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&e multitarget vehicle tracking and motion state estimation are crucial for controlling the host vehicle accurately and preventing
collisions. However, current multitarget tracking methods are inconvenient to deal with multivehicle issues due to the dy-
namically complex driving environment. Driving environment perception systems, as an indispensable component of intelligent
vehicles, have the potential to solve this problem from the perspective of image processing. &us, this study proposes a novel
driving environment perception system of intelligent vehicles by using deep learning methods to track multitarget vehicles and
estimate their motion states. Firstly, a panoramic segmentation neural network that supports end-to-end training is designed and
implemented, which is composed of semantic segmentation and instance segmentation. A depth calculation model of the driving
environment is established by adding a depth estimation branch to the feature extraction and fusion module of the panoramic
segmentation network. &ese deep neural networks are trained and tested in the Mapillary Vistas Dataset and the Cityscapes
Dataset, and the results showed that these methods performed well with high recognition accuracy. &en, Kalman filtering and
Hungarian algorithm are used for the multitarget vehicle tracking and motion state estimation.&e effectiveness of this method is
tested by a simulation experiment, and results showed that the relative relation (i.e., relative speed and distance) between multiple
vehicles can be estimated accurately. &e findings of this study can contribute to the development of intelligent vehicles to alert
drivers to possible danger, assist drivers’ decision-making, and improve traffic safety.

1. Introduction

Driver inattention is one of the leading causes of traffic
accidents. It was reported that approximately 80 percent
of vehicle crashes and 65 percent of near-crashes involved
driver inattention within three seconds prior to the in-
cident in the USA (National Highway Traffic Safety
Administration (NHTSA)) [1]. Road traffic accidents
caused by fatigue driving, distracted driving, and failure
to maintain a safe distance between vehicles accounted
for 56.63% of the total accidents in China in 2019 [2]. To
reduce this critical problem, driving environment per-
ception systems for intelligent vehicles have been at-
tached increasing attention.

Driving environment perception systems, as an indis-
pensable component of intelligent vehicles, are the key to
helping drivers perceive any potentially dangerous situation
earlier to avoid traffic accidents [3–5]. Vehicle detection and
tracking technologies set up a bridge of interactions between
intelligent vehicles and the driving environment. Driving
environment perception systems are used to track multiple
vehicles and estimate vehicle motion states, thereby pro-
viding reliable data for the decision-making and planning of
intelligent vehicles. Vision-based perception systems are
similar to the human visual perception function [6–9]. &e
advantage of intelligent vehicle visual perception systems is
that image acquisition does not cause any intervehicle in-
terference or noise compared to radar [10]. Meanwhile,
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computer vision can be used as a tool to obtain abundant
information of scenes within a wide range.

Due to the complex interactions among vehicles and the
fact that the current multitarget tracking method is limited
by prior knowledge [11], it becomes more difficult to explore
the relationship between multiple vehicles by relying on
traditional methods, such as the background difference
method, the frame difference method, and the optical flow
method [12], to solve these problems. To achieve a precise
detection and tracking result, this study proposes a multi-
vehicle tracking and motion state estimation method based
on visual perception systems. One of the deep learning
methods is used in this study, called convolutional neural
networks, which can learn more target characteristics at the
same time with high accuracy. Moreover, the relative lo-
cation and speed of multiple vehicles need to be estimated,
which is crucial for controlling the host vehicle accurately
and preventing collisions.

&erefore, this study aims to develop a novel driving
environment perception system of intelligent vehicles to
track multitarget vehicles and estimate their motion states,
which can alert drivers to possible danger, assist drivers’
decision-making, and improve traffic safety.

2. Literature Review

&is study tries to establish a visual perception system of
intelligent vehicles to estimate multivehicle relationships.
&us, next, we introduce current studies from two aspects:
(1) multitarget vehicle tracking methods for estimating the
position and speed of moving vehicles and (2) driving en-
vironment perception systems, which recognize vehicles in
the forward driving scenario through panoramic segmen-
tation and calculate the distance between vehicles through
depth estimation. From the aspects of traffic safety, machine
learning methods related to environment perception and
vehicle tracking which can be used to assist decision-making
of drivers or autonomous driving systems have been widely
discussed. For example, a convolution neural network was
used to process the image collected by the camera and
predict the probability map of lane line [13], which can be
used to keep the vehicle in the lane and provide lane-de-
parture warnings. &e target tracking algorithm is used to
detect the vehicles in the driving environment and obtain
their trajectories, which can help to provide drivers with
early alteration of potential collisions or risk driving be-
haviour [14, 15].

2.1. Vehicle Detection and Tracking. Vehicle detection and
tracking are used to estimate the position and speed of
moving vehicles. Although image segmentation technologies
can recognize the objects in the scene well, they are only
limited to static information and cannot get the motion
information of moving vehicles. &e estimation of the
motion state is usually based on the methods with a fixed
camera, and the position and speed of objects are calculated
through geometric relations [16]. However, for in-vehicle
devices installed in moving vehicles, since the position of the

camera is constantly moving, it is more complicated to
estimate the state of moving objects ahead. To solve this
problem, several different solutions have been proposed.

Some studies combined millimeter-wave radar with a
camera [17] to obtain the position and speed of the forward-
moving objects. Compared with cameras, millimeter-wave
radars were complicated to install and inconvenient to
operate. Moreover, since the Lidar sensor delivered only the
visible section of objects, the shape and size of objects were
changed over time. &is led to inaccurate estimation of
moving objects states consequently.&e shape change due to
the observation position or occlusion was one of the typical
examples for that.

