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On-board data of detected vehicles play a critical role in the management of urban road traffic operation and the estimation of
traffic status. Unfortunately, due to limitations of technology and privacy issues, the sampling frequency of the detected vehicle
data is low and the coverage is also limited. Continuous vehicle trajectories cannot be obtained. To overcome the above problems,
this paper proposes an unscented Kalman filter (UKF)-based method to reconstruct the trajectories at signalized intersections
using sparse probe data of vehicles. We first divide the intersection into multiple road sections and use a quadratic programming
problem to estimate the travel time of each section. -e weight of each initial possible trajectory is calculated separately, and the
trajectory is updated using the unscented Kalman filter (UKF); then, the trajectory between two updates is also obtained ac-
cordingly. Finally, the method is applied to the actual scenario provided by the NGSIM data and compared with the real trajectory.
-e mean absolute error (MAE) is adopted to evaluate the accuracy of the proposed trajectory reconstruction. Sensitivity analysis
is provided in order to provide the requirement of sampling frequency to obtain highly accurate reconstructed vehicle trajectories
under this method.-e results demonstrate the applicability of the technique to the signalized intersection.-erefore, the method
enables us to obtain richer and more accurate trajectory data information, providing a strong prior basis for future urban road
traffic management and scholars using trajectory data for various studies.

1. Introduction

Accurate and reliable vehicle trajectory data are significant
in the intelligent transportation system and urban traffic
management [1]. Trajectory data provide a rich source of
information for many application areas, such as getting on-
site speed, queue, delay, acceleration, and driving time [2].
-e extracted trajectory can not only reflect the traffic flow
characteristics of a specific road section at the micro level but
also explain the traffic demand and temporal and spatial
distribution characteristics of the entire transportation
network at the macro level [3]. It can also be used to measure
arterial performance, estimated queue length [4], travel time
[5, 6], and vehicle energy and emissions [7]. -erefore,
vehicle trajectory data have high research value, and their
importance to urban traffic operation and management is
self-evident.

So far, traffic data can be divided into two major cate-
gories: (i) traditional fixed-location sensor data, e.g., ring
detector, video, automatic vehicle identification (AVI), and
automatic license plate recognition (ALPR) [8], and (ii)
mobile sensor data, e.g., global positioning system (GPS),
floating car, and smartphone [9]. Fixed-location sensors can
provide information such as driving time, average speed, and
traffic volume within 30 seconds to 5 minutes at the in-
stallation location [10]. However, the collected data cover a
limited area due to the funding constraints and the low
coverage of sensors. With the development of technologies
such as wireless communication, mobile positioning, and
vehicle-road collaboration, massive traffic data are con-
stantly being generated. Vehicle trajectory data have a wide
range of applications in transportation due to their rich
temporal and spatial information [11, 12]. Unfortunately,
due to the limitation of the existing technology, it is still
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difficult to directly obtain complete and high sampling rate
vehicle trajectory data within a specific space-time range
[13]. -e raw probe data with incomplete trajectories usually
cannot provide the actual traffic conditions. Even shortly, we
can successfully implement to obtain high-frequency data,
but it will lead to privacy and security problems [14, 15]. At
the same time, the data usually contain a large number of
measurement errors and outliers [16]. To more accurately
evaluate traffic conditions and solve traffic problems, we
focus on trajectory reconstruction between two sparse
updates.

So far, trajectory reconstruction has received a lot of
attention from all over the world, and many scholars have
done in-depth research on vehicle trajectory reconstruction
[17–19]. Coifman [20] proposed an estimation method
based on traffic flow theory (TFT) to reconstruct the vehicle
trajectory on the expressway section, using the traffic data
from a single dual loop detector which is extrapolated to the
extended link. Van Lint and Hoogendoom [21] integrated
the upstream and downstream data and used a multiloop
sensor to reconstruct the vehicle trajectory on a route.
However, this method is not suitable for urban road tra-
jectory reconstruction. Punzo et al. [22] proposed a method
to inspect trajectory data accuracy, based on jerks’ analysis,
consistency analysis, and spectral analysis, which is suc-
cessively applied to datasets. Based on this research, Mon-
tanino and Punzo [23] presented a multistep filtering
method, which aimed to eliminate outliers leading to
nonphysical acceleration values by local reconstruction of
the vehicle trajectory, as well as cutting off residual random
disturbances from the signal while maintaining driving
dynamics.

