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Railway transport becomes a more popular transportation in many countries due to its large transport capacity, low energy
consumption, and benign environment.,e passenger train service planning is the key of the rail operations system to balance the
transport service and the passenger demand. In this paper, we propose a mixed binary linear programming formulation for the
passenger train service planning to optimize the train route, frequency, stop schedule, and passenger assignment simultaneously.
In addition, we analyze the computational complexities of the model and develop a Benders decomposition algorithm with valid
inequalities to solve this problem. Finally, our model and algorithm are tested on a real-world instance of the Beijing-Shanghai
high-speed railway line. ,e computational results show that our approach can solve these problems within reasonable solution
time and small optimality gaps (less than 2.5%).

1. Introduction

Railway transport plays an important role for medium-long-
distance transportation in countries with a vast territory.
,is is due to its large transport capacity, low energy con-
sumption, and benign environment. For instance, China has
built the largest high-speed rail (HSR) network in the world
to solve many problems such as capacity restriction and
congestion and promote its economic development [1].

Due to the complexity of the rail operations system, a
hierarchically structured planning process is usually applied
to generate and maintain passenger train schedules. It starts
with demand analysis, which determines the passenger
demand from origin station to destination station (passenger
OD) for the railway transport system, usually followed by the
passenger train service planning (PTSP), which determines
the train route and corresponding frequency and stop
schedule according to the passenger OD. ,en operational
planners allocate time slots to trains for each departure and
arrival event at stations on their route, which is named as
timetable. At last, planning of rolling stock and crew
scheduling are proposed. In this paper, we focus on the

PTSP, which is one of the most critical operational issues to
balance the transport service and the passenger demand.

Railway transportation had been the primary choice of
people due to its large transport capacity and cheap tickets.
Figure 1 shows that, during a long time, more than half of the
passenger volume had been completed by railroad in China
[2]. However, the railway transportation had provided the
low transport service level like low service frequency, low
travel speed (53.3 km/h), serious overcrowding, and bad
traveling environment for passengers on account of the
limitation of the technical condition.

Nowadays, China has the longest high-speed rail (net-
work) in the world, which is larger than the combined HSR
networks of 13 European countries (7351 km). Compared
with the existing lines, the HSR line is the only passenger-
dedicated line that provides the high-quality transport
service for passengers including high service frequency,
faster travel speed (250 ∼ 350 km/h), and comfortable
traveling environment. Meanwhile, with the raise of eco-
nomical level and the living level, Chinese people have the
ability to select the multiple transportation modes, and the
railway transport enterprises are facing fierce competition
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from other transportation modes. As shown in Figure 2,
both road transportation and air transportation grow rapidly
during the last ten years, and the road passenger volume has
exceeded the railway passenger turnover [2]. Nevertheless,
30% of the passenger volume has still been completed by
railroad.

As the marketization of railway transportation and the
railway passenger turnover reduces year by year, the railway
transport enterprises have to enhance their competitiveness
by a good rail operations system. ,e PTSP is the primary
operational issue in optimizing the rail operations system.
However, the PTSP has always been determined manually
based on experience by now, and it needs a systematic,
analyzing approach instead of experience.

Compared with the medium-scale HSR lines in Japan
and Europe, the HSR lines in China have the long distance
(more than 1000 km) between the terminal stations op-
erating a number of long-distance trains. ,e railway
transport enterprises have to provide many intermediate
train stops to meet the passengers’ demand. However, the
trains with more stops for a long-distance travel can
reduce the travel speed and increase the travel time. As a
result, the train stop-schedule plan, which is a key part of
the PTSP for long-distance HSR lines, becomes too
complicated to be pregiven like some medium-scale HSR
lines do.

In this paper, we describe a mathematical programming
for the PTSP and a solution approach based on the Benders
decomposition. Given the daily passenger demand from
origin station to destination station (passenger OD) as well
as the railway resources, the objective function is to mini-
mize the operating cost of the rail company as well as the
total travel time of passengers, and constraints are designed
to meet the daily passenger demand and railway resource
constraints. ,is model determines the routes, frequencies,
and stop schedule of the trains. We can summarize the main
contributions of this paper as follows.