In some studies, only the camera was used to estimate the
motion state. Li et al. [18] first recognized the front vehicles
through a semantic segmentation network, then determined
different vehicle instances according to the connectivity of
the segmented vehicle area, and finally used monocular
ranging and Kalman filtering to determine the vehicle’s
position and speed. However, this method still can be im-
proved from some aspects. For one thing, when the traffic
volume was large, the areas of different vehicles were
connected in this method, resulting in multiple vehicles
being identified as one vehicle. For another, due to the lack
of matching of objects between different frames, only a single
object’s speed can be calculated by this method, which
cannot be applicable for the multivehicle condition.

In some studies, traditional multitarget vehicle trajectory
tracking technologies (such as the background difference
method, the frame difference method, and the optical flow
method) were used for the state estimation of moving ve-
hicles [19, 20].&ese traditional methods were easy to deploy
and had low resource consumption, but, limited by prior
knowledge, tracking stability is poor and accuracy is not
high. &erefore, the multitarget tracking algorithm based on
monocular cameras for vehicle detection still needs im-
provement. To fill this research gap, a novel multitarget
vehicle trajectory tracking system based on image seg-
mentation neural networks was presented in our study.

2.2. Driving Environment Perception

2.2.1. Panoramic Segmentation. Urban road driving envi-
ronment consists of road environment (such as roads, fa-
cilities, and landscapes) and traffic participant environment
(such as vehicles, nonmotor vehicles, and pedestrians). &e
scene recognition of the urban road driving environment
refers to identifying the objects in the driving environment
and specifying their class and distribution. Realizing the
scene recognition of the driving environment mainly relies
on the methods of image segmentation, and this study
adopts the panoramic segmentation method in our analysis.

Panoramic segmentation refers to the instance seg-
mentation of regular and countable objects in the image and
semantic segmentation of irregular and uncountable objects.
Panorama segmentation combining instance segmentation
and semantic segmentation is currently a finer image seg-
mentation method for scene recognition. Compared with
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semantic segmentation which only considers categories,
panoramic segmentation comprehensively considers the
area class and instance class in the scene, which not only
classifies all the pixels but also determines different instances
of the instance class object. Multitask image segmentation
has a certain research history, and early work of this research
topic includes scene analysis, image analysis, and overall
image understanding. Tu et al. [21] established a scene
analytic graph to explain the segmentation of regular and
irregular objects and introduced the Bayesian method to
represent the scene.

Recently, with the concept of panorama segmentation,
the evaluation indexes have been refined. However, in many
object recognition challenge competitions such as COCO
and Mapillary Recognition Challenge, most studies first
completed semantic segmentation and instance segmenta-
tion independently and then went through the fusion
process. Although this kind of method can get good pre-
cision results by fusion, end-to-end training cannot be re-
alized due to the redundancy in the calculation, unrealized
calculation sharing, and tedious process.&e semisupervised
method proposed by Li et al. [22] could achieve end-to-end
panoramic segmentation, but this method required addi-
tional input of candidate box information and the use of the
conditional random field in the inference process, which led
to the increase in the complexity of model calculation.
Scharstein and Szeliski [23] tentatively proposed a unified
network to conduct panoramic segmentation, but there was
a gap between its implementation effect and benchmark.
Overall, there is still room for improvement in the precision
and speed of panoramic segmentation.

2.2.2. Depth Estimation. Depth estimation is to estimate the
distance between the observation point and the objects in the
scene. Scene depth information plays an important role in
guiding vehicle speed control and direction control, so it is
one of the basic pieces of information needed by assistant
driving systems. &e depth information of the scene can be
obtained by Kinect devices or Lidar devices developed by
Microsoft. However, these devices are inconvenient to use
because of the high price of equipment, the high cost of
depth information acquisition, and the problems of low
resolution and wide range depth missing in the depth images
collected by these hardware devices. Considering that
cameras are cheaper and easier to install and use, many
studies have begun using image methods for depth
estimation.

In the early days, the image-based depth estimation
method was mainly based on the geometric algorithm [24],
which used binocular images for depth estimation. &e
algorithm relied on calculating the parallax of the same
object between two images and estimated the depth through
the triangle relationship of light and shadow. Later, Saxena
et al. [25] pioneered the method of supervised learning to
estimate the depth of a single image. Subsequently, a large
number of methods for extracting features and estimating
monocular image depth by manually designing operators
have emerged [26–30]. Since the manually designed

operator can only extract local features but cannot obtain
semantic information in a wide range, some studies used
Markov conditional random field equal probability model to
capture the semantic relationship between features [31, 32].

In recent years, convolution neural networks have been
proposed based on the depth estimation method, which has
achieved great success in image classification. &e devel-
opment of feature extraction networks such as VGG [33],
GoogLeNet [34], and ResNet [35] further improved the
accuracy of depth estimation through the monocular image.
However, due to the spatial pooling operation in the feature
extractor, the size of the feature map became smaller and
smaller, which affected the accuracy of subsequent depth
estimation. To solve this problem, Eigen et al. [36] intro-
duced a multiscale network structure, which applied inde-
pendent networks to gradually refine the depth map from
low spatial resolution to high spatial resolution. Xie et al.
[37] fused the shallow high spatial resolution feature map
with the deep low spatial resolution feature map to predict
the depth. Transpose convolution was employed in some
studies [38, 39] to gradually increase the spatial resolution of
the feature map. However, in the existing depth estimation
research using convolutional neural networks, due to
multiple feature extractions for depth estimation, the phe-
nomenon of model overfitting may occur.

