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Adverse weather has been recognized as an important factor to affect travelers’ activity plans in departure time, transport mode, route
taken, or cancellation. In the storm, road waterlogging degrades the capacity of road networks and the service quality of transit systems,
which further may affect the supply and demand for transit. Based on a typical case in Shanghai that commuters have no easy access to
metro service, this paper aims to explore how transit passengers adapt to different situations in the storm and what emergency plans
should be taken accordingly. Derived from the revealed preference (RP) and stated preference (SP) survey results for experienced transit
commuters, a nested logit (NL) model was developed to describe the travel behavior of transit commuters. Six alternatives, Direct Bus,
Bus+Bus, Metro, Bus+Metro, Taxi, and Cancel Trip, and three storm scenarios were set for transit commuters in this case. Estimated
parameters indicate that, in storm weather, crowdedness is less considered by transit commuters, and transfer times, walking time, in-
vehicle time, and waiting time have negative effects on the selection of the corresponding alternative, whereas the impact of taxi fare is
positive since the higher fare is usually accompanied byworseweather and traffic condition. Sensitivity analysis shows that walking time to
metro station, in-vehicle time, andwaiting time at a bus stop are themost critical factors leading to transit ridership reduction in the storm.
According to this, three possible plans for the transit operator, shuttle bus to themetro station (P1), information announcement (P2), and
route adjustment (P3), are simulated and compared. We recommend adopting P2, P2+P3, and P1+P2+P3 in turn with the increase of
road waterlogging..ese findings have important practical implications for developing transit emergencymanagement plans and serve as
references for the transit agencies and operators.

1. Introduction

Weather is recognized as a critical factor in transportation
system operation. Inclement weather can significantly de-
crease traffic speed and road capacity, cause traffic con-
gestion or disruption, and affect traffic safety. Public
transport, a vital component of urban transport systems
serving commuting trips, may also be largely affected by the
inclement weather. It has been proved that inclement
weather can degrade the bus service, affect passengers’ travel
choices, and reduce transit ridership [1]. As reported in the

Intergovernmental Panel on Climate Change (IPCC) [2], a
significant increase in extreme weather and climate events
has been observed since the 1950s on a global scale. Facing
increasing days with inclement weather, transit operators
and government should provide powerful emergency
management plans to guarantee commuting travel.

It is of great importance to understand the impact of
transport system performance in adverse weather and how
travelers adapt to it. .ere exist some studies investigating
the influence of weather on the travel behavior of passengers,
including travel demand, modal shift, departure time, and
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route/destination choices [3–6]. .e most common method
of examining inclement weather’s impact on travel has
involved collecting and analyzing traffic data and ridership
data in conjunction with weather variables, such as tem-
perature, rainfall, and wind speed. Recently, more tempo-
rally and spatially disaggregated analyses are proposed to
increase the explanatory power of results [7–9]. Besides,
some studies pay attention to identify the impact of more
issues in adverse weather, such as setting of infrastructure,
traveler segments, and trip purpose [10–13]. .e results of
studies show the heterogeneous impacts of adverse weather
on travel behavior due to discrepancies in the overall settings
of studies.

According to our understanding, the influence of
adverse weather on travel behavior can be decomposed
into two parts: the negative impacts of extreme weather on
transportation services and the corresponding adjustment
of travel behavior by travelers. In essence, ridership is
directly affected by the performance of the travel services
(e.g., accessibility, reliability, convenience, comfort, and
travel time) rather than weather. Several studies have
investigated the influence of weather on the performance
of transport systems, such as road capacity, vehicle
moving speed, bus dwell time, and transit service reli-
ability [14, 15]. From our point of view, in addition to the
settings of infrastructure and meteorological elements, the
management level is also a decisive factor in the impact of
adverse weather on transport services. We believe that
good measures can reduce the negative impact and im-
prove performance effectively. For transit operators, to
know what measures should be taken, it is necessary to
understand the influence of the transit service perfor-
mance on travel choices under various situations. How-
ever, the limited research on adaptation of travelers to the
change of transit service quality in adverse weather may be
not supportive to conduct effective emergency measures.

To fill this gap, this paper aims to explore the ad-
aptation of transit commuters to different situations and
provide feasible measures for the transit operators ac-
cordingly. Firstly, the revealed preference (RP) and
stated preference (SP) surveys were conducted, and then
the relationship between travel mode choice and transit
service performance in the storm was established. De-
rived from the statistic and sensitivity analysis, three
possible plans, shuttle bus to the metro station, infor-
mation announcement, and routine adjustment, are
simulated and compared. .ese results could have im-
plications for developing bus emergency management
plans and serve as references for the public transit
agency.

.e remainder of this paper is organized as follows.
Section 2 reviews related studies and provides the literature
background for the present study. Section 3 introduces the
data and the study area. Analytical approaches are also
elaborated on in this section. Section 4 presents and dis-
cusses the analysis results and research findings. Section 5
proposes and then simulates some emergency plans for the
transit operator. Section 6 summarizes the research findings
and points out limitations and future work.

2. Literature Review

.e impacts of weather on transportation have received
substantial research attention. Studies can be identified as
twomajor parts: impacts on physical and operational aspects
and impacts on travel demand and traveler behavior. In this
section, we shall review the relevant studies, outline the
major findings, and identify research gaps.

2.1. Impacts on Physical and Operational Aspects.
Weather has a direct impact on the performance of trans-
portation infrastructure [6]. Heavy rainfall, storms, snow,
and fog all can result in deterioration of traffic conditions,
like low visibility, wet roads, and waterlogging. Regarding
different travel modes, previous studies have shown a
negative impact on travel speeds [3, 16–19]. Some studies
indicate that wet roads can reduce the average vehicle speed
by 6-7% in urban areas and even 8–12% when it rains [20].
And the reduction of travel speed can even lead to a 20%
decrease in road capacity in the urban network [21],
resulting in traffic congestion or disruptions [1], the unre-
liability of the transportation system [22], and more traffic
accidents [23]. For transit services, the impact of weather is
more complex than private and nonmotorized transport. In
one aspect, it has negative impacts on bus operation in terms
of service frequency, headway regularity, and travel time
variability [1]; in the other aspect, it increases the difficulty
and time on the way to/from transit stations for passengers
[7].