Firstly, we proposed a mixed-integer linear program-
ming (MILP) model to optimize the train route, frequency,
stop schedule, and passenger assignment simultaneously.

Secondly, we developed a Benders decomposition with
valid inequalitiesto solve the PTSP. To the best of our

knowledge, there are no other studies to solve the PTSP by
the Benders decomposition.

,irdly, the proposed approach is empirically applied to
Beijing-Shanghai HSR line, which is one of the longest and
busiest high-speed railways in China. Previous studies on
this topic need to determine the alternative stopping stations
for the train or the number of stop schedules in advance to
limit the number of stop schedules [1, 3–5]. However, the
long-distance HSR always operates the long-distance trains
with low frequencies and sufficiently variable stopping
patterns to serve as many passengers as possible; imposing
restrictions on stop schedule may get a suboptimal solution
[1].

,e rest of this article is organized as follows. Section 2
gives the literature review related to the PTSP. In Section 3,
the problem description is given. ,e mathematical for-
mulation is given in Section 4 and the Benders decompo-
sition is given in Section 5. Furthermore, Section 6 presents
the empirical studies. ,e final section presents the con-
clusions and future research.

2. Literature Review

Over the last few decades, many mathematical models and
solution algorithms studies have been proposed for the
PTSP, which can be categorized as the following two types
[6].

2.1. Optimizing the Train Routes and Service Frequencies with
Pregiven Stops for theHSRNetwork. Earlier studies utilized a
system split method to decompose both trains and stations
into several levels. Consequently, the stop schedule of the
train can be determined by assuming that classified trains
stop at stations of the same and higher level [7–12]. ,en the
PTSP can be expressed as an integer programming to op-
timize the train frequencies with pregiven stops, and a
common approach like branch-and-cut or branch-and-
bound can be used to solve this problem. However, the
system split method has two shortcomings: firstly, it gives
passengers’ traveling routes in advance instead of allowing
the passenger OD to choose their routes freely; secondly, it
does not optimize the stop schedule of the train . ,ereafter,
many studies extended the system split method by allowing
passengers to select their routes freely. Guan et al. [13]
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presented a linear binary integer program for simultaneous
optimization of transit line configuration and passenger line
assignment in a mass transit system with all-stop trains.
Similarly, many studies proposed a MILP model based on
multicommodity flow model and column generation ap-
proach for the PTSP in a city public transport network with
all-stop buses [14–16].

2.2. Optimizing Train Routes, Service Frequencies, and Stops
Simultaneously for the HSR Network. Given the number of
stop schedules, Chang et al. [17] developed a multiobjective
programming model involving large positive coefficients for
the HSR line to determine the best-compromise train service
planning including the train stop-schedule plan, service
frequency, and fleet size without suggesting an algorithm.
Consequently, some research extended the work of Chang
et al. [17] and developed efficient solution algorithms for the
PTSP. Reference [4] developed an implicit enumeration
algorithm integrating the implicit enumeration, Lagrangian
relaxation, and genetic algorithm, which can be viewed as a
tool to accelerate the solution without splitting the original
problem and improving its quality. Park et al. [5] presented
the standard column generation algorithm to split the
original problem. Nevertheless, the standard column gen-
eration cannot completely solve the PTSP, since its pricing
subproblem is still open. Schmid and Walteros [18, 19]
proposed the multicommodity flow model and meta-
heuristic methods for the bus rapid transit route design
problem including the bus stop-schedule plan, service fre-
quency, and fleet size. ,e metaheuristic methods based on
genetic algorithm or hybrid large neighborhood search al-
gorithm can solve some large-scale combinatorial optimi-
zation problems in reasonable run times. Nevertheless, the
search strategy of the metaheuristic methods based on the
probability might deteriorate the quality of the solution.
Huiling et al. [1] described the PTSP as a four-stage hier-
archical design problem with a series of heuristic algorithms
to reduce its solving difficulty in large-scale HSR network.
,ey also considered giving the optional train stop sched-
ules. Moreover, the iterative computation algorithm based
on enumeration for the stop schedule generation might not
obtain the optimal solution in reasonable run times.