2.3. Summary. Given the above, current studies on vehicle
detection and tracking show the following: (1) &e esti-
mation of vehicle position acquired by Lidar sensor may be
inaccurate over time. (2) Semantic segmentation for vehicle
recognition is only suitable for a single-vehicle driving
environment. (3) &e applicability of traditional multitarget
tracking methods still needs to be further improved. To solve
these problems, this study adopts multitarget vehicle tra-
jectory tracking based on the segmentation neural network
and adopts cameras to obtain position information between
vehicles based on the driving environment perception sys-
tem. Current studies on driving environment perception
systems show the following: (1) most of the existing pan-
oramic segmentation studies complete semantic and
strength segmentation independently, and there is still room
for improvement in segmentation accuracy and segmenta-
tion speed; and (2) existing depth estimation research carries
out repeated feature extraction alone, which is complicated
and computationally intensive. &us, this study builds a
lightweight neural network model and adds depth branches
on the basis of panoramic segmentation to realize the real-
time analysis of the driving environment in front of the
vehicle.

3. Methodology

&e methodology flowchart is presented in Figure 1. &e
methodology consists of two main parts: (1) a driving en-
vironment perception system and (2) multivehicle tracking
andmotion estimation.&e driving environment perception
system can realize the recognition and separation of vehicles
and other elements in the driving environment through
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panoramic segmentation and then calculate the position of
each vehicle by depth estimation. After obtaining the in-
formation of each vehicle at a time point, multivehicle
tracking and state estimation is used to analyze the rela-
tionship between multiple vehicles in a continuous period of
time. In the multivehicle tracking and state estimation
method, vehicles between different frames in the video data
are matched at first based on the segmentation results of the
driving environment perception system. &en, the relative
distance and relative speed between vehicles are estimated
according to the depth information provided by the driving
environment perception system. &is kind of automatic
calculation method of the relationship between multiple
vehicles from camera videos can be used for advanced driver
assistance systems to monitor the motions of vehicles and
alter the potential collisions. &ese two parts are detailed
below.

3.1. Driving Environment Perception Systems. &e overall
neural network structure of the environmental perception
system mainly includes image feature extraction, feature
fusion, semantic segmentation, instance segmentation, and
depth estimation modules, as shown in Figure 2.

Step 1: feature extraction and fusion. Firstly, the input
images go through the feature extraction module. &e
function of the feature extraction module is to extract
the features of objects in the image, such as low-level
features (e.g., edges and textures), as well as high-level
features (e.g., skeletons and position relations among

objects). &en, these features are input into the feature
pyramid for fusion, and then these fused features serve
as the basic input for semantic segmentation and in-
stance segmentation.
Step 2: panoramic segmentation. Semantic segmenta-
tion is responsible for identifying the region class in the
driving environment scene, while instance segmenta-
tion is used to support the instance class in the rec-
ognition scene. &e output results of semantic
segmentation and instance segmentation are fused to
obtain the results of panoramic segmentation.
Step 3: depth estimation. Depth estimation branch and
panorama segmentation share the features extracted by
ResNet-FPN, and both of them require information about
semantics, texture, and contour. In the depth estimation,
pixels with the same semantics generally have similar
depths, and the contours of each instance are the positions
where the depth changes. Feature sharing avoids a separate
step of feature extraction for depth estimation, which
greatly reduces the amount of calculation.

&e panoramic segmentation and depth estimation in
the network structure of this driving environment percep-
tion system are described in detail as follows.

3.1.1. Panoramic Segmentation of Driving Environment.
&e urban road driving environment is composed of road
infrastructure, traffic signs and markings, and traffic par-
ticipants. From the perspective of the panoramic
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segmentation task, the components of the driving envi-
ronment of urban roads mainly include instance class and
regional class. &e regional class mainly contains pavement,
greening, lane lines, guardrails, curbs, roadside buildings,
and so forth, while the instance class includes signs, traffic
lights, and traffic participants.

&e feature extraction module uses the ResNet structure.
ResNet can prevent network degradation so that the network
can extract features with more neural layers. &e overall
structure of ResNet is formed by continuously stacking the
bottleneck structure (BottleNeck). &ere are generally 4
stages, and the number of channels increases as the network
depth increases. In general, the deeper the level, the smaller
the size of the feature map and the more channels.

Feature pyramid network (FPN) uses a top-down net-
work structure to integrate deep semantic features and
simple detail features, which makes full use of the features
extracted by the backbone network. &e feature pyramid
network is connected after the ResNet network and enriches
the feature expression of the entire feature extraction net-
work. FPN ensures that downstream tasks can obtain
enough effective information to improve the accuracy of the
model.

&e network structure of the semantic segmentation
branch adopts the ResNet-FPN network structure. &e four
output branches of ResNet-FPN, respectively, pass through
their corresponding decoders to obtain a decoding result
with a size of 1/4 of the original picture and 128 channels.
&e decoder consists of multiple convolution kernels with a
size of 3× 3 and 2 times upsampling.&e number of the pairs
of convolution and upsampling is determined according to
the size of the input feature. &e fusion of different branch
predictions adopts the method of adding corresponding

elements. &e summation result is convolved to obtain the
semantic prediction of the picture. &e final predicted result
is enlarged by 4 times to ensure the same size as the original
image.

Instance segmentation is completed based on target
detection.&e task of target detection is to identify the object
in the image, mark the position of the object, and determine
its class. &e segmentation branch network structure in-
cludes four parts: RPN, RoIAlign, R-CNN, and Mask. RPN
(region proposal network) is the module responsible for
generating candidate frames, and it finally provides Region
of Interest (RoI) for downstream tasks. RoIAlign makes the
features corresponding to RoI uniform in size. &e Box
branch predicts the class of each RoI and the correction
coefficient of the box relative to the actual box. &e Mask
branch estimates the specific shape of the object in the box.

