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Estimating urban rail transit station catchment areas is of great significance to deepening our understanding of Transit-Oriented
Development in Chinese megacities. )is study investigated station choices of residents and considered that residents may not
only pay attention to the proximity to stations when the URTsystem develops into a relatively mature network. An improved Huff
model was proposed to calculate the probability of residents’ station choice, which considered the station attractiveness. )e
station attractiveness is measured by three variables: walk score, public transport accessibility level, and service and facility index.
)e additive form based onmulticriteria decision is adopted to incorporate experts’ opinions on the importance of three variables.
In this study, extended catchment areas that can be accessed by cycling and feeder bus services are adopted to replace the
conventional pedestrian-oriented catchment areas. A case study of Xi’an, China, was used to validate the applicability of the
proposed methodology. )e results revealed that the methodology effectively solved the problem. )e findings could be used as a
reference and provide technical support to policymakers and city planners with regard to the transport facilities configuration for
URT station catchment areas, which contributes to facilitating transit-oriented development.

1. Introduction

Urban rail transit systems are especially favored by planners
because of their potential to attract car users [1]. Regarded as
sustainable public transportation modes to ease urban traffic
congestion and energy consumption, reduce the environ-
mental effects of transportation, and promote economic
growth [2], URTsystems are becoming increasingly popular
worldwide for urban and suburban areas, and a growing
number of cities have built or approved URT systems [3].
Currently, more than a hundred URT systems successfully
operate in the United States, Europe, Canada, South
America, and Asia [4]. Following land, environmental, and
energy conservation policies in China, land developments
show a high density and intensive characteristics, and more
rail transit systems are needed to guide the optimization of
urban spatial structure in Chinese megacities. Beijing,
Shanghai, Guangzhou, Shenzhen, and so on have gradually
formed multimodal and integrated public transportation
systems within URTas the backbone transport mode. To the

end of 2019, 210 URT lines and 6386.9 km mileages were in
operations, which suggests that URT in China has entered
into a period of rapid development [5].

URT stations are the points of access to a transportation
system and the ability to access them conveniently and
quickly affects property values [6]. )e construction expe-
rience of URT in various countries in the world shows that
the impact of URT on the urban spatial structure is mainly
reflected in URT station catchment areas, and the land use
will in turn provide sufficient passenger flow for URT. In the
context of this study, a URTstation catchment area refers to
the area extent to which themajority of users will typically be
found. Catchment areas around URT stations offer ideal
conditions for Transit-Oriented Development (TOD), which
are also a prerequisite for the calculation of several fun-
damental statistical including latent demand, market share,
accessibility, and stop spacing [7]. Also, residents living in
URT station catchment areas had higher neighborhood
satisfaction and experienced a greater perception of safety
while walking [8]. Moreover, studies have shown that retail,
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office, and residential rents, as well as housing prices, are
higher in more walkable locations [9], suggesting that URT’s
contribution to making a place more walkable can result in
increased economic activity and property tax revenue.
)erefore, estimating URT catchment areas is a significant
issue, which will help to deepen our understanding of TODs
in Chinese megacities.

)is study aims to estimate UTR station catchment areas
using a new methodology based on the improved Huff
model in Chinese megacities. From the view of conventional
pedestrian-oriented and transit-oriented planning, this
study focuses on the walk score, public transport accessi-
bility level, and service and facility index, when it comes to
the station attractiveness. )e remainder of this study is
organized as follows. Section 2 contains a literature review.
Section 3 describes the methodology. Section 4 details a case
study. Conclusions are presented in Section 5.