Meanwhile, compared with the methods of vehicle
trajectory reconstruction on highways, more and more re-
searchers focus on signal-controlled urban roads. For ex-
ample, Mehran et al. [24] combined fixed-location sensor
data with signal timing information and used variational
theory (VT) to solve the problem of vehicle trajectory re-
construction. Sun and Ban [25] proposed the optimization-
based method and the delay-based method to estimate the
shockwave boundaries and then used the variation for-
mulation (VF) method to reconstruct vehicle trajectories.
-is method is macroscopic. Hao et al. [26] focused on
finding the most likely driving mode sequences (decelera-
tion, idling, acceleration, and cruising) to forecast the ve-
hicle’s trajectory. But, different from the approach of Sun
and Ban [25], this is a microscopic-based approach. Chen
et al. [10] developed a hybrid method combining Kalman
filtering (KF) and variational theory (VT) to reconstruct the
vehicle trajectory of signalized intersection.-e VTwas used
to establish an extended variational network, and the KF was
used to characterize the dynamic and random characteristics
of queue boundary curves.

Because travel time is a crucial traffic index, many studies
have focused on estimating travel time to reconstruct the
vehicle trajectory. Shan et al. [27] proposed a probabilistic
model that used sparse data to reconstruct vehicle trajec-
tories. Wan et al. [28] divided the intersection into many
short sections. -e section travel time was estimated by the

expectation maximization (EM) method, presenting situa-
tions when spanning single or multiple intersections. -en,
they employed the maximum likelihood estimation (MLE)
approach to generate the most likely trajectory between two
consecutive sampling times. -e effectiveness of the method
has been proved by using transit buses data of San Francisco.
Hao et al. [29] proposed a stochastic model to estimate the
second-by-second vehicle velocity trajectory by examining
all possible sequences of modal activity between sparse lo-
cations and continuous data points of velocity measure-
ments. -e vehicle dynamic probability is then expressed as
the product of multiple independent event probabilities.
-at is, the detailed vehicle velocity trajectory is recon-
structed from the modal activity sequences with maximum
likelihood. Fard et al. [30] proposed a two-step technique
based on wavelet analysis, primarily by using a wavelet
transform with unique processing methods to identify and
modify outliers. Next, the noise in the trajectory data is
eliminated by applying a wavelet-based filter, which is used
in order to filter errors and reconstruct the trajectory data.
Venthuruthiyil and Chunchu [31] improved the locally
weighted polynomial regression (LWPR) by proposing a
method for trajectory reconstruction by determining the
optimal window size and polynomial order and taking into
account the dynamics of individual vehicles. Wang et al. [32]
proposed a segmented deceleration and acceleration model
developed to calculate acceleration for different driving
modes in a trajectory. A new expectation maximization
(EM) algorithm was then used to estimate each driving
mode’s acceleration data distribution parameters. -e ac-
celeration statistics are then used to reconstruct the corre-
sponding part of the trajectory. Similar to Wan et al. [28],
Wei et al. [33] adopted a particle filter (PF)-based approach
to reconstruct the missing trajectory between the continuous
updates of vehicles on the main road of single and multiple
intersections.

Because there are outliers and errors in the traffic data,
there will be deviations in the actual results. In the specific
research methods, most scholars use filtering algorithms to
solve the trouble. Common filtering techniques are the
moving average method, the local polynomial method,
wavelet analysis, the Kalman filter (KF), etc. It is noteworthy
that many studies have applied the Kalman filter (KF) to
reconstruct the vehicle trajectory. -e KF can estimate the
state of the dynamic system from a series of data with
measurement noise when the measurement variance is
known. In a dynamic systemwith uncertain information, the
KF can make informed speculation about what the system
will do next. Even if there is noise information interference,
we can usually find out what happened and find the invisible
correlation between images. -ese have demonstrated the
superiority of the KF. However, the KF is an equation of state
that transforms the problem into a linear Gaussian model,
which has many limitations in the processing of trajectory.
Subsequently, some studies used the particle filter (PF) to
reconstruct the vehicle trajectory at signalized intersections.
-e PF enables vehicle trajectory reconstruction by updating
the state-space equation based on the sampling of trajectory
candidates and selects the particle with the highest weight by
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displaying the weight difference of each candidate, which
can be directly used to solve the problem of sparse trajectory
reconstruction. Xie et al. [34] had done pioneering research
in this field, andWei et al. [33] solved some problems on this
basis and obtained more accurate results. -ese prove that
the particle filter is an excellent method to solve vehicle
trajectory reconstruction. Although the PF can be used as an
effective means to solve nonlinear problems, it needs a large
number of sample points, resulting in a very complex cal-
culation. Otherwise, it cannot get a good a posteriori
probability density. -ese questions are worth our attention
and study. Motivated by the above issues, this study presents
an unscented Kalman filter (UKF)-based method to re-
construct the vehicle trajectory for the signalized intersec-
tion. -e UKF is also a good method to solve nonlinear
problems, which has high calculation accuracy. -e gen-
erated sigma particles are selective instead of a large number
of points, and the weighted mean and variance of particles
converge to the real mean and variance [35, 36]. -ere are
few studies to date that have applied the UKF to the sig-
nalized arterial in order to reconstruct the vehicle trajectory.
-e main contributions of this study are briefed as follows:

