154.798
Pad 77.399 68.111 61.919
ABS 773.99 619.19 495.35
Pedal 120.3591 100.399 20.8235

Table 3: Repair times and relative failure frequencies.

Subcomponent Repair time (hr) Relative failure frequency
Retarder 2.5785 0.1766
Pad 2.8197 0.2470
ABS 0.783 0.3114
Pedal 4.258033 0.2649

Table 4: Salary per month of drivers (USD).

Education level Under high school High school diploma Associate degree Bachelor Master Ph.D.
Salary 544.892 557.276 603.715 650.155 743.034 1083.591
Years of experience 0–5 5–10 10–15 15–20 20–25 25–30
Salary 80.49535 100.7430 140.9907 182.9102 241.9814 322.4767

Table 5: Results.

Bus # Edu. Training Exp. ETE Retarder Pad ABS Pedal Q
1 High school diploma 120 5–10 65.0 B B C B 58.33
2 Bachelor 120 5–10 72.5 B B C B 58.33
3 Associate degree 120 5–10 67.5 B B C B 58.33
4 Bachelor 120 5–10 72.5 A A B A 91.66
5 Bachelor 120 5–10 72.5 A A B A 91.66
6 High school diploma 120 5–10 65.0 B B C B 58.33
7 Under high school 120 5–10 62.5 B B C B 58.33
8 High school diploma 120 5–10 65.0 B B C B 58.33
9 Under high school 120 0–5 60.0 B B C B 58.33
10 Under high school 120 0–5 60.0 B B C C 50.00
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Figure 2: Brake investment sensitivity analysis.
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Figure 3: HR cost sensitivity analysis.

Table 6: HR cost and brake investment limitations trade-off.

Case # Brake investment limitation HR cost limitation Total cost
1 8,000 1,801,000 10,924,940.31
2 8,500 1,800,500 10,551,420.18
3 (Base case) 9,000 1,800,000 10,356,378.86
4 9,500 1,799,500 10,213,323.76
5 10,000 1,799,000 10,118,665.99

Table 7: Related notations.

Indexes
a Index of ABS types p Index of pedal type
d Index of pad types r Index of retarder types
ed Index of level of education x Index of level of experience
i Index of buses

Sets
A Set of ABS types P Set of pedal type
D Set of pad types R Set of retarder types
ED Set of the of education X Set of levels of experience

Parameters
β0 Constant value in failure rate model Ii Cost of an hour of interruption of bus i

β1 Coefficient of ETE in failure rate model Maxe
Maximum available of item e (e could be a subcomponent

type or education level or experience level)

β2 Coefficient of Q in failure rate model Se
/e score of item e (e could be a subcomponent type or

education level, or experience level)

M Number of samples for failure rate modeling vg

/e relative failure rate of item e (e could be a pedal, pad,
retarder, or ABS)

N Number of buses Y Total years of planning

C(e) Cost of item e (e could be a subcomponent type or education
level or experience level)

Ch /e annual cost of an hour of training μ Average buses’ brake repair time
Variables

B(i,e) A binary variable indicating whether item e is bought for bus i
(e could be a pedal, pad, retarder, or ABS) HRC Human resource cost

EDUi,ed
Binary variable indicating whether education level of the

driver of bus i is ed IC Investment cost

ETEi Education, training, and experience score of bus i’s driver OC Outage cost

EXPi,x
Binary variable indicating whether the experience level of the

driver of bus i is x RC Replacement cost

fi /e failure rate of bus i Qi Brake of ith bus’s quality score
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can be observed that increasing brake investment limitation
while keeping the sum of brake investment and HR cost
constant would decrease the total expected cost. Notice that
HR cost is spent in the broader interval of time. /erefore,
supplying the financial resources for HR costs is easier.

8. Conclusions

/is paper presented a joint brake system and driver em-
ployment and training optimization for buses in BRT systems.
/e objective function was to minimize the brake reliability-
related costs plus investment costs. It has been observed that
both qualities of the brake system subcomponents and driver
ETE (education, training, and experience) indices are influential
factors for the failure rate and, in consequence, the total ex-
pected cost. However, there are limited financial resources for
these two factors, which should bemodeled. Also, overspending
on these two factors may put an unnecessary extra cost on the
shoulders of service providers. /erefore, sensitivity analysis
and optimization should be performed. A case study has been
presented and analyzed to verify the efficiency of the method.
/e results assert that better subcomponents and drivers should
be dedicated to bus lines with more interruption costs per hour.
It has also been shown that if enough budgets are provided for
brake systems, the total expected cost will decrease noticeably.

Furthermore, sufficient spending for the ETE would
reduce costs. Providing a budget for the brake system is a
challenging task. However, the ETE expenses are spread over
many years; therefore, they are more practical to provide.
Moreover, the saved money, which should have been
expended as interruption losses, can be dedicated to ETE.
/e results have been presented to the abovementioned
practical BRT system owner. After analyzing the strategy,
they agreed to implicate HR employment, training, and
subcomponent supply results in their planning and opera-
tions programs.

Nevertheless, considering the role of other factors, in-
cluding seasonal factors and loading, in brake system reli-
ability results in a more precise cost modeling and
optimization in practice. For the future stream of research,
co-optimizing the total expected brake-related expenses with
repair staff employment is suggested./e optimal number of
repair staff is employed to decrease expected outage dura-
tions and expected outage cost in consequence.

9. Summary of Notions

Table 7 contains a summary of all indices, variables, and
parameters that have beenmentioned throughout this paper.
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