2. Literature Review

Numerous methods have been proposed to estimate
catchment areas that range greatly in sophistication, and
the choice between them largely depends on the complexity
of the competitive forces involved, along with their com-
putational complexity and data availability. Regarding
proximity-only models, they have shown that buffer rings
and polygons depict drive time along with a network from a
point of interest. Assuming that the distance from the
origin to destination is Euclidean and omnidirectional,
buffer rings are perhaps the simplest method to calculate.
However, factors such as street layout, land use, parking
capacity, transit service, location of rail transit stations, and
multimodal accessibility also have an impact on the size of
catchment areas [10–12]. Moreover, the existing ap-
proaches make generalized and strictly binary decisions
about maximum buffer distance [13]. For example, 800m
has been broadly accepted as a reasonable walking distance
to a rail transit station [14–16]. What is more, employment
in the 800m station area, service level, bus connectivity,
station location in the Central Business District (CBD),
distance to the nearest station, and terminal are all im-
portant factors affecting passenger flow [17]. However,
some scholars considered that this distance varies spatially,
with people living in suburbs likely to accept larger dis-
tances [18] and longer travel times [19] than people living in
the CBD. Service areas are the more realistic way of de-
lineating catchment areas and valid where users are ex-
pected to use the closest facilities [20]. Scholars used
distance decay to indicate distances in terms of the pro-
portion of users who will walk less than a certain threshold,
while the variation also exists due to the data availability
and locations. However, like buffer rings, they can be poor
predictors of catchment areas where proximity is not the
only consideration for selecting a particular service. Other
factors such as user preferences and traffic supply can also
affect people’s choices [21–24]. )e Huff model shows its
unique advantages in this respect. )e Huff model predicts
the influence of the business circle by the attractiveness of
different stores [25]. )is is analogous to the method used

to measure the extent of the urban rail transit station
catchment areas. Lin et al. introduced the Huff model to
deal with the problem of facility configuration around rail
stations [26].

One of the earliest studies regarding URTstation choice
models was developed by Kastrenakes [27] for predicting
railway travel in the New Jersey area. )e most common
approaches include the discrete choice model, logistic re-
gression model, multinomial logit model, cross-nested logit
model, and nested logit model [11, 28, 29]. Residents will
not necessarily choose a URT station only due to the
proximity to the residence. Some researchers have found
that the distance was not the only factor affecting rail transit
station choice; there are also many factors that affect their
choices, such as total travel time, access time, cost, service
quality, service frequency, facilities available at the station,
carriage crowding, parking search time, demographics, and
safety [30–33]. For instance, some residents may choose a
rail station nearer to their destinations for saving costs;
others may choose a rail transit station further from their
destinations for securing a seat. Using the survey data from
the Dutch railway, Debrezion et al. [34] found that only
47% of the passengers choose their nearest station. Bir-
gillito et al. used the stochastic utility model to study the
main variables that affect passenger choice and their rel-
ative weights in discontinuous spaces [35]. )is study does
illustrate that the boundary of station catchment areas also
depends on the access to facilities and services at stations.
As such, gravity models may be more appropriate as they
include not only distance but also attractiveness in their
computation.

Although scholars have proposed numerous methods to
estimate catchment areas, there are still some research gaps.
First, most previous studies on estimating catchment areas
have been conducted in developed countries. As we know,
there is a big difference in urban built environments between
developed and developing countries; in particular, many
developing countries are still in a stage of rapid urbanization
with the concurrent rapid development of urban trans-
portation. Particularly in China, the traffic problem is be-
coming increasingly serious [36]. Second, studies regarding
station choices mainly concentrated on the railway; while the
characteristics of URTare different from the railway, station
choices may be also different. )ird, the existing methods
concern more about the proximity to stations, while they
rarely include stations’ attractiveness in their computation,
which may be partly due to the fact that residents may have
more travel choices when the URT system develops into a
relatively mature network. Fourth, the major access mode is
considered as walking in the conventional TOD framework;
however, to improve the effectiveness of TOD, the inte-
gration of cycling and feeder bus can be regarded as good
alternatives; thus, URT station catchment areas can be
increased.