(1) By resorting to the advantage of UKF, this study uses
sparse probe data to reconstruct the vehicle trajec-
tory of a signalized intersection. It is beneficial to
solve the practical problems encountered in complex
traffic operations.

(2) -is study optimizes the previous models and uses
the constrained quadratic programming problem to
reduce the error of time allocation. It helps make the
initial trajectories more accurate and contributes to
the computational efficiency and accuracy of tra-
jectory reconstruction.

(3) In this study, a new method is proposed to test the
applicability of the method by changing the pro-
portion of known points to all points instead of
changing the sampling frequency (the points are
selected uniformly) to obtain the best applicability of
the method within a specific range and thus achieve
the optimal accuracy of reconstructed trajectories. It
has important guiding significance in practical
applications.

Specifically, referring to the structure and vehicle op-
eration characteristics of the signalized intersection, with
time as the reference quantity, previous methods are opti-
mized. -e trajectory between two consecutive update
points was reconstructed based on the UKF method. In
addition, through preprocessing the NGSIM data [37], the
method is operated in Lankershim Boulevard, Los Angeles.
-e results show that the reconstructed trajectory has higher
accuracy compared with the actual situation. Finally, the
applicability of the UKF-based method is investigated
through sensitivity analysis.

In the rest of this paper, firstly, the framework and a brief
description of the theory of the article are explained. Next,
the estimation of segmented travel time statistics is
explained. After considering the various operation modes of

vehicles at signalized intersections, a method for UKF-based
trajectory reconstruction is proposed. Furthermore, the
proposed method is applied and demonstrated by NGSIM
data of Lankershim Boulevard Street in the US, compared
with the actual trajectory on the ground. -e sensitivity
analysis is carried out to find the range of known point
proportions for which the method has optimal applicability.
Finally, the conclusions and future research directions are
discussed.

It is worth noting that, in this study, we ignore the length
of vehicles and the behaviors such as lane changes caused by
vehicle-to-vehicle interactions during the travel time. We
consider the multiple trajectories obtained through the
model as initial sigma points. Each trajectory represents an
initial point labeled with a number, and their weights are
calculated separately.

-e rest of this paper is organized as follows: Section 2
describes the framework of the method, introduces the
unscented Kalman filter (UKF), and explains the method of
segmental travel time estimation and the method for
reconstructing the most likely trajectory of a vehicle in-
cluding two cases where vehicles have one-stop and no stop
at an intersection. Section 3 uses the NGSIM data for case
analysis to obtain the results for comparison with the actual.
Section 4 presents a sensitivity analysis to seek the optimal
sampling frequency under this method. And the conclusions
are presented in Section 5.

2. Methodology

2.1. Framework of the Proposed Method. -is research fo-
cuses on vehicle trajectory reconstruction at signalized in-
tersections. -e flowchart of this method is shown in
Figure 1. -e method consists of three parts. It can be di-
vided into two cases: no stop and stop, and estimate the
travel time to get the initial trajectories which can be seen as
initial sigma points. -en, it can calculate the proportion of
the multiple potential trajectories. -e one with the highest
weight can reconstruct the vehicle trajectory. Finally, per-
form sensitivity analysis so that we should reduce the time
interval between two updates, reconstruct the trajectory in
segments, and then combine the trajectories.