Finally, the prediction results of semantic segmentation
and strength segmentation are merged to obtain panoramic
segmentation results. Panorama segmentation requires that
each pixel in the output prediction result can only be
assigned a unique class and instance number. &e overlap
between instance objects is recognized as the object with
high confidence. &e part where instance segmentation and
semantic segmentation overlap chooses the results of in-
stance segmentation.

3.1.2. Depth Estimation of Driving Environment. Depth
information under the urban road driving environment
represents the distance information between the objects in
the driving environment and the observation point. Depth
estimation is to estimate the size of the distance value;
namely, depth estimation refers to the depth of the pixel.
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According to the RGB information of the image, the distance
between the object (corresponding to each pixel in the
image) and the camera is estimated. Assuming that the input
image is I and the image depth is D, the depth estimation
task is to find a suitable function to map the image infor-
mation into depth information, as shown in the following
formula:

D � F(I). (1)

Depth estimation is similar to semantic segmentation,
and both of them belong to pixel-by-pixel dense prediction
tasks. &erefore, the branch of depth estimation can also use
the Full Convolutional Network. &e basic network struc-
ture of depth estimation is similar to the semantic seg-
mentation branch. &e input of the depth estimation branch
is also the four output branches of the feature pyramid
network. &e size of each feature map is 1/32, 1/16, 1/8, and
1/4, respectively, and the number of channels is 256. Each
branch is subjected to multiple convolutions and upsam-
pling to obtain a tensor of size S and the number of channels
C.

&e number of convolution and upsampling opera-
tions is determined by the super parameter S. As shown in
Figure 2, when S � 1/4, the depth estimation is conducted
by 8 times of convolution and 7 times of upsampling.
FPN-P1 (i.e., the first feature layer extracted by FPN)
performs one convolution operation, FPN-P2 performs
one pair of convolution and upsampling operations,
FPN-P3 performs 2 pairs of convolution and upsampling
operations, and FPN-P4 performs 3 pairs of convolution
and upsampling operations. After these four output
branches are added, a convolution operation and an
upsampling operation are performed, and then the depth
prediction value is obtained.

3.2. Multivehicle Tracking and Motion Estimation

3.2.1. Multitarget Tracking of Moving Vehicles. &e main
purpose of multitracking of moving vehicles is to obtain
position and speed information of multiple vehicles.
However, the difficulty of calculating the position and speed
of moving vehicles mainly lies in the matching and tracking
of objects between two different frames.

As for vehicle video data, the two frames of pictures are
completely independent in encoding form. &erefore, the
vehicles must be tracked between the two frames before the
state of the vehicles can be calculated. &e key to realizing
multitarget vehicle trajectory tracking lies in the detection of
vehicles in a single frame and the matching of objects be-
tween frames. For single-frame vehicle detection, the
interframe detection frame is optimized by Kalman filtering
according to the continuity of the video data. &en, the
Hungarian matching algorithm is applied to match objects
between frames.

Specifically, the algorithm flow of vehicle trajectory
multitarget tracking is as follows: Firstly, the image of each
frame is continuously extracted from the video data and
input into the panoramic segmentation network. &e

panoramic segmentation network in Figure 1 is used to
detect the vehicle in the image and output the detection
frame. Secondly, the status of the tracker is checked. &en,
the Kalman filter is employed to estimate the optimal state of
the detection frame. Besides, the Hungarian matching al-
gorithm is used to match the tracking vehicles. Finally, if the
tracker matches the detection frame successfully, update the
tracker to a certain state. &e flowchart of the tracking al-
gorithm is shown in Figure 3.

Kalman filter is an optimal estimation algorithm that
combines measurement data with the prediction model to
achieve the optimal estimation of vehicle positions. Since the
measurement data of vehicle positions are noisy, the mea-
sured value does not accurately reflect the true position of
the car. Additionally, the noise of the prediction process is
uncertain, so the prediction model cannot be solely used to
estimate the vehicle positions. &us, Kalman filters can
provide a better estimation result by combining them to
reduce the variance.

As shown in Figure 4, the working principle of the
Kalman filter is explained intuitively by using the probability
density functions.&e predicted value of the vehicle position
is near xk, and the measured value of the vehicle position is
near yk. &e variance represents the uncertainty of the es-
timation, and the actual position of the vehicle is different
from the measured position and the predicted position. &e
best estimation of vehicle position xk is the combination of
predicted and measured values. &e best estimated proba-
bility density function is obtained by multiplying the two
probability functions, and the variance of this estimate is less
than the previous estimate. &erefore, Kalman filter can
estimate the vehicle position in an optimized way.

As shown in equation (2), the Kalman gain K refers to
the ratio of the predicted error of the model to the mea-
surement error of the panoramic segmentation detection
system in the process of estimating the optimal state of the
detection frame. K ∈ [0, 1]. When K � 0, it indicates that
the prediction error is 0, and the optimal state of the de-
tection frame depends entirely on the predicted value of the
model. When K � 1, it indicates that the observation error is
0, and the optimal condition of the detection frame entirely
depends on the detection result of the panoramic seg-
mentation system.

K �
Predicted error

Predicted error + Measurement error
. (2)

&e principle of using the Kalman filter to estimate the
optimal condition of the detection frame is to minimize the
optimal estimation error covariance Pk. In this case, the
estimated value is closer to the actual value.

&e Hungarian algorithm [40] is a combinatorial opti-
mization algorithm that solves the task assignment problem
in polynomial time.&eHungarian algorithm is mainly used
to solve some problems related to bipartite graph matching,
and it is also used to solve the data association problem in
multitarget tracking.