To fill these knowledge gaps, this study used a new
methodology based on the improved Huff model for un-
derstanding and determining URT station catchment areas
in Xi’an, China.)is study aims to fill the research gap in the
estimation of URT catchment areas.
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3. Methodology

3.1. Improved Huff Model. One of the most enduring
catchment area models was developed by Huff [25], a prob-
abilistic gravity model originally applied to forecast customer
behavior among competing retail stores using three main
variables: distance, attractiveness, and competition [37]. Its
major advantage over other simplistic retail models is the
ability to simultaneously estimate a customer’s patronage
probability for many centers [38], including those with over-
lapping trade areas. )e Huff model facilitates analytical de-
cisions based onmultiple choices and has been applied in other
research areas. )ese areas include the accessibility of
healthcare and food services or the choice of different enter-
tainment venues. )is study uses the improved Huffmodel for
application to the choice of URT stations. )e probability (Pij)
that a resident located at origin community i would choose to
travel at a URT station j is calculated as follows:

Pij �
A
λ
j · T

−β
ij

􏽐
n
j�1 A

λ
j · T

−β
ij

. (1)

3.2. Parameter Calibration. Parameter calibration is critical
for model application; this study proposes the following
calibration methods for model parameters.

λ is an attractiveness parameter estimated from em-
pirical observations. In essence, this enables the modeling of
nonlinear behavior of the attractiveness parameter, and
within the Huff model, it can be applied to account for
various qualitative factors such as the ease of access to a
particular rail transit station and perception of attractiveness
(normally estimated from empirical observations). How-
ever, it was not possible to account for these effects uni-
versally, and as such, our model only considers the effect of
accessibility on the extent of potential catchments. For all
other distances, a default value equal to 1 was used. Birkin
et al. [39] considered the attractiveness parameter λ of
residence-based travel as a value of 1. As such, this study
assumes that “ease of access” is proxied by a 10min walking,
cycling, and feeder bus services between the residents’ origin
and a UTR station and increases the perceived attractiveness
of a given center twofold.

β is the distance decay parameter and usually takes a
value of 1 and 2 [20], depending on factors such as the type
of retail center or competition. Dramowicz [37] also found
the distance decay parameter as a value of 2. Modeling the
relationship between distance and the percentage of URT
trips in the MatlabTM, β is estimated to be 1.93. Based on
existing studies and our model, this study adopted β� 2.

Tij is the travel time from an origin community i to the city
center through a URTstation j. Considering the city center, Tij
includes two aspects, which can be calculated as follows:

Tij � Tij-access + Tj-vehicle, (2)

where Tij-access is the network-based travel time from original
community i to a URT station j (access time); this study
improves the conventional TOD and adopts extended TOD

that assumes that URT catchment areas can be accessed by
walk, bike, and feeder bus services. Tj-vehicle is the travel time
from a URT station j to the city center (in-vehicle time).

Aj is the attractiveness of a UTR station j. )is study uses
the additive form based on multicriteria decision analysis to
incorporate the experts’ opinions on the importance of
factors that affect station choices. )e attractiveness of a
URTstation was measured using three variables: Walk Score
(WS), Public Transport Accessibility Level (PTAL), and
Service Quality Index (SQI). )erefore, the calculation
method of Aj is shown as follows:

Aj � 􏽘
3

k�1
μkmk � μ1 · WS + μ2 · PTAL + μ3 · SQI, (3)

where mk is the factor k that affects the URT station’s at-
tractiveness. μn is the weight of the factor, which is deter-
mined by experts through ranking the importance from 1 to
7 and using a 7-point Likert scale method. )e method is a
psychometric scale commonly involved in research used to
represent people’s opinions and attitudes to a topic or
subject matter. It employs questionnaires, often used in-
terchangeably with a rating scale (1 point: strongly unim-
portant; 2 points: unimportant; 3 points: somewhat
unimportant; 4 points: neither important nor unimportant;
5 points: somewhat important; agree: 6 points: important; 7
points: strongly important).