2.2. Impact on Travel Demand and Traveler Behavior.
Aside from its impact on the physical and operational as-
pects of transport systems, adverse weather may affect
travelers’ decisions. A lot of studies highlighted travel be-
havior changes due to weather conditions, like model shift
[4, 6], changes in destination and route [3], and put-off or
cancel trips [24]. Transit riders are often directly subject to
adverse weather while waiting or walking to/from the sta-
tion, and they are indirectly affected by the deterioration of
in-vehicle transit services [7]. Both direct and indirect effects
influence riders’ behavior as well as transit ridership.

In most previous studies, adverse weather, such as rain,
has been found to exert a negative influence on transit
ridership [1, 25]. Nevertheless, some empirical studies
report different results on the rain-transit ridership rela-
tionship, which shows that it is positively associated with
public transit share [17, 26]. Further studies indicate that
transit ridership has a slight decline during light rainfall,
then increases with rain becomes heavier, and eventually
drops sharply in heavy rain [27]. .e heterogeneous im-
pacts show the complexity of the relationship between
adverse weather and transit ridership. .erefore, some
studies pay attention to identify specific impacts of adverse
weather with more detailed issues. For example, senior
passengers [28], lower-income travelers [29], and occa-
sional users [10] are more sensitive to adverse weather.
Additionally, adverse weather has more impact on recre-
ational travel than commuter travel [12], bus trips than

2 Journal of Advanced Transportation



metro trips [13], weekend trips than weekday trips [7], and
long commuting trips in winter than that in summer [11].
Besides the adverse weather’s impact on transit, ridership
also varies on the type, location, facilities, and routes of
stations [8] and time of day [9].

In short, most of these studies examined inclement
weather’s impact on ridership in conjunction with amount
variables, weather elements (e.g., temperature, rainfall, andwind
speed), time (day of week, time of day, and seasonality), facility
(e.g., weather protection of palm, accessibility of station, and
connecting bus routes), and individual attributions (e.g., age,
gender, income, experience, and travel purpose). Less attention
was paid to explore how transit passengers adapt to transit
service in storm according to service performance, such as travel
time variability, service frequency, reliability, accessibility, and
comfort. We believe that it helps improve transit management
for infrastructure as well as transit service adjustment for transit
operator and agency.

3. Data and Analytical Methods

In this section, we will introduce a case study, including data
collection and analytical methods, to describe the dynamics
of travel choice behavior in adverse weather.

3.1. Data Collection. As shown in Figure 1, the data adopted
in this study are originated from surveys in a largely resi-
dential area with over 15,000 residents near the middle ring
roads in Shanghai, China. .is residential area covers nearly
10 bus stops, but no metro station. A passenger from the
center of this area needs to walk over 1 km to the nearest
metro station. .ere exist large commuting demands be-
tween the residential area and the central business district
nearly 6 km away. However, road waterlogging and dis-
ruption occur recurrently in storm weather within this area,
causing terrible bus service.

It is a representative case to reflect the dilemmas of transit
commuters without convenient metro service. .ey have to
make a comprise between time, comfort, and economic loss
since there is no convenient and reliable transit service in
adverse weather. Based on this case, later we will have a detailed
analysis of travel behavior in different conditions and propose
some possible measures accordingly.

.e questionnaire, designed for RP and SP survey, was
conducted in the weekdaymorning peak hours in September
2016, targeting passengers leaving their homes to take public
transit. .e RP survey collected sociodemographic infor-
mation, for example, gender, age, occupation, and monthly
income, as well as travel-related information, for example,
travel purpose, travel mode, travel time and transfer time,
and commuting experience in the storm. .e SP survey
asked respondents to make travel choices in hypothetical
scenarios.

.ree hypothetical road waterlogging scenarios
(S1–S3) are assumed to have different impacts on road
conditions and transit operation in storm weather (see
Figure 2):

S1: in the slight storm (beyond 20mm rainfall), the
small-scale ponding occurs, causing walking time in-
crease, vehicle speed decline, and slight bus delay
S2: in the medium storm (around 50mm rainfall),
several parts of roads are waterlogging, leading to in-
convenient walking, traffic congestion, and serious bus
delays
S3: in the heavy storm (over 100mm rainfall), roads
within some regions are waterlogging seriously,
resulting in walking difficulties, partial road closure,
and bus detours

.rough on-the-spot investigation in a storm, we found
that in this case there are six reasonable travel alternatives for
transit commuters, which specifies five possible combina-
tions of travel modes and another option to cancel the trip.
.e performance of services under six travel alternatives is
settled according to the investigation data. .e details are
shown as follows (see Figure 1 and Table 1):

A1: taking a bus with no transfer (Direct Bus Service,
DB)

A2: riding a bus and then transferring to another bus in
a different routine (Bus + Bus, B + B)

A3: walking to a metro station and then taking a metro
(Metro, M)
A4: riding a bus and then transferring to a metro
(Bus +Metro, B +M)
A5: taking a taxi (Taxi, Tx)
A6: cancelling the trip (Cancel Trip, CT)

Based on these, we design the SP survey, which con-
tained twelve different conditions derived from three hy-
pothetical road waterlogging scenarios and four crowded
scenarios. For each case, respondents were offered the above
six travel alternatives and their performances (see Table 1). It
is assumed that the respondents have enough knowledge
from experience and can make choices accordingly.

In our designed scenarios, Direct Bus, the most
convenient way in normal weather, was largely affected by
the storm in walking time, waiting time, and in-vehicle
travel time. Metro operation is less affected by storm,
whereas the need for long time walking to the metro
station may reduce their willingness. Taking a bus and
then transferring to metro or bus, there could be alter-
natives to keep short walking time and relatively low
delay. Traveling by taxi can avoid long walking time, large
travel delay, and possible crowdedness in transit service
effectively, and yet the fare of taxi, increasing with road
waterlogging due to congestion and detouring, is much
higher than that of all alternatives in public trans-
portation in all scenarios.

To ensure that the samples were representative, some
trap questions and logical judgments were used in prelim-
inary selection. 185 questionnaires that have enough
knowledge of commuting by transit in storm weather are
selected, and 162 among them are transit commuters
choosing bus or metro as their major travel mode. Totally,
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1944 valid travel choices gathered from these 162 experi-
enced transit commuters in the SP survey are used to cal-
ibrate the parameters of the model in this study. Table 2
presents the descriptive statistics of these participants. Some
key features of the participants in this study are as follows:

(a) Most of the respondents are working-age adults in
the normal sense, ranging from 16 to 60 years old.
Since the government is trying to create incentives
for people to work longer, the elderly also make up a
large proportion of commuters.