&e matching of objects between frames is essentially a
bipartite graph matching problem, so this paper uses the
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Hungarian algorithm to solve the problem of object
matching between frames. Assuming that there are three
trackers in the previous frame, the Kalman filter predicts that
there are three vehicles in the current frame. In the current
frame, three vehicles are detected by the detector. It is
predicted that a certain car in the frame has the possibility to
match each car in the detected frame. &e Hungarian al-
gorithm is to find the best match between the predicted
frame and the detected frame, as shown in Figure 5. Each
prediction frame and each detection frame have a cost
(unreliability), and then prediction frames and detection
frames form a cost matrix.&e Hungarian algorithm obtains
the matching result between the two frames by transfor-
mation and calculation of the cost matrix.

&e definition of the cost matrix will directly affect the
quality of the matching result. From the perspective of the
position of the detection frame, since the time between
frames is short and the moving speed of the vehicle is
limited, the detection frame of the same object between the
two frames should be relatively close. From the perspective
of the appearance of the object, it has similar characteristics
for the same object. &erefore, the setting of the cost matrix
will be considered from the two perspectives of distance and
feature difference.

Since the Hungarian algorithm belongs to the maximum
matching algorithm, matching will be completed to the
greatest extent. &ere are constantly vehicles leaving the
camera’s perspective in the scene; meanwhile, new vehicles
are entering the camera’s perspective. To improve the
matching accuracy, a screening based on Mahalanobis
distance and appearance distance is performed on the
matching results. When the Mahalanobis distance and the

appearance distance of a certain match between two cor-
responding detection frames are less than a certain
threshold, the matching is accepted; otherwise the matching
is abandoned.

3.2.2. Multivehicle Motion Estimation. &e position and
speed of the moving vehicle in the driving environment can
be divided into lateral and longitudinal according to dif-
ferent directions, that is, lateral distance, longitudinal dis-
tance, lateral speed, and longitudinal speed. In different
coordinate systems, the way of expression is different. As
shown in Figure 6(a), there are the world coordinate system
xwwyw and the camera coordinate system xccyc. &e po-
sition state of the origin of the camera coordinate system in
the world coordinate system is (xw

0 , yw
0 ), and the speed state

is (vxw
0 , v

yw
0 ). vxw

0 is the velocity component of the camera
coordinate system in the x direction of the world coordinate
system, and vxw

0 is the velocity component of the camera
coordinate system in the y direction of the world coordinate
system. &e states of vehicles in different coordinates can be
converted mutually. &e state of the vehicle in the world
coordinate system (xw

1 , yw
1 , vxw

1 , v
yw
1 ) is the vector sum of

the state of the camera in the world coordinate system
(xw

0 , yw
0 , vxw

0 , v
yw
0 ) and the state of the vehicle in the camera

coordinate system (xc
1, yc

1, vxc
1 , v

yc
1 ).

&e distance calculation includes the lateral distance and
the longitudinal distance. For the estimation of the longi-
tudinal distance, the depth information can be obtained
from the depth estimation network in Methodology section
above. For the calculation of the lateral distance, it can be
estimated through its geometric relationship with the lon-
gitudinal distance.

As shown in Figure 6(b), the coordinates of the vehicle in
front of the camera in the camera coordinate system are
(xc

1, yc
1). &e vehicle is imaged in the camera, and the co-

ordinates in the picture coordinate system xoz are (px, pz).
&e two triangles formed by light are similar, which can be
derived from the properties of similar triangles:

x
c
1

y
c
1

�
px

f
, (3)

where f is the focal length of the camera.
To calculate the vehicle speed, it first needs to determine

the changes in the lateral and longitudinal distances
Δxc

1,Δyc
1 of the object in the two adjacent frames of images

recorded by the camera coordinate system. &en, according
to the relationship between displacement and speed, the
lateral and vertical speed of the object in the camera co-
ordinate system can be obtained.

v
xc
1 �
Δxc

1
Δt

,

v
yc
1 �
Δyc

1
Δt

,

(4)

where Δt is the time difference between two frames, which is
the reciprocal of the number of frames per second recorded
by the camera.

Input Video Image

Detection frame

Panoramic
Segmentation

Network

Kalman FilterHungarian
Algorithm

Check the TrackerUpdate theTracker

Figure 3: Tracking algorithm flowchart.

Predicted state
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Measurement
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Figure 4: Working principle of Kalman filter.
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By calculating the relative lateral and vertical distances
and relative lateral and vertical speeds between vehicles, the
motion state of multiple vehicles can be estimated so that the
relative relationship betweenmultiple vehicles can be further
studied.

In conclusion, using the multitarget tracking algorithm,
vehicle detection is optimized, and the problem of vehicle
matching between frames is solved. &rough the depth
information and coordinate conversion method, the posi-
tion and speed of the moving vehicle can be estimated, so
that the relative relationship between multiple vehicles is
obtained.

4. Model Training and Case Study

4.1. Driving Environment Perception Experiment

4.1.1. Panoramic Segmentation Experiment of Driving
Environment. &e dataset used for the training is the
Mapillary Vistas Dataset (MVD) [41]. MVD is a novel, large-
scale, street-level image dataset containing 25000 high-
resolution images, with an average number of 8.6 million
pixels per image. Training and validation data comprise
18000 and 2000 images, respectively, and the remaining
5000 images form the test set.

&e loss of the whole panoramic segmentation network
consists of two parts, namely, semantic segmentation loss

and instance segmentation loss. &e loss of panoramic
segmentation is

LPS � λLSS + LIS, (5)

where λ is the loss adjustment factor between two sub-
partition missions.