(i) Walk Score (WS). Considering the difficulty of
measuring land-use diversity directly, this study
searches for another parameter to represent it. WS
measures the built environment’s ability to support
walking for a given location. It combines infor-
mation about the distance to the destination and the
characteristics of the streets around the route [40].
WS is calculated based on the distance to 13 cate-
gories of amenities, each category is weighted
equally, and scores are summed and then nor-
malized to yield a score of 0–100 [41].)erefore,WS
can also be employed to access land-use diversity
due to the fact that it serves as a good proxy.

(ii) Public Transport Accessibility Level (PTAL). PTAL is
the degree of convenience of residents who travel by
public transport modes from origins to destinations.
)e commonly used methods to measure accessi-
bility include infrastructure- [42], activity- [43], and
utility-based accessibility models [44].)ese models
are not used in this study for several reasons. First,
they have too many limitations in terms of data
collection. Second, they require advanced mathe-
matical methods and programming, which is dif-
ficult to solve practical problems [45]. Considering
that the distribution of departure locations of
commuters is random, it becomes more difficult to
quantify the distance and time index to calculate the
PTAL of URT station catchment areas. )e arrival
frequency of public transport reflects the conve-
nience of commuters to stations and can be used to
represent PTAL. In this study, the total elapsed time
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includes walking time to stations and average
waiting time at stations.)ewalking time to stations
is regarded as part of the average waiting time (i.e.,
public transport services are available at the “en-
trances” of stations, and commuters take public
transport at the “entrances”). )is study considers
that the total elapsed time is equivalent to the de-
parture interval, which can be characterized by the
equivalent doorstep frequency (EDF) of public
transport. A higher EDF indicates a higher PTAL,
and the calculation of PTAL can be converted into
calculation of EDF. )erefore, this study adopts a
simplified PTAL model to measure accessibility and
proposes the following assumptions: (1) PTAL is
equivalent to the accessibility level of all public
transport modes. (2))e average waiting time is 1/2
of the operating time between adjacent public
transport stations. (3) )e interference factor is
inversely proportional to the arrival rate of public
transport, which is only related to public transport
modes. )erefore, PTAL could be calculated as
follows:

PTAL∗ � 􏽘
I

i�1

60
txi + tyi

,

PTAL � 􏽘PTAL∗,

txi �
li

vm

,

tyi �
1
2

×
60
r

× K,

(4)

where PTAL∗ is the accessibility level of a specific
public transport mode. PTAL is Public Transport
Accessibility Level. txi is the walking time of the ith path
(min). tyi is the average waiting time of the ith path
(min). I is a set of routes between the entrances of
communities and public transport stops. li is the
walking distance of the ith path (m). vm is the average
walking speed (m/min). K is the interference factor,
which can be obtained from surveys and assigned a
value of 1∼2. r is the arrival rate of public transport
(veh/h).

(iii) Service Quality Index (SQI). )e service quality of a
URT station includes two aspects: service frequency
and service facilities. )e service frequency is the
frequency of train arrivals at each station, which can be
calculated by using the data of the average number of
trains that serve a URTstation every hour. )e service
facilities index includes 10 types of facilities (bike-
sharing parking spaces, elevators, waiting area, chairs,
toilets, disabled facilities, vending machines, ATM
change machines, convenience store, and office per-
sonnel), which can be calculated using a 7-point Likert
scale method. Based on the existing study conducted
by Chen et al. [30], the frequency is twice more im-
portant as facilities; then SQI can be calculated as
follows:

SQI � fj + 0.5 ×
􏽐

nj

m�1 􏽐
10
n�1qjmn

10nj

, (5)

where SQI is the Service Quality Index. f is the
service frequency of station j. qjmn is the value of
facility n evaluated by participant m. nj is the
number of participants who evaluate facility n at
station j.

Due to the fact that all these factors are measured in
different units, we standardized them into one attractiveness
index using the score range method [46], which can be
shown as follows:

Sij
′ �

Sij − S
min
j

S
max
j − S

min
j

, (6)

where Sij
′ represents the standardized value for item i in jth

factor. Smin
ij represents the minimum value for the jth factor.

Smax
ij represents the maximum value for the jth factor.