(b) .e monthly income of more than 80% of respon-
dents ranges from 2000 yuan (about 300 US dollars)
to 10,000 yuan (about 1500 US dollars). .e pro-
portion of high-income people is just over 10%,

which is only half of 20.6% in the Shanghai Statistical
Yearbook [30].

(c) More than 90% of respondents who have transit
commuting experience in a storm choose bus or
metro as their major travel mode.

(d) About half of respondents’ travels in the RP survey,
which was carried in the weekday morning peak, are
commuting trips.

(e) .e expected travel time of near 80% of the re-
spondents is over 60 minutes.

(f ) Above 40% of the respondents need transfers.

In sum, the data revealed that the majority of the re-
spondents are transit passengers with long commuting time,

1km

Metro
Bus to metro station
Walking to metro station

250m

Residential area
Central business district
Serious road waterlogging
Bus stop

Direct bus
Bus + Bus

Metro station
Survey point

N N

Figure 1: Shanghai, the study context.

(a) (b) (c)

Figure 2: Hypothetical road waterlogging scenarios in the storm. (a) Scenario 1, (b) Scenario 2, and (c) Scenario 3.

4 Journal of Advanced Transportation



medium income, and working age, which make sure that
they are our targeted group in this study.

3.2. Analytical Methods. Generally, researchers adopt the
discrete choice model (DCM) [31–35] or structural equation
model (SEM) [17] to estimate the travel mode choice using
the RP and SP survey data. .e combination of RP and SP
data covers both the existing absolute attribute levels and a
much wider range of attributes; thus, it is beneficial to build a
more robust model. In this study, the RP data can help us
select our target respondents and decision variables. And the
SP data is used to estimate the critical factors of that in the

storm weather with road waterlogging. Multinomial logit
(MNL) model has been proved to be suitable for modeling
discrete choice outcomes under mixed traffic conditions
[31]. One inherent assumption of the MNL model is the
independence of irrelevant alternatives (IIA), which means
that the alternatives are uncorrelated. Considering the
similarity of A1∼A4, it may lead to the fact that IIA as-
sumption cannot hold; in this case, the nested logit (NL)
models were adopted to link the probabilities of choice for
commuting travelers to explanatory variables.

In this study, we aim to explore the relationship between
the performance of alternatives and the choice probability of
transit commuters in different storm scenarios. It is different

Table 1: Performance of services in scenarios.

Performance of services Scenarios
Alternatives

A1 A2 A3 A4 A5

Walking time (minute)

S0 9 5 15 6 0
S1 10 5 20 7 0
S2 12 6 25 8 0
S3 15 8 30 10 0

Waiting time (minute)

S0 15 12 3 15 5
S1 20 15 3 15 10
S2 30 25 5 20 20
S3 45 40 9 30 30

In-vehicle travel time (minute)

S0 25 25 15 25 15
S1 30 30 15 30 20
S2 40 40 15 35 25
S3 60 60 20 45 30

Overall travel time (minute)

S0 49 42 33 46 20
S1 60 50 38 52 30
S2 82 71 45 63 45
S3 120 108 59 85 60

Fare (yuan)

S0

2 3 4 5

35
S1 40
S2 60
S3 100

Transfer S0–S3 0 1 0 1 0
Note: S0 is the normal weather; S1–S3 are three hypothetical scenarios of the storm.

Table 2: Survey profile.

Respondent characteristic Variables Percentage Trip characteristic Variables Percentage

Gender Male 41.98

Travel purpose

Commute 49.38
Female 58.02 Business 6.17

Age

16– 0.62 Leisure 11.73
16–24 14.20 Hospital 7.41
25–34 33.95 Visiting friend 10.49
35–44 16.05 Others 14.81
45–60 11.73

Travel mode

Bus 51.85
60+ 23.46 Metro 41.36

Monthly income (yuan)

2000– 9.26 Taxi 1.85
2000–5000 38.89 Bike 1.85
5000–10,000 41.36 Walk 3.09

10000+ 10.49

Travel time (minutes)

0–30 9.88

Occupation

Government official 1.23 30–60 12.35
Company staff 37.65 60–90 20.37

Student 4.94 90+ 57.41
Freelancer 8.64 Transfer One or more transfer 43.21
Others 47.53 None transfer 56.79
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from most previous studies, linking weather variables, such
as temperature, rainfall, and wind speed with travel choices.
To achieve it, three main types of effects are considered in
our model. .e first one is the direct impact of weather on
the accessibility of stations, mainly affected by walking time
to/from stations or between transfer stations. .e second
one is the indirect impact of weather, mainly affected by the
degradation of service performance, such as variations of
waiting time, in-vehicle travel time, and crowdedness. .e
third one is the travel cost; travel fare varies with different
transport modes and route choices. Besides, individual at-
tributes, for example, age, gender, income, and travel pur-
pose, may differ in sensitivity to the three effects. Travel
purpose is set as commuting in this study.

Overall, the details of the decision variables are as
follows:

(a) Crowdedness (CD) refers to the crowding level in
terms of transit passenger’s feeling (4 levels: 0, 0.3,
0.6, and 0.9)

(b) Walking time (WT) refers to the time spent by the
transit passenger to walk from the departure point to
the transit station

(c) Transfer times (TT) refers to the times of a passenger
moving from one vehicle to another, which is fixed
in one alternative

(d) Waiting time (OWT) refers to the time spent for the
arrival of the vehicle

(e) In-vehicle travel time (IT) refers to the time from
boarding to alighting

(f) Travel fare (TF) refers to the fare paid for alternatives
(g) Monthly income (MI) refers to the scaled parameter

which reflects the ability to pay (4 levels, 0, 1, 2, and
3)

(h) Gender (GE) refers to the gender of the commuter
(0, male; 1, female)

(i) Age (AG) refers to the age group the commuter
belongs to (6 levels, 0, 1, 2, 3, 4, and 5)

Among these variables in various scenarios, MI is
fixed for a specific commuter, and TT is fixed for a specific
alternative. Travel time, including WT, OWT, and IT,
varies with scenarios and alternatives. Fare in A1 to A4
(public transportation alternatives) is fixed, while fare in
A5 (taxi alternative) varies according to scenarios. CD is
an uncertain variable related to the supply and demand of
transit service; for taxi mode, it usually can be treated as 0.
A1 to A4 belong to public transportation nest (nest 1)
which have low fare cost, A5 is taxi nest (nest 2) with high
fare cost, and A6 which stops traveling is in cancel nest
(nest 3). Suppose that the choice set includes j alternatives
(j � 1, 2, . . ., 6) belonging to nest i (i � 1, 2, 3) and the
utility that individual n (n � 1, 2, . . ., N) gains from al-
ternative j is formulated as

U
k
j,n � αj + βjX

k
n + εjn, (1)

where Uk
j,n is the utility of individual n for choosing alter-

native j in scenario k, Xk
n is the vector of observable attributes

of individual n in scenario k, βj is the coefficient associated
with Xk

n for alternative j, αj is the intercept of utility function
of alternative j, and εjn is the random error term.