Semantic segmentation loss y � 1, . . . , Nclasses is the
class set of semantic prediction, Yij ∈ y is the actual class of
pixels of a given image at (i, j), and Pi,j(c) is the probability
value of pixels of an image at (i, j) belonging to class C. &e
loss of semantic segmentation for a single image is calculated
according to the following equation:

Lss(P, Y) � − 
ij

log Pij Yij . (6)

Instance Segmentation Loss. &e loss of the instance seg-
mentation consists of three parts: the RPN, the Box, and the
Mask. &erefore, the loss of instance segmentation is

LIS � L
ob
RPN + L

bb
RPN + L

cls
Box + L

bb
Box + LMask. (7)

e Calculation of the Loss of the RPN. &e loss of judging
whether there is an object in the bounding box is Lob

RPN, and
the loss of the position of the bounding box is Lbb

RPN. &e
sample pair M± contains both a positive sample pair M+ and

Prediction frame Detection frame

Match result

Prediction frame Detection frame

Bipartite graph

Figure 5: Object matching between frames based on the Hungarian algorithm. (a) Bipartite graph. (b) Match result.
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Figure 6: Coordinate relationship between vehicles. (a) Coordinate system conversion. (b) Lateral distance calculation.
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a negative sample pair M−. r is the actual bounding box
r � (xr, yr, wr, hr), and r is the predicted bounding box
r � (xr, yr, wr, hr). sr is the probability that an object is

contained in r predicted in RPN. ar refers to the default
frame, and | · |S refers to smooth loss.

L
ob
RPN M±(  � −

1
|M|



(r,r)∈M+

log sr −
1

|M|


(r,r)∈M−

log 1 − sr ,

L
bb
RPN M±(  �

1
|M|



(r,r)∈M+

xr − xr
war



S

+
yr − yr

har



S

+ log
wr
wr



S
+ log

hr
hr



S

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(8)

e Calculation of the Loss of the Box Branch. &e loss of Box
class prediction is Lcls

Box, and the loss of the position of the
bounding box is Lbb

Box. &e sample pair N contains the
positive sample pair set N+ and the negative sample pair set

N−. cr is the class corresponding to the actual bounding box
r, and s

cr

�r is the probability that the predicted box belongs to
class c.

L
cls
Box N±(  � −

1
|N|


(r,�r)∈N+

log s
cr

�r ,

L
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Box N±(  �

1
|N|


(r,�r)∈N+

xr − x�r
cr

w�r



S
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S
+ log
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S
+ log
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S
 .

(9)

e Calculation of the Loss of the Mask Branch. Sr is the
binary mask corresponding to object c in the bounding box
r, S�r is the binary mask of class c predicted by the Mask
branch, and S�r

i,j is the probability that cell(i, j) belongs to
class c. d is the side length of the mask, which is 28.

LMask S
r
, S

�r
  � −

1
d
2 

i,j

S
r
i,jlog S

�r
i,j −

1
d
2 

i,j

1 − S
r
i,j log 1 − S

�r
i,j .

(10)

&e overall loss of the training process is shown in
Figure 7. As shown in Figure 7, the loss value keeps de-
creasing and tends to be stable with the progress of training,
indicating that the training results converge, the network
design is reasonable, and the training strategy is correct.

&e trained model is used to predict the image of the
MVD validation set, and the accuracy of the model is
calculated according to the evaluation indexes (RQ
(recognition quality), SQ (segmentation quality), and PQ
(panoptic quality); PQ � RQ × SQ) [42] of panoramic
segmentation, as shown in Table 1. &e PQ value of the
validation set reached 15.224%. Compared with the re-
sults of some other methods in previous studies [43], the
recognition effect in this study was good.

&e visualization of the prediction results is shown in
Figure 8. Figure 8(a) shows the result of the semantic seg-
mentation branch, which accurately divides the road,
sidewalk, greening, building, and sky. Figure 8(c) shows the
detection and segmentation effect of the instance segmen-
tation branch, which accurately detects and divides vehicles,

pedestrians, traffic lights, and pillars. Figure 8(d) is the result
of semantic segmentation and instance segmentation fusion.

4.1.2. Depth Estimation Experiment of Driving Environment.
&e dataset used for training the depth estimation algorithm
is the Cityscapes Depth Dataset [44]. &e Cityscapes Depth
Dataset collects binocular pictures with binocular cameras
and is calculated by the SGM algorithm [45]. &e scene
includes a total of 5,000 pictures of urban roads in different
seasons of multiple cities in Europe, including 2,975 in the
training set, 500 in the validation set, and 1,525 in the test set.

&e loss function uses berHu [46] loss function, and the
calculation formula is

Li �

di − di



, di − di



≤ c ,

di − di 
2

+ c
2

2c
, di − di



> c,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L �
1
N


i

Li,

(11)

where di is the depth prediction value of pixel i; di is the
actual depth value of pixel i; N is the total number of picture
pixels; c � 1/5max(|di − di|).

&e weights of the ResNet-FPN and panorama seg-
mentation parts of the model remain unchanged, and only
the weights of the depth estimation branch are trained and
updated.&e optimization algorithm for model training uses
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the stochastic gradient descent algorithm, in which the
momentum parameter is set to 0.9 and the weight attenu-
ation coefficient is set to 0.0001. &e basic learning rate is set
to 0.001, the number of optimization iterations of the model
is 20000, and the batch size of the optimized image is 4 for
each iteration. &e feature map size of the depth estimation
branch structure parameter S is 1/4, and the feature map
channel number C is equal to 128.

&e loss change of the depth estimation during the
training process is shown in Figure 9. &e loss drops rapidly
in the first 2000 rounds of training and then basically sta-
bilizes after 5000 rounds of iterations.

