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.e driving state of a self-driving vehicle represents an important component in the self-driving decision system. To ensure the
safe and efficient driving state of a self-driving vehicle, the driving state of the self-driving vehicle needs to be evaluated
quantitatively. In this paper, a driving state assessment method for the decision system of self-driving vehicles is proposed. First, a
self-driving vehicle and surrounding vehicles are compared in terms of the overtaking frequency (OTF), and an OTF-based
driving state evaluation algorithm is proposed considering the future driving efficiency. Next, a decision model based on the deep
deterministic policy gradient (DDPG) algorithm and the proposedmethod is designed, and the driving state assessment method is
integrated with the existing time-to-collision (TTC) and minimum safe distance. In addition, the reward function and multiple
driving scenarios are designed so that the most efficient driving strategy at the current moment can be determined by optimal
search under the condition of ensuring safety. Finally, the proposed decision model is verified by simulations in four three-lane
highway scenarios. .e simulation results show that the proposed decision model that integrates the self-driving vehicle driving
state assessment method can help self-driving vehicles to drive safely and to maintain good maneuverability.

1. Introduction

With the significant increase in the feasibility of self-
driving technology, decision systems that guarantee the
safe and reliable driving state of self-driving vehicles and
provide restricted information for their efficiency opti-
mization have become a key affecting factor of the future
industry. .e driving state refers to the state of a vehicle’s
lateral velocity, longitudinal velocity, lateral acceleration,
and longitudinal acceleration while travelling and the
difference between vehicles travelling in adjacent lanes. In
traffic flow, vehicles canmake different decisions on driving
behaviour based on a difference in the driving status
compared to the surrounding vehicles. For human drivers,
the basis of a pre-decisional judgment is mostly based on
personal experience. However, for self-driving vehicles, a
number of judgment criteria are required before making
decisions. To realize the decision-making of self-driving
vehicles in multiple lanes, it is necessary to implement
evaluation methods that can assist self-driving vehicles in

judging the difference in the driving status between the ego
vehicle and vehicles in other lanes.

.ere have been many studies on the decision-making of
self-driving vehicles, and they have been mainly focused on
longitudinal and lateral decision-making.

Considering the longitudinal driving decision-making,
Zhu et al. [1] proposed a deep reinforcement learning-based
framework for humanoid self-driving vehicles following
planning to obtain an optimal policy from the aspects of
speed, a relative speed of the vehicles in front and behind,
vehicle spacing, and acceleration of the following vehicle in a
human-like manner. Wei et al. [2] proposed a decision-
making algorithm to assist self-driving vehicles under a
single-lane uncertainty, considering the behaviour uncer-
tainty of the in-front vehicles and the uncertainty in the
environment perception accuracy, and achieved a significant
improvement in system robustness. Ziegler et al. [3] pro-
posed a method for planning the acceleration and decel-
eration maneuvers of autonomous vehicles during trajectory
planning under the condition of deterministic driving
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behaviour of surrounding vehicles. However, these decision-
making methods consider only the state relationship be-
tween the vehicle in front of it and the vehicle and lack
comparisons with vehicles in adjacent lanes.

In lateral decision-making, Gao et al. [4] proposed a
reinforcement learning-based decision-making method for
networked autonomous vehicles, which utilized the ad-
vantages of networked information to make autonomous
driving decisions more effective. A number of studies have
proposed different lane-changing decision-making methods
for autonomous vehicles based on the game theory [5, 6]. For
instance, Li et al. [7] proposed a game theory-based traffic
model for testing and comparing various autonomous ve-
hicle decision-making systems. .e lane-changing decisions
and lane-changing trajectories have been modeled by
learning the driving behaviour of human drivers to build a
humanoid lane-changing decision-making system [8].