2.2. Unscented Kalman Filter. -e UKF is the combination
of unscented transform (UT) and standard Kalman filter
system. -e nonlinear system equation is suitable for the
standard Kalman system under the linear assumption
through unscented transformation. -is technique mainly
uses n points collected in the prior distribution, which we
call sigma points, uses a group of sigma points to describe
the Gaussian distribution of random variables, and then uses
the weighted statistical linear regression technique to ap-
proximate the posterior mean and variance of nonlinear
functions through the transmission of nonlinear functions.

-e UKF is mainly divided into prediction and update.
-e calculation accuracy of nonlinear distribution statistics
is at a higher level. -ree significant steps are involved, i.e.,
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unscented transform, generating sigma points, and state
prediction and update.

2.2.1. Unscented Transform. y � f(x) is a nonlinear function,
x is an n-dimensional random variable, its mean is x, and
its variance is Px. UT obtains a group of sigma sampling
points χi , i � 0, 1, . . ., L, according to a certain sampling
strategy and sets the mean weight Wm

i and variance weight
Wc

i to approximate the a posteriori mean and variance of
the nonlinear function. Using the selected sigma sampling
point set χi , i � 0, 1, . . ., L, yi � f(χi) can be obtained by
nonlinear function transfer, where yi is the corresponding
point of sigma sampling after nonlinear function transfer.
According to the weighted statistical linear regression
technique, the statistical characteristics of y can be
approximated:

y � 
L

i�0
W

m
i yi,

Pyy � 
L

i�0
W

c
i yi − y(  yi − y( 

T
,

Pxy � 

L

i�0
W

C
i χi − x(  yi − y( 

T
.

(1)

2.2.2. Generating Sigma Points: 2e Selection of Sampling
Points Shall Meet.

g χi , W
m
i , W

c
i , L, Px(x)  � 0, (2)

where χi, Wm
i , Wc

i  is the set of sigma sampling points,
mean weight, and variance weight, L is the number of
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Figure 1: Flowchart of the method of vehicle trajectory reconstruction.
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sampling points, Px(x) is the density function of random
variable x, and g[.] determines the relevant information of
x.

Assuming L� 2n, the number of sigma sampling points
is 2n+ 1. We can see that

χ0 � x,

χi � x +

��������

(n + λ)Px



 
_i
, i � 1, 2, . . . , n,

χi+n � x −

��������

(n + λ)px



 
i
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

-e corresponding weight

W
m
i �

λ
(n + λ)

, i � 0,

1
2(n + λ)

, i≠ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W
C
i �

λ
(n + λ)

+ 1 + β − α2, i � 0,

1
2(n + λ)

, i≠ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

It is optimal when β� 2 and λ and α are scaling factors,
where α ∈ [0, 1].

-erefore, the formula for calculating the sigma point
weights is

Wi �

λ
(n + λ)

, i � 0,

1
2(n + λ)

, i≠ 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(5)

-e sum of all sigma point weights is equal to 1.

2.2.3. State Prediction: Initial State Estimation and Estimated
Variance

x0|0 � E x0( ,

P0|0 � E x0 − x0|0  x0 − x0|0 
T
.

⎧⎪⎨

⎪⎩
(6)

Time update: for the state estimation xk|k and the esti-
mation variance Pk|k at time k, 2n+ 1 sigma sampling points
χi and corresponding weights Wm

i and Wc
i can be obtained.

Nonlinear state transfer of sampling points:

c
i
k+1|k � f χi( . (7)

Updated mean and variance:

xk+1|k � 
2n

i�0
W

m
i c

i
k+1|k,

Pk+1|k � 
2n

i�0
W

c
i c

i
k+1|k − xk+1|k  c

i
k+1|k − xk+1|k 

T
+ Qk,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

where xk+1|k is the state valuation,Pk+1|k is the variance of the
state prediction, and Qk means the covariance.

-e particles are obtained by a given sampling method,
and the weight of the particles updates the measured value
and state of the particles. -e variance also changes. When
the variance distribution is minimized, it can represent the
real state distribution.

2.3. Estimation of the Road Section Travel Time. To recon-
struct the vehicle trajectory of signalized intersection based
on the UKF, it is necessary to generate appropriate initial
particles. -e potential trajectory of the detection vehicle
between two successive updates can be defined as the initial
particle. Based on the method proposed by Wan et al., the
front and back of the intersection are divided into multiple
segments to estimate the travel time of each road section.
Based on this method, the initial sigma particles with the
actual situation can be obtained. As shown in Figure 2, the
whole intersection was divided into several road units with a
certain length.