.e probability formulation of the NLmodel (a two-level
NL model) can be expressed as follows:

P
k
j,n � P

k
i,n · P

k
j|i,n,

P
k
j|i,n �

exp U
k
j,n/λi 

j′∈Si
expU

k
j′,n/λi

,

V
k
i,n � In 

j′∈Si

exp U
k
j′ ∈ Si

/λi ⎛⎜⎝ ⎞⎟⎠,

P
k
i,n �

exp λiV
k
i,n 

i′exp λi′V
k
i′ ,n 

,

(2)

where Pk
j,n is the probability that individual n chooses al-

ternative j in a scenario k, Pk
i,n is the probability that indi-

vidual n chooses nest i in a scenario k, Pk
j|i,n is the probability

that individual n chooses alternative j if nest i is chosen, Si is
the set of all alternatives included in nest i in a scenario k,
Vk

i,n is the log sum variable of nest j in scenario k, and λi is the
dissimilarity parameter for nest i.

4. Results Analysis

In this section, to better understand the behavior changes of
transit commuters in adverse weather, we further analyze the
statistical results, estimated parameters, and sensitivity
based on the choice model and collected data in Section 3.

4.1. Statistical Results. According to Table 3, there are three
nests in alternatives: Public transportation, Taxi, and Cancel.
From the SP survey in designed scenarios, one may expect
that the proportion of public transportation mode decreases
sharply from S1 to S3 while choosing probabilities of taxi
and cancel increase significantly. It is obvious that storm
weather has a huge effect on the travel choice of commuters,
and overall, with walking time, waiting time, and in-vehicle
time increasing, the willingness to choose public trans-
portation will diminish. Specifically, the probability of DB
and B+B modes in S1–S3 has fallen sharply, while in-
creasing from S1 to S2 in M mode and S2 to S3 in B +M
mode occurred. It suggests that metro service is less affected
and considered as a good substitution for bus service in the
storm, which is consistent with previous studies [36]. Even if
taxi fare exceeds 20 times of bus fare in S3, the number of
people who choose to commute by public transport was
almost the same as people choosing taxi, which shows that
the travel fare is not decisive for transit commuters in the
storm. Meanwhile, over one-third of commuters decide to
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cancel trips and be absent fromwork which may have a great
impact on travel demand and bring huge losses to society.

4.2.EstimatedParameters. .enested logitmodel was used to
test the effects of walking time, waiting time, in-vehicle travel
time, crowdedness, and income on commute choices of transit
passengers in the storm. Walking time (WT), waiting time
(OWT), in-vehicle travel time (IT), fare (TF), and income (MI)
were kept in the final model. .ough slight impacts of
crowdedness (CD), gender (GE), and age (AG) existed in tests,
they are not significant at a 95% confidence level. Adding these
variables will lead to a rise of R-square but the decline of AIC,
BIC, and adjusted R-square. Further, in addition, some in-
teraction items, such as MI ∗ WT, MI ∗ OWT, MI ∗ IT, and
MI ∗ TF, were also tested, but none was significant even at
90% confidence level. We emphasized that the value of time
and cost are treated as the same for a certain individual; the
coefficients of the time and cost variables were set as generic in
our model. .e weights and significances of decision variables
and performance of the final model are shown in Table 4. Next,
we would like to have a detailed analysis of that.

4.2.1. Intercept. Initially, we set different intercepts for all
alternatives (the cancel nest as a fixed item is 0). However, we
found that alternatives in public transportation nest
(A1–A4) have similar estimated values of the intercept.
According to our tests, a universal intercept for alternatives
in public transportation nest, which is adopted in the final
model, can improve the AIC and BIC but will not signifi-
cantly reduce the R-square. A generic intercept for public
transportation nest can improve the AIC and BIC but not
decrease the R-square obviously. It shows that transit
commuters have no obvious preference difference in al-
ternatives in public transportations nest.

4.2.2. Transfer. .e coefficient of transfer for public trans-
portation nest is −1.88; that means the transfer largely re-
duces the choice probability for alternatives. In taxi and
cancel nests, no transfer behavior is considered in the travel
process. We suggest that usually multitransfer travel plans
are not attractive for commuters, and even in an emergency,
transit agency should avoid providing passengers plans more
than one transfer.

4.2.3. Income. .e coefficients of income for A1, A3, and A4
are negative, whereas for A2, A5, and A6 are positive. It is
reasonable that the high-income group has a preference for
A5 and A6. If one chooses taxi (A5), he/she needs to pay
much more on travel fare, and if one chooses to cancel trip
(A6), he/she needs to bear economic loss due to the absence
fromwork. For A2 in our case, the passenger has the shortest
walking distance. .erefore, commuters with higher income
may be more concerned with the performance of walking
time. Overall, it seems that high-income individuals may
care about comfort issues more than economic issues and
travel time.

4.2.4. Waiting Time and In-Vehicle Time. .e coefficients of
waiting time and in-vehicle time are both negative, which
shows that longer travel time will decrease the choice
probability for alternatives. From estimated parameters, in
this case, it seems that in-vehicle time has a greater influence
than waiting time, which may be a little different from
normal weather. It can be explained that, as in storm
weather, wetted travelers’ crowd in vehicles may feel more
uncomfortable than individuals waiting at the station.