Comprehensive studies have been conducted on deci-
sion-making behaviours, including vertical and horizontal
decision-making behaviours. Khattak [9] preinstalled his-
torical road performance data on the navigation map of self-
driving vehicles and fused it with the vehicle’s multisensor
data to help drivers of self-driving vehicles and vehicles with
a low automation level to make reasonable driving decisions.
Zheng et al. [10] proposed an intelligent vehicle behaviour
decision model based on driving risk assessment by ana-
lyzing the driver’s driving characteristics and selecting safety
and high efficiency as the two main factors that drivers
pursue when driving. .ey establish a multiobjective opti-
mal cost function for a decision model based on the least
action principle. Hubmann et al. [11] considered the current
and future interactions and uncertainties of vehicles and
established a multiobjective optimal cost function for a
decision-making model that can optimize autonomous
driving behaviour under different future scenarios. Bahram
et al. [12] proposed a combined optimization prediction-
response-based driving strategy selection mechanism, which
considered comfort in addition to ensuring the safety of
autonomous vehicles. Rauskolb et al. [13] used a hybrid rule-
based behavioural modeling approach to model an intelli-
gent vehicle’s behaviour decisions. However, this method
does not consider differences in the driving state of the
surrounding vehicles and its own lane.

Many autonomous driving decisions are based on al-
gorithms designed for the Markov decision process [14, 15].
Zuo et al. [16] proposed a continuous reinforcement
learning method that combines deep deterministic policy
gradients with live demonstrations. .is method accelerates
the training process while learning more demonstrator
preferences. In several studies, Q-learning and deep learning
have been combined to design autonomous driving
frameworks [17–19].

Part of the current research on decision-making for
autonomous vehicles has been based on an actor-critic
model. .e DDPG algorithm has good convergence [20].
Based on the DDPG algorithm, Wang et al. [21] built a
personalized autonomous driving system and designed
driving decision-making methods according to different
driving styles. In a multivehicle scenario, based on an actor-

critic learning approach, Xu et al. [22] established an actor-
critic model as a decision model for autonomous driving.
.ey used a value network to evaluate the current situation
and a strategy network to make the next decision, respec-
tively. By combining the two networks, an intelligent control
model, which is in line with the human decision process, was
developed.

In the existing autonomous driving following models,
the speed of the vehicle in front and the distance between the
vehicle and the vehicle in front of it are considered. .e lane
change model considers whether the driving states of the
vehicle in front, the vehicle in front of the target lane, and the
vehicle behind allow self-driving vehicles to perform the
lane-changing behaviour. However, human drivers make the
decision on changing their current state when vehicles in
both lanes keep overtaking them or they keep overtaking
vehicles in both lanes during the driving process. According
to this idea, this paper makes an efficient and safe decision
for integrated horizontal and vertical decision-making for
autonomous vehicles, based on an OTF approach that
considers the driving variability between the ego vehicle
(EV) and the vehicles in both lanes.

To overcome the limitations and shortcomings of the
existing work, this paper proposes an OTF-based driving
state assessment method for autonomous vehicles and, based
on this method, designs an autonomous driving decision
model. .e structure of this paper is shown in Figure 1. .e
main contribution of this paper is the development of a
vehicle state assessment approach based on the OTF pa-
rameters to improve the accuracy of self-driving vehicles in
judging the driving state, which can quantitatively and
objectively measure whether a driving state of a three-lane
scenario is appropriate. By using the OTF-based method and
the DDPG algorithm, a decision model is established to
obtain an optimal action-state by evaluating the combined
efficiency of these strategies.

.e rest of this paper is organized as follows. Section 2
presents a state evaluation method for self-driving vehicles
applicable to three-lane traffic scenarios. Section 3 describes
the decision process. Section 4 presents the simulation re-
sults of four typical scenarios. Section 5 gives the conclusion.

2. OTF-Based Driving-State Evaluation
Approach for Self-Driving Vehicles

In the vehicle driving decision problem in high-speed sce-
narios, the influencing factors of self-driving vehicles mainly
include the speed, position, and driving safety of a vehicle.

Before generating a decision, a self-driving vehicle needs
to determine whether the traffic conditions in its current
lane are consistent with the traffic conditions in the adjacent
lanes and then can decide whether to change the driving
status. .erefore, this paper establishes an OTF-based
driving state assessment method for self-driving vehicles.