In the aforementioned literature, we find that most
studies focus on the heuristic and metaheuristic algorithms
due to the complexity of the PTSP. However, they may not
guarantee the quality of the solution. ,e exact approaches
may be an alternative. Besides, recently, some studies have
obtained a good solution by using commercial software
including CPLEX, GAMS, and Gurobi, which are widely
used as a benchmark for both exact and heuristic approaches
[3, 20, 21]. ,erefore, we propose an exact approach based
on Benders decomposition and compare it with the com-
mercial software.

3. ProblemDescription andModel Formulation

3.1. Problem Description. Given the rail network consists of
route sections, daily passenger demand from original

stations to declinational stations (passenger OD), the op-
erating cost including the fixed cost per train and unit cost
per km, the velocity and dwell time for every type of trains as
well as corresponding train capacities, the capacity of rail
infrastructure, and the set of train ODs, the PTSP determines
the routes, frequencies, and stop schedule of the trains to
minimize the operating cost of the rail company as well as
the total travel time of passengers. Generally speaking, the
PTSP has two planning objectives: (a) minimizing the op-
erating cost of the railway transport enterprise and (b)
minimizing the passenger’s total travel time. Moreover, the
constraints for the PTSPmainly lie in two aspects: on the one
hand, the railway transport enterprise must provide the
trains as well as stop schedules for trains to meet the pas-
senger OD’s travel demand; on the other hand, all the trains
and stop schedules for trains must meet the capacity re-
strictions of the rail infrastructure.

3.2. /e Mathematical Formulation

3.2.1. Notations

Sets

V: set of stations, indexed by s
E: set of sections, indexed by e
L: set of trains, indexed by l
D: set of passenger ODs, indexed by (i, j) ∈ D,

i, j ∈ V
TO D: set of the train ODs, indexed by (i, j) ∈ D,

i, j ∈ V
r(f ): set of nonstop running arcs for a train l, where
(i, j) ∈ r(l) represents a travel route for a train l
between station i and station j without stopping at
any station except station i and station j. It can be
seen that the set r(f ) is equivalent to the stop schedule
of a train l.

Parameters

fixl: fix cost of train l
qod: passenger demand from the original station o to
the declinational station d
val: variable cost of train l per km
tl
ij: dwell time at station i plus nonstop travel time
between i and j of a train l
ml: maximal stop times of a train l
Capl: capacity of a train l
(i, j): nonstop arcs
disij: distance of the nonstop arc (i, j)
δij

e : arc-section incident matrix, where δij
e � 1 if the

nonstop arc (i, j) passes section e and δij
e � 0

otherwise.

Decision variables

wl: wl � 1 if train l is used; otherwise, wl � 0
xl

ij: xl
ij � 1 if train l passes the nonstop arc (i, j);

otherwise, xl
ij � 0

vodlij : number of the passenger ODs that travel nonstop
arc (i, j) by train l
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3.2.2. /e Mathematical Formulation. In general, the HSR
line has multiple train ODs, which is more difficult than one
train OD. We can transform multiple train ODs into one
train OD by constructing dummy source and sink nodes. As
shown in Figure 3, train l1 starts from v1 to v6, train l2 starts
from v2 to v5, and train l3 starts from v1 to v3. By using
dummy source node vs and sink node vt, all the trains start
from vs to vt. Note that the dummy source node vs and sink
node vt can only connect to the origin stations or destination
stations.,e number of passenger ODs and the cost between
vs(vt) and other nodes are zero. Based on the problem
description, the PTSP can be stated as follows:

minZ � 
l∈L

fixlwl + 
l∈L


(i,j)∈A

valdisijx
l
ij + 

l∈L


o,d∈V


(i,j)∈A
t
l
ijv

odl
ij .