Smax
ij − Smin

ij represents the range of given criteria.

3.3. Linear Referencing Method. )e linear referencing
method is used to define the spatial boundary of URTstation
catchment areas. )e improved Huff model calculates the
probabilities of a URT station being selected from a par-
ticular location, such as a centroid of a community. Resi-
dents in a community can choose multiple (j≥ 2) URT
stations with different probabilities. )e underlying prin-
ciple is that the probability of choosing a URT station is
inversely proportional to the distance between a community
and a station. )e process of this method can be depicted: if
the probability of a URT station being chosen is lower, the
centroid of a community will be moved away from its
original location and get closer to the station. )e lower the
probability Pij, the more the adjustment of the centroid of a
community i and the shorter the distance dij

′. )erefore, it
could be calculated as follows:

dij
′ � dij · 1 −

Pij

P
max
ij

⎛⎝ ⎞⎠, (7)

where dij
′ is the adjusted distance from the centroid of a

community i to station j, which determines the calibrated
origin. dij is the distance from the centroid of a community i
to station j. Pij is the probability of choosing station j from
the centroid of a community i to the central urban area. pmax

ij

is the maximum probability of a station being chosen from
the centroid of a community i to the city center.

As each calibrated origin point represents a community,
the spatial boundary of a URT station is drawn by selecting
the intersected communities of a station and dissolving or
aggregating the boundary of the selected community’s
polygons into one area of the station using the ArcGIS™
software. )e process of how to determine the boundaries
using Model Builder™ in the ArcGIS software is shown in
Figure 1.
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4. Case Study

4.1. Data. Xi’an, located in Northwest China, is a key city in
China. By the end of 2017, Xi’an had a total population of 9.05
million, ranked the 23rd in China.)e urban built area in Xi’an
is 683.09 km2; private car ownership increased rapidly in Xi’an
with an average yearly increase rate of 11% between 2010 and
2017. By the end of 2017, the city of Xi’an had 2.46 million
private cars and 3.7 million registered car drivers [47]. )e
growth in auto ownership and use has led to traffic congestion;
accordingly, URT is built to reduce auto use and mitigate
congestion. Xi’an plans to construct 17 URT lines by 2030, and
now three URT lines are in operation, 91 km long, and have 63
stations (see Table 1; Figure 2). Line 1 runs from east to west.
Opened in 2013, the line is 25.4 km long and has 19 stations.
Line 2 was fully opened in 2014, runs from north to south, is
26.8 km long, and has 21 stations. Line 3 was fully opened in
2016, runs from northeast to west, is 39.15 km long, and has 26
stations. )is study simplifies the analysis considering all trips
to the Zhonglou area (the area enclosed by Xi’an Circum-
vallation), which is the largest employment center and largest
destination in Xi’an.

)e study used multiple sources collected from two
sources: a field survey and archival data from related gov-
ernment departments. To understand residents’ station choice
behavior, intercept surveys were conducted to collect travel
data of all public transport users and their satisfaction with
URT services and facilities. )is study randomly chose URT
users at station platforms and asked them to fill in the ques-
tionnaire. In order to determine the weight of factors that affect
the attractiveness of UTR stations, experts from universities,
research institutions, and transportation planning bureau are
interviewed. Public transport timetable information is obtained
from the Department of Planning, Department of
Transportation.

4.2. Results. Based on experts’ opinions on the importance of
factors that affect station choices, using the 7-point Likert scale