2.1. Description of the OTF-Based Driving-State Evaluation
Approach. .e consistency of a vehicle’s driving state with
the surrounding environment has a significant impact on
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whether EV intends to change the vehicle’s driving be-
haviour. In this paper, the term “overtaking frequency”
(OTF) is introduced to evaluate the difference between a self-
driving vehicle and the surrounding vehicles. .e OTF can
be used to compare the EV’s driving state with the driving
states of vehicles in other lanes.

Since the OTF reflects the speed difference between
vehicles in other lanes and an EV, it is related to the dif-
ference in the number of overtaking and overtaken vehicles
on the two sides. .e numbers of vehicles overtaking and
being overtaken on the left and right sides can be, respec-
tively, calculated by

Nal(t) − Nbl(t) � Nnl(t),

Nar(t) − Nbr(t) � Nnr(t),
 (1)

where Nal(t) and Nar(t) denote the numbers of vehicles
overtaken by an EV in the left and right lanes, respectively;
Nbl(t) andNbr(t) are the numbers of vehicles overtaking the
EV in the left and right lanes, respectively; Nnl(t) is the
difference in the numbers of vehicles overtaking and being
overtaken in the left lane, and Nnr(t) is the difference in the
number of vehicles overtaking and being overtaken in the
right lane.

In a three-lane scenario, the number of overtaking ve-
hicles and the number of overtaken vehicles can be calcu-
lated as follows:

Nal(t) + Nar(t) � Na(t),

Nbl(t) + Nbr(t) � Nb(t),
 (2)

whereNa(t) is the total number of vehicles overtaken by an EV
and Nb(t) is the total number of vehicles overtaking the EV.

In this study, the OTF is defined as a difference between
the numbers of vehicles overtaking and those being over-
taken in the left and right lanes within a unit time interval,
which can be expressed as follows:

OTF(t) �
Nal(t) + Nar(t)(  − Nbl(t) + Nbr(t)( 

δ
�

Na(t) − Nb(t)

δ
,

(3)

where δ is the unit time window.
According to equation (3), the OTF threshold is set to

[−ao, ao]. .erefore, in the OTF evaluation function, when a
vehicle’s OTF belongs to [−ao, ao], the autonomous vehicle’s
state represents a consistent speed, and when OTF is larger
than ao, the autonomous vehicle’s state represents an ex-
cessive speed, and when OTF is less than (−ao), the au-
tonomous vehicle’s state represents an insufficient speed.
.is judgment framework is shown in Figure 2.

2.2. Time-Window Determination. When the time-window
length varies, the OTF value in the corresponding time-
window also varies. .e time-window length is divided into
different length ranges to investigate the OTF value ranges
under different fixed time-window lengths.

For instance, when δ � 5 s, the OTF is calculated by

OTF(t)|δ�5 �


ti+4
ti

Na(t) − Nb(t)( 

5
. (4)

When δ � 10 s, the OTF is calculated by

OTF(t)|δ�10 �


ti+9
ti

Na(t) − Nb(t)( 

10
. (5)

.erefore, when δ � i′ s, the OTF is calculated by

OTF(t)|δ�i′ �


t
i+i′−1

ti
Na(t) − Nb(t)( 

i′
. (6)

In this paper, 1 s is used as a time-window step for each
car overtaking an EV.When δu � 1 s, the OTF value changes
every 1 s, resulting in a dynamic OTF change. When δ � i′ s,
the OTF value is calculated for the time-window length of
(Na(t) − Nb(t)) in the following time periods, and the
division of the time-window under dynamic changes is as
follows:

t1 − ti′ ,

t2 − ti′+1,

t3 − ti′+2,

⋮

ti − ti+i′−1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

2.3. OTFValue Range Analysis. To study the changing trend
of the OTF value, a hardware platform consisting of a
millimeter-wave radar and GPS device was built to obtain
the OTF [23]..e test was conducted using real vehicles with
four different speeds, and the obtained data were processed
and analyzed under different time-window lengths.