(1)

It is subject to


j∈TO D
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l
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l
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⎧⎪⎪⎨

⎪⎪⎩
∀l ∈ L, i ∈ V,

(5)


o,d∈V

v
odl
ij ≤Caplx

l
ij, ∀l ∈ L, (i, j) ∈ A, (6)


o,d∈V

x
l
ij ≥ 1, (i, j) ∈ A, (7)


l∈L


(i,j)∈r(l)

x
l
ijδ

ij
e ≤ n, ∀e ∈ E, (8)


(i,j)∈A

x
l
ij ≤mlwl, ∀l ∈ L, (i, j) ∈ A, (9)

wl, x
l
ij ∈ 0, 1{ }, ∀l ∈ L, (i, j) ∈ A, (10)

v
odl
ij ∈ 0, 1{ }, ∀o, d ∈ V, l ∈ L, (i, j) ∈ A, (11)

where the objective function (1) minimizes the operating
costs including costs of trains to be used as well as costs of
train kilometers and the passenger travel time. Constraints
(2)–(4) ensure that a train generates a route from the origin
station vs to the destination station vt, if it is used. Con-
straints (5) and (6) are constraints to meet the passenger

OD’s travel demand, where constraint (5) indicates the flow
conservation of the passenger, and constraint (6) guar-
antees passenger flow for every nonstop running arc of a
train to be less than the capacity of the train. Constraint (7)
ensures that there is at least one nonstop arc between any
two stations; this is the strong connectivity of the transport
network for trains which can guarantee that the model
always has a solution. Although we can relax the constraint,
our exact approach may not get a solution within rea-
sonable solution time, since the solution space of the PTSP
is enlarged. Constraints (8) and (9) are constraints to meet
the capacity restrictions, where constraint (8) ensures that
the total number of trains using the segment is less than a
given number, and constraint (9) ensures that if a train is
used, the number of stops of the train is less than a given
number. Constraint (10) states the binary restriction for the
decision variables xl

ij and wl. Constraint (11) states the
nonnegative restriction for the decision variables vodlij . In
general, variables vodlij should be integers, but a single
passenger has less influence on the result of the PTSP.
,erefore, we relaxed the integrality requirements on
variables vodlij to simplify the calculation as in previous
research [14, 15, 18, 22].

3.2.3. Complexity of the PTSP. Even though the model
defined by (1)–(11) fully describes the PTSP, it is difficult to
solve. We now analyze the complexity of the PTSP as
follows.

Theorem 1. /e model defined by (1)–(11) is NP-hard.

Proof 1. Suppose that any two stations can be a train OD,
then the set L � (i, j)|(i, j) ∈ A � A, and variables wl, xl

ij,
vodlij , col, cvl, and tl

ij can be rewritten as wij, xij, vodij , coij,
cvij, and tij with the redundant variables wij. Let n � ml �

∞ and eliminate constraints (8) and (9); the resulting model
is a multicommodity capacitated network design problem,
which is a NP-hard problem [23]. ,erefore, the model
defined by (1)–(11) is NP-hard.

Assume that railway network only consists of a high-
speed rail line without branches. ,e number of binary
decision variables is equal to C2

TO D(2|V|− 2 + |L)|); besides
2|V|− 2|L||V|2C2

TO D continuous decision variables are re-
quired as well as 2|V|+1|L| + 2|V| + |V|3 + |L||V| + |E| + 2|L|

constraints. ,erefore, the number of variables and con-
straints grow exponentially with the number of stations.
,is number could be huge even for small HSP line. In
general, the set of trains is tremendous; however, the upper
bound |L| can be determined by maximal number of trains
passing any given section or the capacity of the rail in-
frastructure [4]. Hence, we set the upper bound |L| for an
input parameter in this paper. In addition, ,e PTSP is a
two-way operation, where each one-way operation is as-
sumed to be the same, and we can only consider a one-way
operation to reduce the decision variables and constraints
in half. □

4 Journal of Advanced Transportation



4. Benders Decomposition

,e model defined in (1)–(11) is a mixed-integer line pro-
gramming (MILP) including binary variable and continuous
variable. ,e Benders decomposition is an efficient method
for solving MILP problems, which can decompose the
original problem into a master problem and a subproblem
and then solves them iteratively by utilizing the solution of
one in the other. Besides, decision variables are divided into
complicating variables consisting of binary variables and
easier variables consisting of continuous variables.