4.2.5. Walking Time. Compared with a coefficient of waiting
time (−0.059) and in-vehicle time (−0.042), the coefficient
value of walking time (−0.174) is 3 to 4 times larger, which
shows the huge influence of walking time on travel choice in
storm. It seems that walking difficulty due to the rain and
waterlogging significantly decreases the travel willingness.
When walking time exceeds personal tolerance, passengers
have to change travel options. It is the decisive factor of
commuting in the storm weather.

4.2.6. Fare. .e coefficient of fare is positive; it seems to be
not reasonable since usually higher cost means less attrac-
tiveness to traveler. However, our designed scenario is highly
based on real condition; transit fare is constant in different
scenarios, while taxi fare is based on travel time and distance
which is highly related to storm and road condition. When
the traffic condition and weather get worse, the taxi costs
more, and to reduce the impact of the storm, taxi, in turn,
has a higher attraction. For taxi mode, traffic gets worse, and
fare goes higher. When the negative impacts exceed the
tolerance, commuter becomes more eager to guarantee
commuting even at a higher cost.

4.2.7. Crowdedness. Unexpectedly, there is no obvious effect
of crowdedness on all passengers. One possible explanation
is that transit commuters in a metropolis, like Shanghai, are
used to the crowdedness environment in bus or metro in
daily commuting. Compared with normal days, the obvious
changes, such as heavy rain, road waterlogging, bus delay,
longer walking, and waiting time, are more likely to be
concerned in the storm. .erefore, crowdedness is not the
key factor affecting commuting in storm weather.

Table 3: Selection of transit commuters in the storm.

Scenarios

Alternatives
Public transportation Taxi Cancel

DB
(%)

B+B
(%) M (%) B +M

(%) Tx (%) CT (%)

S1 22.53 31.02 19.29 9.26 11.42 6.4882.10

S2 14.66 16.20 23.92 6.17 22.38 16.6760.96

S3 1.23 4.94 14.97 9.88 30.86 38.1231.02
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4.3. Sensitivity Analysis

4.3.1. Definition of Sensitivity. In the NL model, the esti-
mated coefficients, which are the odds ratio of the specific
travel mode to the reference level, cannot reflect the
overall impact of a particular variable directly since it also
depends on the magnitudes of all other variables.
.erefore, a “strict impact” for a given variable cannot be
determined due to the diversity of combinations with
other variables. .e objective is to anticipate the influence
of value changes of variables on the choice of certain
individual and subsequently on the share of alternatives.
In this case study, sensitivity is defined based on the
elasticity with an infinitesimal change, which is called
point elasticity. Since the variables of operation perfor-
mance are continuous, we assume that the relative change
of one variable is the same for every individual in the
population and the disaggregate direct point elasticity of
the model with respect to the variable xn

m,k is defined as

Δpn
jmk �

zp
n
jk

zx
n
m,k

· x
n
m,k,

e
n
mjk �
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jk

p
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jk
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(3)

where Emjk is the aggregate point elasticity of the model of
travel mode j in choice set A. pi,n is the estimated probability
of individual n choosing travel mode j with variables Xk

n in a
scenario k. A is the set containing all relevant samples. fj(·)

is the probability mass function for evaluating pi,n, which is
obtained from the estimated NL model. c is the estimated
coefficients from the NL.

4.3.2. Sensitivity Analysis of Single Variable. Table 5 reports
the sensitivity for each variable according to the estimated
NL model. .e numbers in the tables present the per-
centage change in the probability of an alternative with
respect to the changes in one variable in a certain situation.
As shown in Table 5, red values indicate an increase in the
probability, whereas blue values indicate the opposite. Five
variables, for example, transfer times, walking time, waiting
time, in-vehicle time, and fare, indicate the performance of
transport operation. In storm weather with road water-
logging, the quantitative values of indicators can directly
reflect the bus service quality at that time and indirectly
reflect the severity level of impact by weather. .e sensi-
tivity analysis results were interpreted from the mode share
shift responding to single variable change.

4.3.3. Walking Time. In our case, we assume that passengers
can be taken to their destination by taxi without walking.
.erefore, WT5 is set as 0, and sensitivity is also estimated as
0 here. For WT1 to WT4, with walking time of certain al-
ternative getting longer, the probabilities of this alternative
are expected to decrease while the probabilities of other
alternatives all increase. Specifically, in all scenarios, WT3
has the largest impacts (0.7 to 0.9) on A5 and A6, which
prove the key influence of walking time to metro station.

Table 4: Estimation results.

Explanatory variables
Alternatives

Public transportation nest Taxi nest Cancel nest
Direct Bus Bus + Bus Metro Bus +Metro Taxi Cancel Trip

Intercept 6.48∗ 1.31∗ 0 (fixed)
Transfer −1.88∗ — —
Dissimilarity of nest 0.787∗ 1 (fixed) 1 (fixed)
Income −0.477∗ 1.06∗ −0.501∗ −0.256 0.306∗ 0.58∗
In-vehicle travel time −0.0587∗ —
Walking time −0.174∗ —
Waiting time −0.0418∗∗ —
Fare 0.028∗ —
Sample size 1944
Number of parameters 14
Final log-likelihood −3134
Likelihood ratio 698
R-square 0.201
Adjusted R-square 0.196
AIC 6296
BIC 6374
∗∗Significant at 0.01 level; ∗significant at 0.05 level.
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Besides, in S1, when WT1 increased by 1%, the selection
probability of A5 and A6 increased by 0.417% and 0.410%,
respectively. It also shows that, in slight storm, walking time
to bus stop cannot be ignored. Overall, to reduce ridership
decline of public transportation, WT3 in all scenarios and
WT1 in S1 are of significant importance.

4.3.4. Waiting Time. Similar to walking time, the probability
of one alternative declines as its waiting time becomes
longer. However, compared with walking time, the impact
would be much less. Specifically, for a 1% increase in waiting
time (OWT), the probabilities of A5 and A6 are expected to
increase by 0.197% and 0.39% at most, while for 1% increase
in walking time (WT), the increase can reach 0.97% and
0.95%, respectively. OWT1 in S1, OWT2 in S1 and S2, and
OWT5 in S3 which obviously affect the Cancel Trip should
be of concern.

4.3.5. In-Vehicle Time. Similar to walking time and waiting
time, the rise of in-vehicle time decreases the choice
probability of the respective alternative and increases that of
CT. From the results in Table 5, the choice probability of CT
is sensitive to changes of IT1 and IT2 in S1, IT2 and IT5 in
S2, and IT5 in S3. .ese results showed that transit com-
muters can benefit most from reducing the in-vehicle time of
A1 and A2 before the weather becomes terrific.