A 1 s time-window step was used to study the OTF values
under different time-window lengths. .e OTF values for
different time-window lengths at four vehicle speeds also

Build OTF model

the OTF-based driving-
state evaluation approach

Build reinforcement
learning environments and

agent

Guide

DDPG

Learning

Simulation and experiment

Evaluation and validation

Build simulation scenes

Figure 1: .e framework of this paper.
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differed. .e time-window lengths were 10 s, 20 s, 30 s, and
60 s. .e results are shown in Figure 3.

As shown in Figure 3, at the same vehicle speed, the
ranges of OTF values were similar for different time-window
lengths. Also, the OTF values showed a large concentration
of results for a time-window of 60 s. .e ranges of OTF
values at different vehicle speeds are given in Table 1.

3. Decision-Making Process

In this study, a learning approach is used to obtain an
optimal decision. In this section, a decision-making model
based on the policy gradient algorithm is introduced. In this
algorithm, the vehicle driving state evaluation function
based on the OTF is defined, and reward functions in dif-
ferent scenarios are designed, which can reflect the driving
difference between self-driving vehicles and other vehicles.
.e optimal action-state is searched by the optimal search.

3.1. DDPG. .e DDPG [24] represents a realization of the
DeepMind research team constructed using the DQN to
extend the Q-learning algorithm and a deep neural network
to approximate the state-behaviour value function and the
deterministic strategy.

.e DDPG algorithm separately parameterizes the critic
function Qμ(s, a|θQ) and the actor function μ(s|θμ), where
θQ and θμ are the weight parameters. .e critic function is
defined by equations (9) and (10), and it is updated by
minimization.

W(Q) �
1
N


i

yi − Q si, ai( ( 
2
,

yi � ri + cQ′ si+1, μ′ si+1|θ
μ′

 |θQ′
 .

(8)

.e actor function maps the current state to the current
best action, and it is updated by

∇θμK ≈
1
N


i

Q s, a|θQ
 |S�Si,a�μ Si( )∇θμμ s|θμ( |Si

, (9)

where i is the number of training steps, and N is the total
number of training steps; Q and μ denote the functions of
critics and actors, respectively; Q′ and μ′ denote the critic
and actor functions of the target network, respectively.

Finally, the target network copies the original network’s
parameters according to the delay factor τ to perform the
update by

θQ′
� τθQ

+(1 − τ)θQ′
, (10)

θμ′ � τθμ +(1 − τ)θμ′ . (11)

3.2. OTF-Based Self-Driving Vehicle Decision-Making Process
in Different Scenarios. When making decisions for auton-
omous driving, different decisions need to be made
according to certain scenarios. According to the OTF-based
driving state evaluation function presented in Section 2, this
paper establishes four typical scenarios of autonomous ve-
hicle decision-making methods.

.is paper discusses the following scenarios in a three-
lane highway scenario.

3.2.1. No Cars in front of the EV. When OTF ∈ [−ao, ao], the
driving status of an EV is similar to the driving status of
vehicles in the two adjacent lanes.

When OTF> ao, an EV’s driving speed is significantly
higher than the driving speeds of vehicles in the adjacent
lane, and the EV’s state represents the excessive-speed state.
Since the EV’s status can be assessed as too fast, the EV can
make the OTF value meet the OTF threshold range by
slowing down and performing the other related actions.

When OTF< − ao, the EV’s state is the insufficient-
speed state. Since there is no blocking from the EV in the
front, the EV should accelerate to achieve that its OTF is
within the threshold range.

.e OTF-based self-driving vehicle decision-making
process in scenario (1) is shown in Figure 4.

3.2.2. Sudden Insertion of Other Vehicle (OV) from the
Adjacent Lane: Consider the Example of the OV Insertion
from the Adjacent Left Lane. When OTF ∈ [−ao, ao], al-
though the EV’s state is consistent, the sudden insertion of
an OV from the adjacent left lane causes the efficiencies of
the left lane and this lane to decrease. If the inserting OV
completes the lane-changing action within the unit time-
window, the EV first performs the deceleration action and
then accelerates until the OTFmeets the threshold. If the OV
does not complete the lane-changing action within the unit
time-window, the EV should consider performing the
change to the adjacent right lane to reach the optimal
efficiency.