4.1. Benders Subproblem. For given binary variables
w � (wl)l∈L and x � (xl

ij)l∈L,(i,j)∈A, we can state the sub-
problem by dual constraints (5) and (6) as follows:

maxZsp � − 
l∈L


(i,j)∈A

Caplx
l
ijβ

l
ij + 

o,d∈V
αodo q

od
− αodd q

od
 ,

· αodi − αodj − βl
ij ≤ t

l
ij,

· αodi , o, d, i ∈ V,

βl
ij ≥ 0, l ∈ L, (i, j) ∈ A,

(12)

where αodi and βl
ij are the dual variables associated with

constraints (5) and (6), respectively. If the subproblem is
infeasible, the PTSP is also infeasible; if the subproblem is
feasible and bound, the extreme points α � (αodo )o,d,i∈A and
β � (β

l

ij)l∈L,(i,j)∈A can be obtained and the following con-
straint called optimality cut is added to the master problem:


l∈L


o,d∈V

αodo − αodd  − 
l∈L


(i,j)∈A

Caplx
l
ijβ

l

ij ≤ σ, (13)

where σ is an auxiliary continuous variable; if the sub-
problem is unbound, then the extreme rays α and β can be
obtained and the following constraint called feasibility cut is
added to the master problem:


l∈L


o,d∈V

αodo − αodd  − 
l∈L


(i,j)∈A

Caplx
l
ij

β
l

ij ≤ 0. (14)

4.2. Benders Master Problem. Let Co and CF represent the
sets of extreme points and extreme rays, respectively, where

(α, β) ∈ Co and (α, β) ∈ CF. ,en the master problem can be
expressed as

minZMA � 
l∈L

fixlwl + 
l∈L


(i,j)∈A

valdisijx
l
ij + σ. (15)

It is subject to


l∈L


o,d∈V

αodo − αodd  − 
l∈L


(i,j)∈A

Caplx
l
ijβ

l

ij ≤ σ, ∀(α, β) ∈ CO,

(16)


l∈L


o,d∈V

αodo − αodd  − 
l∈L


(i,j)∈A

Caplx
l
ij

β
l

ij ≤ 0, (α, β) ∈ CF.

(17)

Constraints (2) − (4), (7) − (10). (18)

4.3. Structure of the Benders Decomposition. Since the
number of constraints (16) and (17) may be large and difficult
to define in advance [24], an iterative approach of Benders
decomposition that generates optimality cuts and feasibility
cuts gradually is commonly used. ,e main structure of the
Benders decomposition can be stated as follows:

Step 0: initialization: set upper bound UBD � +∞ and
lower bound LBD � − ∞,CO � ∅,CF � ∅.
Step 1: solve the master problem to obtain the binary
decision variables w, x as well as the current optimal
value ZMA; then update the lower bound LBD �

min(ZMA, LBD).
Step 2: solve the subproblem for w, x; then obtain the
extreme points (α, β) with the current optimal value
ZSP if it is feasible and bound or the extreme rays (α, β)

if it is unbound. Update the upper bound
UBD � min(ZSP,UBD).
Step 3: update the sets of extreme points and extreme
rays: CO � CO ∪ (α, β) ,CF � CF ∪ (α, β) .
Step 4: if ((UBD − LBD)/UBD)< ε (where ε is a tolerance
parameter), then stop. Otherwise, continue with Step 1.