&e trained model is used to predict the images in the
verification set of the Cityscapes Depth Dataset. According
to the evaluation index of the depth estimation, the accuracy
of the calculated model is shown in Table 2. &e evaluation
indicators used in the depth estimation include relative error
(rel), root mean square error (rms), root mean square error
in logarithmic space (rmslog), and accuracy (P) under dif-
ferent thresholds (i.e., accuracy threshold is
1.25, 1.252, 1.253). It can be seen that the number of pixels
with a deviation ratio between the predicted value and the

true value within 1.25, 1.252, and 1.253 accounted for 63.6%,
81.7%, and 90.5%, respectively. Compared with the similar
method in current studies [47], this method used in our
study has a good performance.

Figures 10(b) and 10(c) are visualization diagrams of the
actual and predicted depth values, respectively. &e overall
trend of depth prediction is generally correct. From near to
far, the color deepens, and the depth value gradually in-
creases. From a local perspective, the depth prediction
successfully captures the location and range of vehicles and
pedestrians. &eir depth is smaller than the surroundings,
and there is a sudden change in the depth value of the
outline.

4.2. Motion Estimation of Multiple Vehicles

4.2.1. Traffic Simulation Test Design. Evaluating the accu-
racy of the state estimation of the multitarget moving ve-
hicles requires the real state of the vehicles in front as a
comparison. &e real motion state data of the preceding
vehicle is obtained through the traffic simulation experiment
that uses the traffic simulation software SiLab, multiperson
driving traffic simulation software. Not only is the scene
highly reproducible, but also each car is controlled by a
driver with certain driving experience, which simulates the
real traffic driving environment to the greatest extent. SiLab
can record and output the position and movement infor-
mation of each vehicle in real time. &e recorded data used
in subsequent calculations of this experiment are mainly
timestamps, X-axis and Y-axis coordinates, and speed of the
vehicle. &e simulated driving system uses the Logitech G29
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Figure 7: Loss change of panoramic segmentation.

Table 1: Panoramic segmentation accuracy.

PQ (%) SQ (%) RQ (%)
All 15.224 34.267 19.008
&ings 10.219 29.021 13.136
Stuff 21.837 41.198 26.767
Reference value
(all) 43 11.465–16.931 28.624–35.857 13.041–22.163
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simulator control package, which includes a steering wheel,
pedals, and shifters. &e entire multiperson driving platform
is equipped with 1 main driving position and 4 ordinary
driving positions, and up to 5 people can drive at the same
time, as shown in Figure 11(a).

&e simulated driving scene is set to one-way three
lanes, as shown in Figure 11(b). &e specific experimental
plan is to run three cars (denoted as A, B, and C) on the
multiperson driving platform SiLab at the same time. &e
driving perspective of vehicle A is regarded as the camera
perspective, and vehicles B and C are treated as the
observation objects.

In the simulated driving experiment, the common ve-
hicle speed on urban roads is used, ranging from 60 km/h to
80 km/h. &e movement speed will affect the recognition
and tracking accuracy of multitarget tracking [48].When the
vehicle speed is slower, the effect of maintaining the de-
tection result is stable. When the vehicle speed is faster, the
detection result may appear to be fluctuant. &e simulation
driving experiment results show that the detection accuracy
of multitarget tracking is about 86.3% when the vehicle
speed is in the range of 40 km/h to 60 km/h; the detection
precision is about 75.8% when the vehicle speed is in the
range of 60 km/h to 80 km/h.

Scene graph 

Instance segmentation 

Semantic segmentation 

Panoramic segmentation 

Figure 8: Panoramic segmentation instance results. (a) Scene graph. (b) Semantic segmentation. (c) Instance segmentation. (d) Panoramic
segmentation.
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4.2.2. Moving Vehicle Distance and Speed Estimation.
&e sampling frequency of vehicle motion state data is set to
60 Hz in SiLab, and the frequency of driving perspective
recording is also equal to 60 Hz. In this way, each frame of
the driving perspective corresponds to a piece of data in
SiLab. &e format of vehicle A’s motion state data from the
SiLab output is shown in Table 3.

According to the lateral and longitudinal movement
distances between two different moments, the lateral and
longitudinal speeds of cars A, B, and C are calculated.
According to equations (12) and (13), the coordinates of cars
B and C in the camera coordinate system centered on car A
are calculated. According to equations (14) and (15), the
lateral and longitudinal relative speeds of cars B and C with
car A as the reference system are calculated.

x
w
1 � x

w
0 + x

c
1, (12)

y
w
1 � y

w
0 + y

c
1, (13)

v
xw
1 � v

xw
0 + v

xc
1 , (14)

v
yw
1 � v

yw
0 + v

yc
1 . (15)

&e above algorithm is implemented in the Python
software. &e video of the driving perspective of car A is
processed, and the motion states of car B are estimated, as
demonstrated in Table 4.

As illustrated in Figure 12, taking vehicle B as an ex-
ample, with vehicle A as the camera perspective, the relative

Table 2: Depth estimation accuracy.

Evaluation index P1.25 P1.252 P1.253 rel rms rmslog
Result 63.6% 81.7% 90.5% 0.276 35.198 0.116
Reference value [47] 50.8%–65.0% 75.5%–83.4% 82.7%–91.2% 0.169–0.308 25.652–37.231 0.103–0.119
Explanation Higher is better Lower is better

Predicted depth value Actual depth value 

Disparity value grayDriving environment scene

Figure 10: Prediction results of depth estimation. (a) Driving environment scene. (b) Disparity gray value. (c) Actual depth value. (d)
Predicted depth value.

Multi-person driving simulation Driving perspective of vehicle A

Figure 11: Multivehicle simulation driving experiment. (a) Multipurpose driving simulation. (b) Driving perspective of vehicle A.
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Table 3: Panoramic segmentation accuracy.