When OTF> ao, the vehicle can make the OTF meet the
threshold range by slowing down and performing the other
actions while ensuring the safety distance.

When OTF< − ao, although the EV’s state is the in-
sufficient speed, the OTF threshold cannot be reached by the
acceleration maneuver due to the insertion of the OV in the
adjacent left lane. .erefore, it is necessary to consider
performing a switch to the right lane to achieve optimal
efficiency. .e same applies to the adjacent right lane with
vehicle insertion.

.e OTF-based self-driving vehicle decision-making
process in scenario (2) is shown in Figure 5.

Overtaking frequency of
vehicle assessment

OTF < (–ao) OTF > ao(–ao) < OTF < ao

Insufficient Speed Consistent Speed Excessive Speed

Figure 2:.e diagram of the OTF-based automatic-vehicle driving
status assessment framework.
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3.2.3. Sudden Braking of the Vehicle in Front. When
OTF ∈ [−ao, ao], due to the sudden braking of the car in the
front, an EV should consider changing lanes and performing
the other actions to achieve the best efficiency under these
conditions while ensuring a safe distance with the car in
front.

When OTF> ao, the EV’s state is the excessive speed.
.us, the EV can make the OTF reach the threshold range
by deceleration while ensuring the safety distance at the
same time.

When OTF< − ao, the EV’s state represents the insuf-
ficient speed. .erefore, it is impossible to reach the OTF
threshold by acceleration action due to the sudden braking
of the car in front, so it is necessary to consider executing
lane change action.

.e OTF-based self-driving vehicle decision-making
process in scenario (3) is shown in Figure 6.

3.2.4. @e Vehicle in Front Changes Lane: Consider the Example
of the Front Car Changing Lanes to the Adjacent Left Lane.
When OTF ∈ [−ao, ao], since the vehicle in front executes a
lane-changing maneuver, under normal circumstances, the EV
will decelerate in its own lane. .erefore, the EV should con-
sider performing a right-lane action to achieve optimal effi-
ciency while ensuring a safe distance from the vehicle in front.

When OTF> ao, the EV can make the OTF reach the
threshold range by deceleration action while ensuring the
safety distance at the same time.

When OTF< − ao, if the lane-changing action of the
front car is completed within a unit time-window, the
strategy of the EV after the lane change of the front car can
be referred to case (1). If the front car is unable to complete
the lane-changing process within the time-window due to
the factor of its target lane and the EV cannot accelerate to
within the threshold value, the execution of the lane-
changing in the right lane should be considered.

.e OTF-based self-driving vehicle decision-making
process in scenario (4) is shown in Figure 7.

3.3. Reward Function Design. .e measurement of a policy
depends on the cumulative reward received by an intelligent
body after executing a policy for a long period of time. Since
the most important issues to be considered for intelligent
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Figure 3: .e OTF values for different time-window lengths at four vehicle speeds: (a) 60 km/h; (b) 80 km/h; (c) 100 km/h; (d) 120 km/h.

Table 1: .e OTF value ranges at four vehicle speeds.

Vehicle speed (km/h) OTF value range
60 [(−0.40)–0.00]
80 [(−0.30)–0.20]
100 [0.00–0.30]
120 [0.05–0.60]
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vehicles are safety and timeliness, these two aspects should
be considered when designing the reward function.

.e timeliness is mainly shown by two aspects, OTF
function and vehicle speed..erefore, in this paper, the OTF
reward and vehicle speed reward are established separately.

In the OTF-based speed suitability assessment model,
the output results in a positive reward value for consistent
speed, and the reward value for the rest of the cases is zero.
.e OTF reward ro can be defined as follows:

ro �

1 OTF(t) � 0,

1
|OTF(t)|

−ao ≤OTF(t)< 0, 0<OTF(t)≤ ao,

0 OTF(t) > ao,OTF(t)< − ao.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Based on the results in Section 2, ao was set to 0.05.
Outside the OTF constraint, smart vehicles travel at faster

speeds, which is beneficial for timeliness. In their speed
constraint, the speed vehicle should be as fast as possible.
.erefore, the speed reward can be defined as follows:

rv �
vE

vmax
, (13)

where vE is the current vehicle speed and vmax is the
maximum vehicle speed in the current lane.