method, the weight of WS, PTAL, and SQI is obtained, re-
spectively, μ1� 0.41, μ1� 0.32, and μ1� 0.27. According to
formula (2)∼formula (6), the standardized value of WS, PTAL,
and SQI of each URT station can be calculated (see Table 2).
According to the proposed methodology and data set, we
obtain the station attractiveness index of each station in Xi’an,
China (see Figure 3). )e index indicates that stations of
downtown areas have higher attractiveness, while that of
suburbs have lower attractiveness. In addition, we see that three
stations: M12 (Nanshaomen), M13 (Tiyuchang), and M14
(Xiaozhai) that do not locate in downtown areas have the most
higher attractiveness because the Xiaozhai area is not only the
important business center of Xi’an within good walkability but
also the transport interchange hub within good accessibility.
Although URT stations, such as L8 (Yuxiangmen), L9 (Sajin-
qiao), and L12 (Chaoyangmen) that locate in or adjacent to the
Xi’an Circumvallation, were used to be historic downtown of
Xi’an, they have lower attractiveness due to the fact that the
existing road network is dominated by Li-Fang Unit system,
and the demand for historic downtown protection resulted in
limited transportation facility supply.

Stations of downtown areas have higher attractiveness,
while that of suburbs have lower attractiveness. )is may be
due to the better pedestrian system and bus coverage in the
central city. On the one hand, this increases the accessibility of
the stations. On the other hand, the rail stations in the central
city have better facilities and better service quality compared to
suburban stations. For a long time, suburban areas have been
built with the extreme pursuit of wide roads and less attention
to slow transportation (pedestrian system, bicycle sharing, etc.),
resulting in lower accessibility. Suburban transit ridership is
low. For profit purposes, bus systems in the suburbs are less
frequent and suffer from inadequate service facilities and low
service quality. )e coupling between public transportation
and land use is rarely considered in suburban development and
construction. For example, a large number of new residential
areas have been built in the suburbs, which lengthens the
operating mileage of public transportation. )e combined

Make feature layer Communities
layer

Iterate feature URT station layer

Select layer by
location

Station name

Station catchment
areas

Copy feature

Station catchment
areasDissolveDissolved station

catchment areas

Figure 1: Process of determining the boundaries.
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effect of long operating mileage and low frequency of depar-
tures reduces the accessibility of public transportation. )e
construction of public transportation facilities can effectively
improve the attractiveness of the station, for example,
Fangzhicheng Station. Comparedwith other suburban stations,

the Fangzhicheng Station site attractiveness is high. )is is
inseparable from the construction of the surrounding Fangz-
hicheng bus station. )rough the site attractiveness classifi-
cation site, it is beneficial to put forward targeted development
strategies according to various types of sites. For the highly

Table 1: Coding for urban rail transit stations in Xi’an, China.

Code Station name Code Station name Code Station name
L1 Houweizhai M3 Yundonggongyuan R4 Kejilu
L2 Sanqiao M4 Xingzhengzhongxin R5 Taibainanlu
L3 Zaohe M5 Fengchengwulu R6 Jixiangcun
L4 Zhaoyuan M6 Shitushuguan R7 Dayanta
L5 Hanchenglu M7 Daminggongxi R8 Beichitou
L6 Kaiyuanmen M8 Longshouyuan R9 Qinglongshi
L7 Laodonglu M9 Anyuanmen R10 Yanxingmen
L8 Yuxiangmen M10 Zhonglou R11 Xianningmen
L9 Sajinqiao M11 Yongningmen R12 Changle park
L10 Beidajie M12 Nanshaomen R13 Hujiamiao
L11 Wulukou M13 Tiyuchang R14 Shijiajie
L12 Chaoyangmen M14 Xiaozhai R15 Xinjiamiao
L13 Kangfulu M15 Weiyijie R16 Guangtaimen
L14 Tonghuamen M16 Huizhanzhongxin R17 Taohuatan
L15 Wanshoulu M17 Sanyao R18 Chanbazhongxin
L16 Changlepo M18 Fengqiyuan R19 Xianghuwan
L17 Chanhe M19 Hangtiancheng R20 Wuzhuang
L18 Banpo M20 Weiqunan R21 Guojigangwuqu
L19 Fangzhicheng R1 Yuhuazhai R22 Shuangzhai
M1 Xi’anbei R2 Zhangbabeilu R23 Xinzhu
M2 Bieyuan R3 Yanpingmen R24 Baoshuiqu

0 5km

Road network
URT lines
URT stations
Circumvallation

Figure 2: Urban rail transit network of Xi’an, China.
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attractive stations (R18–R24), it is recommended that parking
allocation standards be appropriately reduced to regulate small
car trips. Reduce the pressure of motor vehicle trips on the
transportation system, while improving the level of public

transport provision and the pedestrian environment. For low
attractiveness sites (most of the suburban sites), the level of
public transportation supply can be supplemented by in-
creasing the frequency of bus stops and departures. )is will

Table 2: )e calculated variables of models.