4.4.AcceleratingBendersDecompositionbyValid Inequalities.
,ere are various techniques that can be used to accelerate
the algorithm potentially. Firstly, generate the initial cuts by

v1 v2 v3 v4 v5 v6

vs vt

l1

v2 l2

v1 v2 v3l3

v5

Dummy source and sink nodes

Dummy route

Nonstop arc

Stations of trains

Figure 3: A small example for transforming multiple train ODs into one train OD.
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defining xl
ij for all l ∈ L, i, j ∈ V. ,is is a relaxation of the

original problem and is proved to be quite effective to ac-
celerate the algorithm [25]. Secondly, the following well-
known cutest inequalities can be used to tighten the master
problem [26]:


l∈L


j:(i,j)∈r(l)

Caplx
l
ij ≥ 

j:(i,j)∈A
q

ij
, ∀i ∈ V, (19)


l∈L


i:(i,j)∈r(l)

Caplx
l
ij ≥ 

i:(i,j)∈A
q

ij
, ∀j ∈ V, (20)

where inequalities (19)–(20) state that the total transport ca-
pacity offered from station i, which is a leaving or entering
station, must be greater than or equal to the total number of
passenger demands coming from or getting to station i. Finally,
the upper bound |L| can be determined by the initial master
problem,which is oftenmuch less than the number determined
by the rail infrastructure.We can select a number from small to
large to test the initial master problem until it is feasible.

5. The Empirical Study

In this section, we present the numerical experiment on the
Beijing-Shanghai HSR line in China. ,e Benders decom-
position is written in C# language with CPLEX 12.4 as the
linear and integer programming solver. All experiments are
run on an AMDA6-3420M 1.50GHz PC with 4GB RAM. In
addition, we set the maximum CPU running time to be
1200s and the tolerance parameter ε � 0.025; other pa-
rameters in CPLEX are set to default values.

5.1./e PTSP of the Beijing-Shanghai HSR Line. ,e Beijing-
Shanghai HSR line is one of the longest HSR lines in China.
It is 1318 km long and goes through 23 stations along the
Yangtze River Delta region, which is the most developed
area in China. As shown in Figure 4, circles denote stations
and black circles denote the origin or destination station for
a train. ,e letters in parentheses beside each station name
denote the abbreviations of the station names; for example,
Beijing South is abbreviated to BJS and so on.

Input parameters of the model and the distance of each
segment, respectively, are shown in Tables 1 and 2. ,e daily
passenger OD is shown in Table 3. We test seventeen in-
stances of the Beijing-Shanghai HSR line ranging from 15 to
23 stations, named as BJN-CZS to BJN-SHH. Moreover, we
compare three different MIP solution methods: CPLEX,

Beijing South (BJS)

Tiajin South (TJS)

Cangzhou West (CZW)

Dezhou East (DZE)

Jinan West (JNW)

Taian West (TAW)

Qufu Eest (QF)

Tengzhou East (TZE)

Xuzhou East (XZE)

Suzhou East (SZE)

Bengbu South (BBS)

Dingyang (DY)
Chuzhou South (CZS)

Naijing South (NJS)

Zhengjiang West (ZJW)

Danyang North (DYN)

Wuxi East (WXE)
Kushan South (KSS)Changzhou North (CZN)

Suzhou North (SZN)
Shanghai

hongqiao (SHHQ)

Zaozhuang West
(ZZW)

Langfang (LF)

Figure 4: HSR network in China and Beijing-Shanghai HSR line.

Table 1: Input parameters of the model.

Parameters Value or descriptive
calculation

Set of start or end stations

Beijing South, Tianjin South,
Jinan West,

Nanjing South, Shanghai
Hongqiao

Fixed cost 10000 RMB/train
Variable operating cost 100 RMB/train.km
Dwell time 5min
,e velocity of train 300 km/h
,e biggest number of available
trains 228 trains/day

,e biggest number of stopping
stations 13 times/train
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Benders decomposition (BD), and the Benders decompo-
sition with valid inequalities (7) (BD & VI).

,e computational results of the instances are shown in
Table 4. ,e first and second columns denote the name of
each instance and the number of stations, respectively. ,e
third column denotes the upper bound L determined by the
initial master problem. ,e fourth column denotes the gap,
which is the percentage difference between the best LP
bound and the best integer solutions. Other columns denote
the optimal objective values (Opt) and the CPU computing
times for three different MIP solution methods, respectively.