-e roads in the front and rear of the intersection are
evenly divided into sections, represented by
C1, C2, . . . , Cn . -e number of passing vehicles is n,
denoted by 1, 2, . . . , n{ }. -e sum of the travel time allocated
to each section is equal to the total observed time:

t
j

C1 ,Cn{ }
� 

N

i�1
t
j

Ci
. (9)

After allocating time to each unit, it is redistributed
through the maximum likelihood function, and the ex-
pectation and variance of each unit can be obtained.

Distribute the initial time evenly:

t
j

Ci
�

1
CN − C1 + 1

t
j

C1 ,CN{ }
 . (10)

Assume that time is normally distributed:

P t
j

Ci
  �

1
����
2πσ

√
Ci

e
− t

j

Ci
− μCi

 
2
/2σ2ci

 
. (11)

Write it as a log-likelihood function:

log P t
j

Ci
| μCi

, σCi
  � −

t
j

Ci
− μCi

 
2

2σ2Ci

− log
���
2π

√
σCi

 . (12)
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Analyze all sections and redistribute time:

log P t
j

X|μX,  X   � 
N

i�1
log P t

j

Ci


μCi
, σCi

 , (13)

where X � [C1, C2, . . . , CN]T, μX � [μC1
, μC2

, . . . , μCN
]T,

and  X �

σ2C1
· · · 0

⋮ ⋱ ⋮
0 · · · σ2CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Solving the maximum likelihood function, transform it
into a quadratic programming problem:

arg
t
j

Ci

miny �
1
2
x

T
Hx + f

T
x

s.t. 
N

_l�1

t
_j

Ci
� t

j

C1 ,CN{ }
,

(14)

where x � [t
j

C1
, t

j

C2
, . . . , t

j

CN
]T, H �

1/σ2C1
· · · 0

⋮ ⋱ ⋮
0 · · · 1/σ2CN

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠,

and f � [μC1
/σ2C1

, . . . , μCN
/σ2CN

]T.
Make j � j + 1 repeat the above steps for multiple it-

erations until the difference between the two iterations is less
than the threshold and stop the iteration.

2.4. Trajectory Estimation of the Signalized Intersection.
In urban road networks, due to signal control, each vehicle’s
arrival time and queue length are different. -ere are some
uncertain factors near the intersection, so we should find the
difference instead of simply averaging them. We generally
divide the trajectory at the intersection into two categories, i.e.,
no stop and with stop (we only consider the case of one-stop).
For vehicles with a stop, there is a possibility of multiple tra-
jectories between two updates, which is affected by the dif-
ference in parking locations, so we have to keep updating and
predicting possible parking locations. -ese are shown in
Figure 3.

If there is a queue of vehicles or if the signal is a red phase,
vehicles need to stop at the signalized intersection to queue.
Shockwave theory has been widely used to describe queuing
dynamics, and we can also obtain various traffic parameters
[38]. As shown in Figure 3(b), A is the start of the red light.
When the red light is on, the vehicles start to queue at the

intersection. B is the start of the green light. When the green
light is on, the vehicles begin to start through the intersection.
According to the dataset, we can estimate the farthest queue
pointC.-e slope ofAC is the queuing rate, and the slope of BC
is the discharge rate. -en, we use the actual data to analyze all
the possible stopping positions and the corresponding waiting
times between A and C. We can get different trajectories, re-
spectively. -e specific research methods are as follows.

2.4.1. Estimation of Trajectories with No Stop

Step 1: estimating travel time and comparing with
actual time.
For nonstop trajectories, the estimated travel time can
be calculated by

T CN(  � T C1(  + 
N

i�1
μCi

, (15)

where μCi
is the average time of road section, which can be

obtained in Section 2.3, and C1 and CN represent the first
and last sections which we divided. We define the dif-
ference between the actual and the expected travel time as

Δt C1 ,CN{ } � T CN(  − T CN( . (16)

Step 2: allocating the error into each section.
We can get

Δt C1 ,C N{ } � 
N

i�1
ΔtCi

. (17)

Write the error distribution as a normal distribution:

P Δtci
|0, σCi

  �
1

���
2π

√
σCi

. e
− ΔtCi

 
2
/2σ2

Ci
 

. (18)

Establish a quadratic programming problem:

argΔtCi

miny �
1
2
x

T
Hx + f

T
x

s.t. 
N

_l�1

ΔtCi
� Δt C1 ,CN{ },

(19)

where x � [ΔtC1
,ΔtC2

, . . . ,ΔtCN
]T, H �

1/σ2C1
· · · 0

⋮ ⋱ ⋮
0 · · · 1/σ2CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦,

and f � [0, 0, . . . , 0]T.
An optimal time error allocation can be obtained.
-en, the real time is


t
j

Ci
� t

j

Ci
+ Δtj

Ci
. (20)

2.4.2. Estimation of Trajectories with One Stop

Step 1: assuming the stop position.
Assuming that the parking position is Cz, the stop time
is time(Cz), and the waiting time is twCz

.

C1 Cj CN

Update 2Update 1

C3 ·········

Figure 2: Assignment of the road.
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Step 2: calculating the error of expected and real time.
We divide the whole process into preparking and
postparking:

Δtj

d C1 ,Cz−1{ }
� time Cz(  − time C1(  + 

z−1

i�1
tCi

⎡⎣ ⎤⎦,

Δtj

d Cz+1 ,CN{ }
� time CN(  − time Cz(  + twCz

+ 
N

i�z+1
tCi

⎡⎣ ⎤⎦.

(21)

Step 3: allocating the error into each section.
Let us still write the question as a quadratic pro-
gramming problem:

argΔtd,Ci

miny �
1
2
x

T
Hx + f

T
x

s.t. 

z−1

i�1
ΔtCi

� Δtd C1 ,Cz−1{ },



N

i�z+1
ΔtCi

� Δtd Cz+1 ,CN{ },

(22)

where x � [Δtd,C1
,Δtd,C2

, . . . ,Δtd,CN
]T,

H �

1/σ2C1
· · · 0

⋮ ⋱ ⋮
0 · · · 1/σ2CN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, and f � [0, 0, . . . , 0]T.

-e optimal error distribution is obtained:


t
j

Ci
� t

j

Ci
+ Δtj

d,Ci
. (23)

We can find different parking positions between the
farthest point and the nearest point.

-en, the vehicle trajectory reconstruction with one-
stop can be divided into three parts: the first part is the
trajectory from the first update to the predicted stopping
position, the second part is the trajectory between the
predicted stopping position and the predicted starting
position after queuing (assuming it is stationary and the
trajectory is a straight line), the third part is the trajectory
between the starting position and the second update, and

then the combination of these three parts is the entire
reconstructed trajectory.

3. Case Analysis

3.1. Description of the Dataset. In this paper, we use NGSIM
data which are public. -e data contain global time, lon-
gitude and latitude, frame, global location, and several other
attributes of vehicles. -e data come from the Next Gen-
eration Simulation project, which was started by the Federal
Highway Administration (FHWA) of transportation in
2002. -e data of NGSIM include the driving conditions of
all vehicles on US-101, I-80, and other roads in a period.
-ey are obtained by cameras and then processed into track
point records one by one [37].

To verify the applicability of our proposed method, we
select an intersection of Lankershim Boulevard in Los
Angeles, California, for example analysis. NGSIM data were
collected on June 16, 2005.-e study area was approximately
500meters (1600 feet) in length, the entire datasets from 8:30
a.m. to 8:45 a.m. were included, and the trajectory data were
updated every 0.1 seconds.

3.2. Trajectory Reconstruction at Intersection andComparison
with the Truth Data. After preprocessing the NGSIM data
and obtaining some parameters we needed, the trajectories
of 50 vehicles were selected randomly as the reference data.
Next, we select the trajectory points at the same time interval
and create a new sparse trajectory dataset for follow-up
research.

-e research area of this paper is a single intersection of
Lankershim Boulevard Street. We select two roads before
and after the signal light with a total length of 120 meters.
-e whole road is divided into 60 sections, and each cell is 2
meters long. In this paper, we set the average speed of the
selected points to exceed the threshold of 10.5m/s. Based on
these data, we can use the method mentioned in Section 2 to
estimate the average μCi

and variance σ2Ci
of the travel time

for each road section Ci. Based on this information, we can
reconstruct the vehicle trajectory between two updates.