Code WS PTAL SQI Aj Code WS PTAL SQI Aj Code WS PTAL SQI Aj
L1 0.258 0.298 0.034 0.210 M3 0.529 0.455 0.398 0.470 R4 0.588 0.527 0.630 0.580
L2 0.331 0.252 0.023 0.223 M4 0.552 0.444 0.427 0.484 R5 0.609 0.518 0.607 0.579
L3 0.469 0.405 0.052 0.336 M5 0.583 0.438 0.920 0.628 R6 0.573 0.463 0.584 0.541
L4 0.341 0.301 0.069 0.255 M6 0.558 0.413 0.948 0.617 R7 0.783 0.641 0.641 0.699
L5 0.361 0.302 0.086 0.268 M7 0.561 0.501 0.908 0.636 R8 0.721 0.538 0.607 0.632
L6 0.678 0.628 0.109 0.508 M8 0.571 0.663 0.885 0.685 R9 0.674 0.526 0.578 0.601
L7 0.724 0.649 0.092 0.529 M9 0.641 0.608 0.954 0.715 R10 0.622 0.487 0.601 0.573
L8 0.765 0.413 0.040 0.457 M10 0.886 0.419 0.937 0.750 R11 0.636 0.521 0.612 0.593
L9 0.806 0.361 0.126 0.480 M11 0.746 0.453 0.983 0.716 R12 0.654 0.548 0.624 0.612
L10 0.834 0.422 0.166 0.522 M12 0.759 0.618 0.937 0.762 R13 0.636 0.546 0.549 0.584
L11 0.816 0.452 0.161 0.523 M13 0.783 0.668 0.977 0.799 R14 0.586 0.481 0.555 0.544
L12 0.715 0.418 0.143 0.466 M14 0.824 0.753 1.000 0.849 R15 0.543 0.638 0.567 0.580
L13 0.733 0.621 0.097 0.526 M15 0.729 0.593 0.937 0.742 R16 0.421 0.391 0.584 0.455
L14 0.767 0.798 0.080 0.592 M16 0.696 0.571 0.954 0.726 R17 0.383 0.316 0.572 0.413
L15 0.638 0.709 0.115 0.519 M17 0.621 0.534 0.903 0.669 R18 0.184 0.161 0.589 0.286
L16 0.619 0.583 0.097 0.467 M18 0.489 0.518 0.828 0.590 R19 0.132 0.153 0.291 0.182
L17 0.512 0.418 0.000 0.344 M19 0.449 0.319 0.794 0.500 R20 0.159 0.089 0.561 0.245
L18 0.453 0.571 0.075 0.389 M20 0.331 0.382 0.868 0.492 R21 0.198 0.122 0.589 0.279
L19 0.533 0.489 0.109 0.404 R1 0.158 0.184 0.544 0.270 R22 0.084 0.062 0.578 0.210
M1 0.442 0.512 0.421 0.459 R2 0.403 0.427 0.561 0.453 R23 0.071 0.108 0.549 0.212
M2 0.502 0.447 0.364 0.447 R3 0.528 0.593 0.612 0.572 R24 0.038 0.073 0.532 0.183

Station attractiveness
0–0.25
0.25–0.50
0.50–0.75
0.75–1.0

Figure 3: Calculated station attractiveness of urban rail transit.
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Figure 4: Outputs from the improved Huff model and origin calibration.
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Figure 5: Catchment areas of Guangtaimen station.
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increase the attractiveness of rail transit stations. Also, slow
traffic facilities around the stations can be complemented to
plan for future development.