4.3.6. Fare. Since fare of A1∼A4 in our designed scenarios is
constant, the sensitivity for them does not make any sense.
.e fare of taxi which is related to travel distance and in-
vehicle time road reflect the severity of road waterlogging,
leading detouring, and congestion. It can be treated as a
variable combination of environment and cost. .e impacts
of fare are opposite to other variables. Specifically, a 1%
increase in taxi fares will increase the selection probability of
taxi by 1.5%, while other alternatives will decrease by nearly
0.7% in S3.

Overall, when we compared the absolute direct elastic
which measures the impact of a change of an attribute of
alternative i on the choice probability of the same alternative,
for OWT and IT, there is the same order from high to low:
A1, A2, A4, A5, and A3, while for WT, the order becomes
A3, A1, A4, A2, and A5. For bus services A1 and A2, the
performance of the waiting time and in-vehicle time is
needed to be improved. For metro service A3, the key point
changes to the walking time.

Since one of our goals is to reduce the choice of Cancel
Trip in storm weather, a comparison of Absolute Cross
Elastics to Cancel Trip (A6) is made. We found that the key
factors (value> 0.15) vary with scenarios. In S1, the main
factors with the order from high to low are WT3, WT1, IT5,
IT2, IT1, OWT5, OWT2, and OWT1, while in S2, it becomes
WT3, IT2, IT5, IT1, IT4, WT2, WT1, and OWT2, and in S3,
it changes to WT3, IT5, BF5, OWT5, IT2, IT4, and IT3. It
shows that WT3 is the most critical issue in all scenarios.
Besides, WT, IT, and OWT impacts are under balance in S1,
but when the condition gets worse, influence of IT of bus

may take the major part, and later when it becomes a terrible
storm, attributes of taxi IT5, BF5, and OWT5 have a great
influence on Cancel Trip.

In summary, increase of attributes of one alternative,
such as walking time, waiting time, and in-vehicle time,
has negative impacts on probability choice but positive
impacts on other alternatives, while fare is the opposite.
Walking time is the key factor for all alternatives. In-
vehicle time is similar to waiting time to some extent,
with a larger value of sensitivity. When the weather is not
so bad, reducing time in all aspects can take effects. When
it gets worse, reducing in-vehicle time may still work. If
the weather becomes terrible, metro and taxi rather than
bus are the preferred choices for most commuters. Re-
ducing the walking time to metro or guaranteeing high-
equality taxi service may be feasible.

5. Simulation

In this section, based on information of the case and data
analysis, we propose possible plans for transit operators
accordingly and simulate the ridership share dynamics in
different scenarios. According to the simulation results, we
recommend suitable measures in this case for transit op-
erators in different conditions.

5.1. Simulation Method. Once the choice model has been
estimated, we hope to use it to simulate the response of
transit commuters to emergency measures and evaluate the
performance of schemes in promoting transit ridership. .e
method of simulation is as follows.

Consider a choice model pn
jk providing the probability

that individual n chooses alternative j within the choice set
Cn in Scenario k, given the explanatory variables Xk

n. To
calculate the ridership share in the population of size N, a
sample of Ns individuals is drawn. As it is rarely possible to
draw from the population with equal sampling probability, it
is assumed that stratified sampling has been used and that
each individual in the sample is associated with a weight wn

correcting for sampling biases. To achieve it, wn can be
presented by a ratio of proportion in sample and target
population for personal attributes of individual n. In this
case, we use monthly income distribution in the population
derived from official demographic information in Shanghai
Statistical Yearbook to correct bias. If MIn � c for individual
n, wn can be estimated as

wn �
ρc
′

ρc

,

MIn � c,

(4)

where ρc
′ and ρc are proportion target population and in

sample, respectively. In this case, ρc
′ came from the official

demographic information in Shanghai Statistical Yearbook
2016.

.e weights are normalized such that
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Ns � 

Ns

n�1
Wn. (5)

.e normalized weight of individual n, Wn, is formu-
lated as

Wn �
wn Ns


N
n′�1 wn′ 

. (6)

An estimator of the ridership share of alternative j in the
population Rk

j is

R
k
j � 

Ns

n�1
WnP

k
n j|X

k
n . (7)

5.2. Simulation of Possible Plans. According to the above
analysis, it was found that increase in walking time to metro
station, waiting time at bus stop, and in-vehicle time are the
main obstacles for transit commuters in storm weather. To
cope with the impacts of the storm on transit service, three
feasible emergencies are proposed:

P1: shuttle bus, connecting bus stations and metro
station near the residential area
P2: information announcement, such as real-time ar-
rival and transfer information for bus service
P3: route adjustment, slightly adjusting the bus routine
to avoid serious section with waterlogging and
congestion

Parameters after taking emergence plan are different
from original plan. .erefore, reasonable setting of all al-
ternatives is shown in Table 6 and explained as follows:

P1. Due to shuttle bus between bus stops and metro
station, there exist new choice A7 for commuters which
is taking shuttle bus and then transferring by metro,
noted as S +M. Compared to A3, passenger who
chooses A7 must transfer one time which increases IT
and OWT to gain shorter WT. Compared to the
existing transfer plan A4, since shuttle only services for
connecting nearby bus stops and metro station and can
avoid road waterlogging, choosing A7 can have shorter
OWT and IT and similar WT for commuters. In
emergence plan P1, passengers have alternatives A1 to
A7.
P2. If real-time information for bus service is available
for passengers, according to previous studies, the ex-
pected waiting time can decrease up to 30% [37].
.erefore, OWT in A1, A2, and A4 is settled as 70% of
values after the information announcement is taken.
P3. Temporarily change the route of bus lines to avoid
road sections with serious road waterlogging section,
but lengthen bus line slightly. In this case, according to
investigation and data analysis, nearly 50% of delay
occurs in road waterlogging sections; we may expect
that adjust bus line can reduce 50% delay. .erefore, IT
of A1 and A2 will have a significant decline in P3.

Besides, we combined the changes due to different plans
together to form four combined plans: P1 + P2, P1 + P3,
P2 + P3, and P1 +P2 +P3. .erefore, in the next, 7 plans are
simulated and compared in each scenario.