Firstly, we take the vehicle with ID 2 as an example. We
select the points of its two consecutive updates, which fell
into road sections C1 and C60, respectively. -e time interval
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Figure 3: Trajectories of two cases at the signalized intersection. (a) Nonstop trajectory. (b) Trajectories with one stop.
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between the two updates is 11 s. We will construct po-
tential trajectories between two update points that are no
stop and one-stop, respectively, according to the method
that we proposed. We can get 24 possible trajectories
between the two updates through this method, which
means we get 24 initial particles. -en, according to the
method in the UKF, we calculate the weight of the initial
sigma points that we filtered and select the particle with
the highest weight. Figure 4(a) shows the weight of each
particle. We can see that the weight of particle 1 is 96%, so
the most likely track between the two updates is the first
trajectory which is a track without stopping, and then the
comparison with the actual trajectory is shown in
Figure 4(b).

To analyze another case, we take the vehicle with ID 5,
and the process is similar to the first. However, the time
interval between the two updates became 53 s. -e stopped
and nonstopped trajectories are reconstructed according to
the above method, and 28 initial sigma points can be ob-
tained. After calculating the weight of the points, the dif-
ference from the first case, we get multiple particles with
high weight proportion, as shown in Figure 5(a). We choose
the trajectory of particle 6, which has the highest weight, as
the most likely trajectory to reconstruct the trajectory of the
vehicle with ID 5. -e comparison with the real trajectory is
shown in Figure 5(b).

-e results prove that the trajectory reconstruction
method based on the UKF proposed in this paper has good
accuracy.

3.3.ComparisonofMethods. To further prove the superiority
of the proposed method, we choose the method based on a
new expectation maximization (EM) algorithm for com-
parison in this paper. -e method proposed a new approach
to reconstruct vehicle trajectories using low sampling fre-
quency data, which does not require additional information.
Segmental deceleration and acceleration models were de-
veloped for calculating the acceleration in the trajectory for
different driving modes. -e acceleration data distribution
parameters for each driving mode were then estimated using
a new expectation maximization (EM) algorithm. -e ac-
celeration statistics are then used to reconstruct the corre-
sponding part of the trajectory. Vehicle IDs 2 and 5 are still
selected as the study objects, and the comparison results are
shown in Figure 6.

It can be intuitively seen from Figure 6 that the method
proposed in this study has higher accuracy and relatively
high agreement with the actual trajectory comparison. In
order to make the results more convincing, we quantitatively
analyze the results and calculate the mean absolute error
(MAE) between the two methods and the actual ground
trajectory. -e definition of MAE is

MAE �
1
n



n

i�1

Li − Li


, (24)

where Li represents the estimated position and Li is the
actual position at time i.

For the accuracy of the results, two more vehicles were
randomly selected from the 50 previously selected vehicles,
and the results are shown in Table 1.

We can clearly see the proposedmethod in this paper has
better applicability. Moreover, the MAE of vehicles 2, 5, 8,
and 19 is 2.91m, 3.81m, 3.32m, and 4.67m. Compared with
the EM method, the accuracy has a range of ten to forty
percent improvement, and the trajectory reconstruction in
both stop and nonstop cases achieves good accuracy, which
also proves the applicability of the method under different
driving conditions.

4. Sensitivity Analysis

According to the conclusion in Section 3.2, we can know that
the time interval between two successive updates has an
impact on the weight of the initial sigma points. When
calculating the particle weight, there will be multiple initial
points with weight greater than 0, and some of the points
have nearly the same weight, which can have an effect on the
trajectory reconstruction.-erefore, the sampling frequency
is an important factor that will affect trajectory
reconstruction.

In the analysis, if we use the update frequency as a
variable, it is difficult for us to control the time interval
increment, which may impact the conclusion. In this paper,
we propose a new idea to consider the points of our collated
dataset as all the points. -at is, the trajectory obtained by
these points is the ground truth trajectory. We want to
control the frequency of updates by controlling the number
of known points as a proportion of the total number of
points in the dataset. It is important to note that the selection
of known points is not random but uniform because we want
to ensure that the time interval between two different up-
dates is the same in a fixed time. In that case, when the
number of known points is increasing, the update frequency
will also be increasing. -en, we analyze the applicability of
the model by controlling the ratio of the number of known
points to all points, instead of controlling the update fre-
quency. -e trajectory between every two update points is
reconstructed, and they are stitched together to form a
complete trajectory.