Figures 4(a) and 4(b) provide an example of outputs
from the improved Huff model to elaborate how the
method was applied. )is study defines that three stations
will be chosen by residents from Dongfangluoma
Community which are R14 (Shijiajie), R15 (Xinjiamiao),
and R16 (Guangtaimen). )e probabilities of the three
stations being chosen are 0.345, 0.367, and 0.288.

Each calibrated origin represents a community;
Model Builder in the ArcGIS software is used to obtain
spatial boundaries of a URT station R16 (Guangtaimen)
by selecting the intersected communities and dissolving
or aggregating the boundary of selected communities’
polygons into one area. Finally, two spatial boundaries
are obtained within cycling and feeder bus services,
corresponding to bicycle-oriented catchment areas
(BCA) and feeder bus-oriented catchment areas (FCA)
(see Figure 5).

5. Conclusions

Estimating URTstation catchment areas will help to allocate
public transport facilities to promote transit-oriented de-
velopment, which is of great significance to cities with high
density. )is study focused on the station choice of devel-
oping countries’ URT and integrated the walking, cycling,
and feeder bus based on the TOD framework. What is more,
this study proposed a new methodology based on the im-
proved Huff model to determine URT station catchment
areas, which considers the attractiveness of stations from the
aspects of walk score, public transport accessibility level, and
service quality index. )is study used Xi’an, China, as a case
study to validate the applicability of the proposed meth-
odology. )e results revealed that when URT lines develop
into network, residents would have multiple station choices
that depended on the station attractiveness; thus, station
catchment areas are further extended.

However, there still exist some limitations in the present
study. First, some parameter calibration directly used the
existing accepted value, which could not reflect the im-
proved Huff model better. )erefore, the distance decay
parameter will be calibrated to investigate the impact of
spatial variation in future studies. Some more parameters
such as traffic congestion should be also considered. Second,
many other factors such as the level of service coverage or
network connectivity of a URTstation, the function position
of the station in the network, being close to important
destination stations in the network, and travel costs have a
significant impact on the service quality of a URT station,
which do not take into consideration in the study. Also, the
in-depth consideration of transit frequency should be made
in future studies, within the available related big data, the
transit frequency can be modeled [45]. )erefore, a new
approach that integrates all these aspects is recommended to
measure the service quality of a URT station. )ird, this
study used the centroid location communities as a substi-
tution, which reduced the accuracy of geocoding.

Despite these limitations, this study developed a new
approach based on the improved Huff model to estimate
URT station catchment areas. It will be of importance to
public transit policymakers, city planners, and researchers,
particularly the public transport authority, to understand
station choice behaviors, therefore make adjustments of
travel fees, and improve the service quality of URT stations
and to allocate public transport facilities reasonably around
station catchment areas to meet residents’ travel demand.
)e major contribution of this study is the development of
the Huff model for identifying variables affecting station
choice. )e method is reproducible and generalizable in-
ternationally to other studies.
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[44] G. Gulhan, H. Ceylan, M. Özuysal, and H. Ceylan, “Impact of
utility-based accessibility measures on urban public trans-
portation planning: a case study of Denizli, Turkey,” Cities,
vol. 32, pp. 102–112, 2013.

[45] A. Croce, G. Musolino, C. Rindone, and Vitetta, “Transport
system models and big data: zoning and graph building with
traditional surveys, FCD and GIS,” ISPRS International
Journal of Geo-Information, vol. 8, no. 4, p. 187, 2019.

[46] Z. Zhu, X. Guo, J. Zeng et al., “Determining parking re-
quirements for high-rise buildings located in urban rail transit
station catchment areas: a new methodology,” in Proceedings
of the 97th Annual Meeting of the Transportation Research
Board, Washington, DC, USA, 2018.

[47] Xian Municipal Bureau Statistics, Xi’an Statistical Yearbook
2018, China Statistics Press, Beijing, China, 2018.

Journal of Advanced Transportation 11