Measurement time (ms) Y (m) X (m)
66.68 19.984300 7.125050
83.34 19.984300 7.125050
100.01 19.984300 7.125050
116.67 19.984300 7.125050
133.34 19.984300 7.125050
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Figure 12: Estimation results of simulation driving experiment. Prediction result of (a) lateral distance, (b) longitudinal distance, (c) lateral
relative speed, and (d) longitudinal relative speed.

Table 4: Motion state prediction.

Frame number Tracker number xc (m) yc (m) vxc (m/s) vyc (m/s)
7383 95 5.1 10.1 0.5 0.9
7384 95 5.1 10.1 0.0 0.0
7385 95 5.1 10.1 0.0 0.0
7386 95 3.9 9.5 −1.2 0.0

Journal of Advanced Transportation 13



position and relative speed of vehicle B are predicted and
compared with the actual state of motion.

&e estimation results of the algorithm proposed in this
study on the lateral relative distance of moving vehicles are
shown in Figure 12(a). &e estimated value of the algorithm
is consistent with the actual value. From a quantitative
perspective, the average error of the lateral relative distance
is 0.186m, and the average relative error is 11.5%. &e es-
timation of the longitudinal relative distance of the moving
vehicle is shown in Figure 12(b). &e algorithm has better
accuracy for estimating the distance within 50 meters, and
there is a large error in the estimation of the distance beyond
50 meters. &e reason for the larger error is related to the
characteristics of monocular visual depth estimation. &ere
is less information in the distance, the larger the error is.
From a quantitative perspective, the average error of the
longitudinal relative distance is 1.86m, and the average
relative error is 7.0%.

&e estimation of the lateral relative speed of moving ve-
hicles is shown in Figure 12. &anks to the small lateral relative
distance error, the estimated value of the lateral relative speed is
consistent with the actual value. &e average error of the lateral
relative velocity is 0.186m/s, and the average relative error is
1.5%.&e estimation results of the longitudinal relative speed of
the moving vehicle are shown in Figure 12(d). &e estimated
value of the algorithm is similar to the actual value, and there is a
certain fluctuation. After calculation, the average error of the
longitudinal relative velocity is 0.37m/s, and the average relative
error is 5.0%.

In general, experiments have proved that the vehicle
multitarget tracking algorithm in this study is feasible and
has good performance with high accuracy in the estimation
of distance and speed.

5. Conclusion

&e perception of the driving environment on urban roads
and the realization of vehicle tracking and motion state
estimation are the indispensable parts of assisted driving and
autonomous driving. &is study proposes a novel multi-
target vehicle tracking and motion state estimation method
based on a new driving environment perception system.
Compared with the previous research on multitarget vehicle
tracking, the driving environment perception system de-
veloped in this study can obtain rich driving environment
information without interference between vehicles. &e
driving environment perception system establishes a light-
weight neural network and adds depth estimation based on
panoramic segmentation to estimate the state of vehicle
motion and explore the relationship between multiple
vehicles.

Firstly, a neural network that supports end-to-end
training is designed and implemented. &e network features
are extracted by ResNet. &e features are integrated by the
feature pyramid as the input of semantic segmentation
branch and instance segmentation, and the segmentation
output of the two branches is merged to obtain the result of
panoramic segmentation. After training and prediction on
the MVD, the PQ value of the validation set reached 15.22.

&e final model has reached a high level in terms of accuracy
and visual effects. &e depth estimation branch is designed
to realize the monocular range of the road scene. &rough
training and prediction on the Cityscapes Depth Dataset, the
relative error on the validation set is 0.276, and it is proved
that the model can achieve good accuracy in the depth
estimation of monocular vision.

Secondly, based on the recognition result of the driving
environment realized by the panoramic segmentation, the
Kalman filter and the Hungarian algorithm are used to
realize themultitarget tracking of the vehicle. Combining the
distance information obtained by depth estimation, the
relative speed of the vehicle is estimated. &e multitarget
tracking algorithm is used to solve the matching problem of
state calculation. &e results of the simulated driving test
show the following: (1) &e average error of the lateral
relative distance is 0.19m, and the longitudinal direction is
1.86m. (2) &e average error of the lateral relative velocity is
0.19m/s, and the longitudinal direction is 0.37m/s. &is
simulation experiment proves that the algorithm performs
well in multitarget tracking.

&e findings of this study can contribute to the de-
velopment of intelligent vehicles to alert drivers to
possible danger, assist drivers’ decision-making, and
improve traffic safety. To be specific, this study can be
used to identify roads and lane markings and warn
drivers of lane departure. When the vehicle approaches
the lane markings, the driver is reminded in the form of
sound or image [49]. &e multivehicle tracking and
motion estimation in this study can be used in an adaptive
cruise control system. According to the relative speed and
distance to the front vehicle, it adaptively controls its own
brakes and accelerators to maintain a certain distance and
similar speed with the front vehicle. In the actual driving
environment, a digital platform can be established to
interact with the driver through the driving environment
perception system. &rough the driving recorder to ob-
tain pictures or videos of other vehicles, the digital
platform calculates the position information of multiple
vehicles in real time and displays the trajectories of
multiple vehicles over time to the driver.

&e deep neural network framework proposed in this
study is highly shared in computing, and task branches
can be added or deleted conveniently according to actual
needs. Multitarget vehicle tracking through image seg-
mentation only relies on easily available data such as
images and videos, and the equipment is convenient to
install and simple to use. However, due to the use of
monocular vision for distance measurement in the depth
estimation, there is a problem of limited accuracy in
estimating the vehicle’s motion state. In the future, we
will try to use binocular distance measurement for depth
estimation to obtain more accurate motion status in-
formation for multiple vehicles.
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