In this study, since the reconstructed trajectory accuracy
with no stop has reached a good level, we focus our study on
vehicles with one-stop, and a vehicle without stopping is
selected as a reference. -e MAE value with only two up-
dates is considered the vertical coordinate of the zero point.
We choose ten percent as the proportional increment of the
known number of particles to study the change of MAE.
Taking vehicles v5, v19, and v24 as an example and v2 as a
reference, a sensitivity analysis was performed. As shown in
Figure 7, the MAEs of the three vehicles were varied fol-
lowing the change of the percentage of the known points of
the total.

-rough Figure 7, we can see that all three curves show a
decreasing trend, which means that when there are more
known points that can represent the more frequent updates
at a fixed time, we can get the higher accuracy of the
reconstructed trajectory, and this proves the applicability of
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the model. One of the curves for vehicle v5, which starts with
a clear tendency to fall and then rise, is different from the
remaining two curves and may be a result of the actual
conditions encountered by the vehicle on the road, thus
influencing the results. In the range of 50 to 70 percent of the
total number of known points, we can see that the three
curves have a significant decline in the slope of slowing down
the situation, which means that the rate of change of MAE is
not obvious; then in the range of 50 to 70 percent of the total
number of known points, the most favorable update

frequency has been reached, which proves that the appli-
cability of the model has reached a good effect.-e decline of
the curve of vehicle v2, unlike the other three curves, is
relatively smooth, but within the first twenty percent of the
known point scale, the decline of the curve is faster than the
latter. -e results demonstrate that the method can have
good applicability in the case of the vehicles without
stopping, the update frequency is at a relatively lower
condition compared to the case of the vehicle with one-stop,
and the overall change is relatively smooth.
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Figure 4: Reconstructing the trajectory of v2. (a) Particle weights of v2. (b) Comparison between the estimation and the truth.
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Figure 5: Reconstructing the trajectory of v5. (a) Particle weights of v5. (b) Comparison between the estimation and the truth.
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Table 1: Comparison of results of trajectory reconstruction methods.

Vehicle ID Number of stops Method MAE (m)

2 0 EM 5.62
Proposed in this paper 2.91

5 1 EM 4.27
Proposed in this paper 3.81

8 0 EM 6.41
Proposed in this paper 3.32

19 1 EM 5.53
Proposed in this paper 4.67
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5. Conclusions

Due to the limitation of many factors, the trajectory data we
often obtain are relatively low in sampling frequency, and
the update in time and position is sparse. And in the pre-
vious research, the trajectory data obtained from the de-
tection vehicle will be studied as the real trajectory, but the
obtained trajectory and the actual are erroneous and are not
the real trajectory. Based on this problem, in order to get a
more accurate vehicle trajectory reconstruction method for
sparse detection data, we propose a UKF-based method.
Based on the NGSIM database, after preprocessing, a new
dataset is constructed, and we divide the signal-controlled
intersection into multiple road sections and estimate the
travel time of each road section; then, by assigning time
errors to each road section, the vehicle trajectories with no
stop and one-stop are reconstructed (where the case of one-
stop requires multiple updates of the stopping position for
calculation). Example analysis was performed on a single
signalized intersection.

In this paper, we selected Lankershim Boulevard Street
for the case study, and we selected the intersection front
and rear length of 120m as the study area. Compared with
the actual trajectory, the MAE values by the proposed
method range from 2.91m to 4.67m. In contrast to the
existing method, i.e., the EM-based method, the MAE
values range from 4.27m to 6.41m. -e comparison re-
sults prove that the trajectory reconstruction based on the
UKF method has good accuracy. Since the update fre-
quency of trajectory points affects the trajectory recon-
struction, we conducted a sensitivity analysis in order to
verify the applicability of the model and find the suitable
update frequency. -e results show that the proposed
method is highly applicable when the number of known
trajectory points accounts for 50% to 70% of the total
trajectory points or a higher percentage.

-e presented work provided a new approach to ve-
hicle trajectory reconstruction that can be used to solve a
series of traffic problems. In order to improve our ap-
proach to making it more generalizable, future research is
planned by considering the case of oversaturated sig-
nalized intersections and the case of urban arterial roads
with multiple intersections, which can also incorporate
traffic shock wave theory for the trajectories of vehicle
queues.
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