5.3. Simulation Results Analysis. .e detailed simulation
results of ridership share of alternatives with adoption of
plans are shown in Table 7. .e aggregation of passengers
who choose the main mode as bus (DB, B +B), metro (M,
B +M, S +M), and public transportation, is listed as Bus,
Metro, and PT, respectively. Value of Bus/Metro reflects the
ridership ratio of Bus to Metro in different situations.
Further, Table 8 exhibits the ridership share changes to
normal weather and the benefits of strategies with a com-
bination of plans. Red and green indicate positive values and
negative values, respectively.

Generally, emergency plans will increase the ridership of
public transportation and decrease that of taxi and cancel. In
single plan strategy (1-P), P1 provides S +M mode which
decreases walking time compared to M and waiting time
compared to B +M, while P2 aims to decrease bus waiting
time and P3 tries to reduce in-vehicle time. Obviously, P1
may increase the attraction of Metro, and P2 and P3 can
improve bus ridership, resulting in low Bus/Metro in P1.
Besides, we note that, with the deterioration of weather,
more benefits can be gained for one certain plan, but the
effect varies on plans. Considering a single plan, P1, P2, and
P3 perform best in S3, S1, and S2, respectively. Analysis
indicates that P2 has a general effect on all scenarios, P1 and
P3 are more suitable in a worse situation in the storm.

In 2-Plan strategy, P2 + P3 which is concentrated in bus
service performs better than the balanced solutions P1 + P2
and P1+ P3 in all scenarios.Wemust emphasize that P2 + P3
can greatly increase bus ridership in storm weather, but the
cost of reducing metro passengers needs to be carefully
considered in the final decision. When it comes to multiplan
strategy, as one may expect, the more the plans adopt, the
better the performance is. 3-P strategy adopting all three
plans is more effective than 2-P strategy, which is also better
than 1-P strategy. However, with the adoption of more plans,
the margin benefit that brought by one more plan declines.
Taking S3 as an example, 1-P strategy can bring 11.42%
ridership share rise compared to no plan taking; the margin
benefit of 1-P is 11.42%. If one more plan is adopted, in 2-P
strategy the rise can reach 19.44%which is much higher than
1-P, but the margin benefit of 2-P decreases to 8.02%. In 3-P,
the value further declines to 4.79%. .erefore, considering
the margin benefit of emergency plans, we recommend 1-P
strategy P2 or original plan P0 in scenario S1, 2-P strategy
P2 + P3 in scenario S2, and 3P strategy P1 + P2+ P3 in
scenario S3.

Overall, all emergency plans are effective in increasing
public transportation ridership and decreasing cancel choice
probability. In scenario S1, the impact of the light storm on
public transportation is not serious. .erefore, taking no
measure or just publishing bus arrival information can be
acceptable in this condition. When weather gets worse,
P2 + P3 can guarantee bus service and maintain bus
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ridership share in commuting in S2. If things get worse, in
S3, one way is trying our best to guarantee both metro and
bus service, adopting all three plans at huge cost and difficult
to carry out in practice. Besides, since the metro service is
less affected than bus service in the storm, giving up themain

bus service and providing shuttle buses to connect resi-
dential areas and metro stations to guarantee the accessi-
bility of metro could be another possible choice in S3.
However, it has some limitations, only suitable for areas with
highly developed metro networks.

Table 6: Parameters of emergence plans.

Table 7: Simulation results in different scenarios.

Scenario Plan
Public transportation Taxi Cancel

DB (%) B +B (%) Bus (%) M (%) B+M (%) S +M (%) Metro (%) Bus/
Metro PT (%) TX (%) CT (%)

S1

P0 24.12 28.82 52.94 21.02 7.28 — 28.29 1.871 81.24 12.42 6.34
P1 21.82 26.26 48.08 19.01 6.59 8.88 34.48 1.394 82.56 11.55 5.90
P2 27.74 30.55 58.30 17.59 7.73 — 25.32 2.303 83.61 10.85 5.54
P3 26.15 31.09 57.24 18.92 6.54 — 25.46 2.248 82.70 11.45 5.84

P1 + P2 25.73 28.57 54.30 16.31 7.17 6.69 30.18 1.799 84.48 8.95 4.57
P1 + P3 26.15 29.01 55.16 16.58 5.74 6.81 29.13 1.894 84.29 9.11 4.66
P2 + P3 29.78 32.66 62.44 15.68 6.88 — 22.57 2.767 85.01 8.96 4.57

P1 + P2 +P3 27.84 30.77 58.60 14.66 6.44 6.02 27.11 2.161 85.72 8.23 4.20

S2

P0 10.70 18.58 29.28 22.39 11.03 — 33.43 0.876 62.70 20.89 16.41
P1 8.64 15.20 23.84 18.08 8.92 16.97 43.97 0.542 67.81 18.02 14.18
P2 14.17 22.59 36.75 18.41 12.45 — 30.86 1.191 67.61 18.14 14.24
P3 17.59 25.10 42.69 17.51 8.61 — 26.12 1.634 68.81 17.47 13.71

P1 + P2 12.08 19.59 31.67 15.70 10.64 12.94 39.28 0.806 70.95 16.26 12.79
P1 + P3 12.48 20.20 32.69 16.22 8.00 13.37 37.59 0.870 70.27 16.64 13.09
P2 + P3 22.11 29.01 51.12 13.66 9.23 — 22.89 2.233 74.01 14.56 11.42

P1 + P2 +P3 19.63 26.11 45.74 12.13 8.21 10.00 30.33 1.508 76.07 13.40 10.53

S3

P0 2.94 5.42 8.36 14.91 7.14 — 22.05 0.379 30.42 31.07 38.51
P1 2.14 4.00 6.14 10.82 5.19 19.69 35.70 0.172 41.84 25.94 32.22
P2 5.13 8.69 13.82 12.72 9.81 — 22.53 0.614 36.35 28.42 35.23
P3 8.32 15.03 23.35 11.49 5.49 — 16.98 1.376 40.33 26.66 33.01

P1 + P2 4.02 6.98 11.01 9.97 7.71 15.95 33.64 0.327 44.64 24.69 30.67
P1 + P3 4.18 7.24 11.42 10.36 4.97 16.58 31.91 0.358 43.34 25.27 31.39
P2 + P3 12.94 21.46 34.40 8.74 6.72 — 15.46 2.226 49.86 22.41 27.73