As seen from Table 4, the CPLEX cannot produce any
feasible solution when the number of stations is more than 16.
On all these instances, the BD can get the solution whose gap
is less than 2.5% within 19 stations, while the gap increases
from 10.75% to 49.80% as the number of the stations increases
from 20 to 23. However, the BD&VI can get a solution whose
gap is less than 2.5% for all instances with the least CPU
computing times among the three MIP solution methods.
Besides, the upper bound |L| determined by the initial master
problem increases from 56 to 132, and all of them are less than
the biggest number of available trains, 228, which is deter-
mined by the rail infrastructure. As can be observed in
Figure 5, the BD & VI converges faster than the BD. From all
experiments, the BD & VI outperforms BD and CPLEX.

Let us assume that trains with the same train OD and
number of stops are classified as one type. ,e results of
PTSP for the BJN-SHH are shown in Table 5. A total of 132
trains with 25 types are dispatched, most trains run in BJN-
SHH section, about 39 trains with 6 types run in TJN-SHH
section, and only one train runs from JNW to SHH. Most
trains stop less than 5 times. In contrast to previous studies
that provide the same stopping schedule for every type train,
our results provide more stopping patterns for every type
train (Figure 6), which can decrease the total cost by en-
larging the solution space. ,is may be appropriate for long-
distance HSR line in China. ,e reason is that a nonperiodic
timetable was used in China with uneven passenger flow
distribution, and the railway transport enterprise always
provides sufficiently variable stopping patterns to serve as
many passengers as possible.

5.2./e Sensitivity of the PTSP. ,e PTSP is needed to meet
the passengers’ demand as much as possible, and we can use
the comparison between transport demand and transport
capacity to evaluate the PTSP. ,e transport demand is the

number of the passenger demands’ volume getting in and
out of every station and the transport capacity is the pro-
vided train capacity for a station according to the stop
schedule. ,is approach is based on the same idea as that of
Huiling et al. [1]. Figure 7 shows that the transport capacity
curve does not accord with the transport demand well and a
large capacity surplus is generated.

5.2.1. Train OD Changed. As seen from the transport de-
mand curve in Figure 7, the largest capacity surplus is in TJS,
while the transport demand of XZE is large. Hence, we use
XZE instead of TJN in the set of train ODs. Figure 7 shows
that the capacity surplus between transport demand curve
and transport capacity curve is reduced. However, the
number of stops, the operational cost, and the travel time
increase (Table 6).

5.2.2. Train Capacity Changed. Since there is a large capacity
surplus, we can reduce the capacity of a train in half through
reducing cars of a train, which is very easy to operate in
China. Figure 7 shows that the capacity surplus is reduced
the most. However, the transport capacity of XZE and NJS
cannot meet the transport demand, which may cause a
crowded traveling environment for passengers who get in or
out of XZE and NJS. Furthermore, the number of stops, the
operational costs, and the travel time increase greatly
(Table 6).

5.2.3. Analysis of the Objective Function. ,e PTSP is a bi-
objective programming in essence, and the objective func-
tion can be modified to a combination as follows:

minZ � λ 
l∈L

fixlwl + 
l∈L


(i,j)∈A

valdisijx
l
ij

⎛⎝ ⎞⎠

+ (1 − λ) 
l∈L


o,d∈V


(i,j)∈A

t
l
ijv

odl
ij

⎛⎝ ⎞⎠,

(21)

where λ ∈ [0, 1] is a weighting factor that can balance the
operational cost for transportation enterprise and the
travel time of passengers. Let λ vary from 0 to 1 in 0.1
interval, which results in 11 combinations in total and
constitutes 11 Pareto optimal solutions, which are not
dominated by each other. As shown in Figure 8, for λ � 0,

Table 2: ,e distance in each segment.

Segment Distance (km) Segment Distance (km) Segment Distance (km)
1 59.50 9 36.10 17 28.60
2 62.70 10 64.40 18 32.40
3 87.90 11 67.20 19 57.40
4 103.80 12 88.00 20 36.80
5 92.20 13 54.30 21 31.40
6 58.70 14 62.00 22 32.00
7 70.40 15 74.70
8 56.00 16 61.70
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Table 4: Computational results for the instances.