.e safety of a smart vehicle is related to the state of a
vehicle in front of it, so setting the safety reward is determined
by the time-to-collision (TTC) and a relative distance between
the two vehicles D [25]. .e TTC value is calculated by

tT �
xF − xE

vE − vF

, (14)

where xF denotes the longitudinal position of the front
vehicle, xE is the longitudinal position of the EV, vE is the EV
speed, and vF is the speed of the front vehicle.

.e reward rT for TTC is expressed as

rT �
0 tT < tTmin,

1 tT ≥ tTmin,
 (15)

where tTmin denotes the minimum threshold of tT [26].
When the calculated value of tT is infinite, i.e., when the
speeds of the two cars are equal, the reward value is one.

Other Vehicle1

Other Vehicle2

Radar sensor
OTF є [–ao, ao]

Ego Vehicle

(a)

Other Vehicle1

Other Vehicle2

Ego Vehicle

OTF > ao

(b)

OTF < –ao

Other Vehicle1

Other Vehicle2

Ego Vehicle

(c)

Figure 4: .e OTF-based self-driving vehicle decision-making process in scenario (1): (a) OTF ∈ [−ao, ao]; (b) OTF> ao; (c) OTF< − ao.
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However, when the relative distance between the two
cars is less than the minimum safe distance, the reward value
is set to negative infinity, which can be expressed as

rd � −∞ Δ d<dDmin. (16)

.erefore, the accumulated total reward value can be
calculated by

r � ro + rv + rT + rd. (17)

4. Simulation and Validation

In order to verify the effectiveness of the proposed decision
algorithm, the reinforcement learning framework provided
by MATLAB was used, and four complex high-speed scenes
were constructed as an experimental environment.

In the experiment, the reinforcement learning elements,
including actions, states, and rewards, were implemented. .e
OTF-based vehicle DDPG algorithm was used for vehicle
driving behaviour decision-making. .e control variables
(front-wheel angle and acceleration) were output by the neural
network in the DDPG. In this section, the three-degree-of-

freedom vehicle dynamics model in Simulink responds to the
control variables, and finally outputs the EV’s own state vari-
ables lateral velocity vy, longitudinal velocity vx, and yaw angle
ω. .e exact flow of the simulation is shown in Figure 8.

.e selected high-speed scene was a one-way three-lane
scene, and the state space S was the location and motion
information of the surrounding 10 vehicles, including the
vehicle under test. .e vehicles in the scene were free and
randomly selected actions. .e parameters of the environ-
mental model are shown in Table 2.

.e vehicle movement space included: left lane-chang-
ing, driving straight ahead, right lane-changing, accelera-
tion, and deceleration. .e specific training process refers to
the algorithm described in Section 3.1, where the maximum
number of epochs in the training phase was set to 10,000.

.e tests were divided into four scenarios, and the OTF-
based driving behaviour decision model for autonomous
vehicles presented in Section 3 was validated in each of the
scenarios.

4.1. Scenario (1): No Cars in front of the EV. .e results of the
self-driving vehicle using the OTF-based driving behaviour
decision model in Scenario 1 are displayed in Figure 9. As

Other Vehicle1

Radar sensor

Ego Vehicle

OtherVehicle2
OTF є [–ao, ao]
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Other
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OtherVehicle2

Ego Vehicle

OTF < –ao
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Figure 5: .e OTF-based self-driving vehicle decision-making process in scenario (1): (a) OTF ∈ [−ao, ao]; (b) OTF> ao; (c) OTF< − ao.
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Figure 6: .e OTF-based self-driving vehicle decision-making process in scenario (1): (a) OTF ∈ [−ao, ao]; (b) OTF> ao; (c) OTF< − ao.
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shown in Figure 9(a), the EV was driving in the middle lane,
and the EV’s driving decision in this scenario was lane-keeping.
Since the current driving lane was not blocked by the car in
front, the EV performed the acceleration action, as shown in
Figures 9(b) and 9(d) in order to improve the driving efficiency.
As shown in Figure 9(c), the training result finally converged.