P1 + P2 +P3 11.00 18.62 29.62 7.43 5.72 11.88 25.03 1.183 54.65 20.25 25.11
P0 is the plan without taking any emergency plans.
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6. Discussion and Conclusions

Our paper aims to describe travel behavior dynamics of
transit commuters in the storm and provide possible
emergency plans for transit operator/agency to guarantee
transit trips of commuters. First of all, this study conducted
RP and SP surveys on the impact of storms on travel be-
havior, focusing on the relationship between travel choice
changes of transit commuters and transit service perfor-
mance. To achieve it, we established a choice model by
considering gender, age, income, walking time, waiting time,
in-vehicle time, crowdedness, transfer, and fare. From re-
sults’ analysis, it shows that, in storm weather, walking time,
waiting time, and in-vehicle time have obvious negative
impacts on the choice probability of alternatives; high-income
commuters prefer Bus +Bus, Taxi, and Cancel Trip; age,
gender, and crowdedness have limited impacts on storm
weather. .rough sensitivity analysis, we further found that,
in a light storm, reducing travel time, including walking time,
waiting time, in-vehicle time, can have effects. When it gets
worse, the decline of in-vehicle time may be more sensitive,
and therefore Metro becomes the most popular choice. When
the weather is terrible, walking becomes more difficult, and
thus most commuters give up Metro and choose Taxi or
Cancel Trip. Accordingly, three possible emergency plans,
information announcement, route adjustment, and shuttle
bus to metro station, are simulated in different scenarios.
.e simulation results can provide references for public
transit agencies by suggesting important implications for
future public transport development. A strategic proposal of
transit agency is to work out detailed emergency plans in
conjunction with meteorological departments, road man-
agement bureaus, telecommunications companies, and transit

operators, including information release, operation adjust-
ment, and traffic management. Specifically, real-time infor-
mation should be provided, including weather condition, the
emergency state and duration, temporary route plan and
timetable, and estimated delay or arrival time at stops, to
guide passengers to adjust their travel plans under all sce-
narios in the storm. Further, according to weather data from
the meteorological department and risk analysis of road
congestion by road management department, bus operators
can adjust bus routes in time to avoid high-risk sections.
When weather getting worse and maintenance of normal bus
operation becomes difficult, metro system which is less af-
fected by heavy storms can be a reliable substitute for bus
service..us, it is necessary to put forward a temporary feeder
bus scheme, including temporary route, bus stops, and
schedule, to bridge the residential areas and metro stations.

Despite these promising implications, there are still some
limitations that need to be addressed. Firstly, due to lack of
enough data to assess time reliability of alternatives in storm,
this study does not directly consider the reliability which may
play important roles in making travel decisions. Secondly, to
narrow the scope of the study, recreational travel which is more
likely to be affected than commuter travel is out of consideration
in this study. .irdly, to reduce the complexity of methodology
and focus on transit service, private car, which has some dif-
ferences from the alternative Taxi, was not listed as an alter-
native for transit commuters..us, more issues should be taken
into account to provide a refined profile of how adverse weather
affects travel choice. Finally, this study exhibits the adaptation of
transit commuter to the storm and provides possible coun-
termeasures for transit agency by the case study in a specific
small zone. A general application would require further veri-
fication inmore areas. Further research should be undertaken to

Table 8: Performances of plans in ridership compared with original plan.
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investigate the spatiotemporal heterogeneity of the influence by
adverseweather, simulate transit ridership dynamics in different
areas over time, and evaluate the performance of feasible
emergency plans.

Data Availability

.e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

.e authors declare that they have no conflicts of interest.

Authors’ Contributions

Teng, Bo, and Zhang contributed to study conception and
design. Teng and Bo contributed to data collection. Zhang
and Bo contributed to methodology, analysis and inter-
pretation of results, and draft manuscript preparation. All
authors reviewed the results and approved the final version
of the manuscript.

Acknowledgments

.is work was supported by the Ministry of Transport of the
People’s Republic of China Science and Technology Re-
search Foundation for Transportation (no. 2015318221020).

References

[1] M. Hofmann and M. O’Mahony, “.e impact of adverse
Weather Conditions on Urban Bus Performance measures,”
in Proceedings of the 2005 IEEE Intelligent Transportation
Systems, pp. 84–89, Vienna, Austria, 2005.

[2] C. B. Field, V. R. Barros, and D. J. Dokken, IPCC, 2014:
Climate Change 2014: Impacts, Adaptation, and Vulnerability.
Publication Contribution of Working Group II to the Fifth
Assessment Report of the Intergovernmental Panel on Climate
Change, 2014.

[3] M. Cools, E. Moons, L. Creemers, and G. Wets, “Changes in
travel behavior in response to weather conditions,” Trans-
portation Research Record: Journal of the Transportation Re-
search Board, vol. 2157, no. 1, pp. 22–28, 2010.

[4] E. Wets, B. vanWee, and K. Maat, “Commuting by bicycle: an
overview of the literature,” Transport Reviews, vol. 30, no. 1,
pp. 59–96, 2010.

[5] A. J. Khattak and A. De Palma, “.e impact of adverse
weather conditions on the propensity to change travel deci-
sions: a survey of Brussels commuters,” Transportation Re-
search Part A: Policy and Practice, vol. 31, no. 3, pp. 181–203,
1997.

[6] M. J. Koetse and P. Rietveld, “.e impact of climate change
and weather on transport: an overview of empirical findings,”
Transportation Research Part D: Transport and Environment,
vol. 14, no. 3, pp. 205–221, 2009.

[7] Z. Guo, N. H. M. Wilson, and A. Rahbee, “Impact of weather
on transit ridership in Chicago, Illinois,” Transportation
Research Record: Journal of the Transportation Research
Board, vol. 2034, no. 1, pp. 3–10, 2007.

[8] A. Singhal, C. Kamga, and A. Yazici, “Impact of weather on
urban transit ridership,” Transportation Research Part A:
Policy and Practice, vol. 69, pp. 379–391, 2014.

[9] S. Tao, J. Corcoran, F. Rowe, and M. Hickman, “To travel or
not to travel: ʽWeather’ is the question. Modelling the effect of
local weather conditions on bus ridership,” Transportation
Research Part C: Emerging Technologies, vol. 86, pp. 147–167,
2018.
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