4.2. Scenario (2): Sudden Insertion of theOV from theAdjacent
Lane. .e results of the autonomous vehicle using the OTF-
based driving behaviour decision model in Scenario 2 are

presented in Figure 10. As shown in Figure 10(a), the EV’s
driving decision in this scenario was lane-keeping. During the
simulation process, one of the OVs in the adjacent left lane was
changing the lane to the EV’s driving lane, and the lane-
changing process of the OV was completed in 3 s. .erefore, as
shown in Figures 10(b) and 10(d), the EV performed the de-
celeration action first and then accelerated after the OV’s lane
change maneuver ended. .e training results in Figure 10(c)
show that the training results eventually converged.

4.3. Scenario (3): Sudden Braking of the Vehicle in Front.
As shown in Figure 11(a), the decision of the EV was to change
lanes to the left. Due to the sudden braking of the vehicle in
front, the EV performed the deceleration action first, as shown
in Figures 11(b) and 11(d), to ensure driving safety. .en, to
drive more efficiently and obtain a larger reward value, the EV
performed the lane-changing maneuver. As shown in
Figure 11(c), the training results finally converged.
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Other Vehicle2

Ego Vehicle

Other Vehicle3

OTF > ao

(b)

Other Vehicle1 Other Vehicle2

Ego Vehicle Other Vehicle3

OTF < –ao

(c)

Figure 7: .e OTF-based self-driving vehicle decision-making process in scenario (1): (a) OTF ∈ [−ao, ao]; (b) OTF> ao; (c) OTF< − ao.
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Table 2: Simulation parameters.

Variable Value Description
Lt 250m Total road length
Ws 3.75m Single lane width
NO 10 Total number of other vehicles
WV 1.8m Vehicle width
viE 22.2/27.7m/s Initial speed of the EV
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Figure 9: Training and simulation results of scenario 1. (a) EV trajectory; (b) EV acceleration; (c) training results; (d) EV velocity.
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Figure 10: Training and simulation results of scenario 2. (a) EV trajectory; (b) EV acceleration; (c) training results; (d) EV velocity.
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Figure 11: Training and simulation results of scenario 3. (a) EV trajectory; (b) EV acceleration; (c) training results; (d) EV velocity.
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Figure 12: Training and simulation results of scenario 4. (a) EV trajectory; (b) EV acceleration; (c) training results; (d) EV velocity.
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4.4. Scenario (4): @e Vehicle in Front Changed Lanes to the
Adjacent Lane. As shown in Figure 12(a), the EV’s decision
in this scenario was lane-keeping. During the simulation,
since the lane-changing maneuver of the car in front was
completed in 3 s, there was no obstruction in front of the EV
after the front car left the lane. .erefore, the EV performed
the acceleration action after the front car changed the lane,
as shown in Figures 12(b) and 12(d). As shown in
Figure 12(c), the training results converged.

5. Conclusions

In this paper, a method based on overtaking frequency is
proposed for solving the autonomous decision-making
problem of self-driving vehicles in highway scenarios. .e
degree of difference in the driving state between the self-
driving vehicle and surrounding vehicles is evaluated. .is
difference is quantified by the evaluation method of the
driving state of autonomous vehicles based on the over-
taking frequency. With the assistance of this evaluation
method, a decision-making model based on the DDPG is
established. A driving decision-making method of self-
driving vehicles based on the overtaking frequency in dif-
ferent typical scenarios is designed to make self-driving
decisions more efficient and reasonable. .e proposed
model is verified by simulations, and simulation results
prove the applicability and effectiveness of the decision-
making model in four typical driving scenarios. .e method
can provide a theoretical basis for further research in un-
certainty decision-making. However, whether the applica-
tion scenarios of the algorithm have broad applicability
remains to be studied in the future research. In the future
research, the training amount of the model will be further
increased, and the application of the decision model will be
expanded.
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