Instance V L
BD & VI BD CPLEX

Gap (%) Opt Time (s) Gap (%) Opt Time (s) Gap (%) Opt Time (s)
BJN-CZS 15 56 1.42 1007030.22 60.87 0.34 1007025.22 84.99 0.26 1006415.22 1161.22
BJN-JNS 16 65 0.00 1320651.85 86.81 1.84 1321351.85 119.47 – – 1200
BJN-CZN 19 90 2.03 1428609.89 135.07 2.14 1428094.89 176.08 – – 1200
BJN-WXE 20 100 1.86 1527330.60 238.21 10.75 1527630.60 1200 – – 1200
BJN-SZN 21 110 1.73 1675569.06 324.06 12.82 1700734.06 1200 – – 1200
BJN-KSS 22 121 1.40 2148337.43 350.04 33.48 2151112.43 1200 – – 1200
BJN-SHH 23 132 2.47 2773026.40 1111.57 49.80 2801321.40 1200 – – 1200
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Figure 5: ,e convergence of the BD & VC and BD.

Table 5: ,e PTSP for the Beijing-Shanghai HSR line.

Train OD Daily frequency Stop planning

BJN-SHH

1 Nonstop
10 Stop 1 time
32 Stop 2 times
17 Stop 3 times
4 Stop 4 times
3 Stop 5 times
2 Stop 11 times
1 Stop 12 times

TJN-SHN

1 Nonstop
10 Stop 1 time
16 Stop 2 times
7 Stop 3 times
4 Stop 4 times
1 Stop 5 times

JNW-SHH

1 Nonstop
5 Stop 1 time
4 Stop 2 times
1 Stop 3 times
1 Stop 4 times

BJN-NJS 4 Stop 2 times
2 Stop 3 times

TJS-NJS
1 Nonstop
2 Stop 1 time
1 Stop 2 times

JN-NJ 1 Stop 2 times
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only travel time contributes to the objective and is
therefore low, while the operational cost is high. When
λ � 1, the case is the opposite as well as the result. With
increasing λ, the operational cost monotonically

decreases, while the total traveling time increases. When
λ≥ 0.3, the operational cost has no changes with in-
creasing λ. When λ≥ 0.6, both the operational cost and the
traveling time have no changes with increasing λ.

BJN LF TJN CZW DZE JNW TAW QFE TZE ZZW XZE SZE BBS DY CZS NJS ZJW DYN CZN WXE SZN KSS SHH

Figure 6: ,e stop schedule for BJN-SHH with 3 stops.

LF TJS CZW DZE JNW TAW QFE TZE ZZW XZE SZE BBS DY CZS NJS ZJW DYN CZN WXE SZN KSS
0

1
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6
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Stations

Se
at

s

Transport capacity with none changed (seats)

Transport capacity with start or end
stations changed (seats)

Transport capacity with train capacity changed (seats)

Passenger demand (people)

Figure 7: Comparison between transport demand and capacity of sensitivity analysis.

Table 6: Comparison for sensitivity analysis.

None changed Start or end stations changed Train capacity changed
Trains Stops Cost Travel times Trains Stops Cost Travel times Trains Stops Cost Travel times
132 341 1391000 1382026.40 132 367 1392900 1382226.40 132 373 1394600 1444046.40
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6. Conclusions and Future Research

In this paper, we proposed amixed-binary linear programming
model for the PTSP without large positive coefficients. By
solving themodel, we can determine the passenger train service
planning including the train route, corresponding frequency,
and stop schedule according to the passenger OD. We show
that the PTSP is an NP-hard problem through the multi-
commodity capacitated network design problem. We devel-
oped the Benders decomposition with valid inequalities. Our
model and algorithm are used to test the Beijing-Shanghai HSR
line in China without imposing restrictions on stop schedule to
guarantee the quality of solution. Computational experiments
show that the computational burden of solving the PTSP grows
rapidly with the size of the HSR line.,e standard commercial
optimization packages CPLEX cannot find the feasible solution
with 15 ormore stations. However, the Benders decomposition
with valid inequalities was able to find the solutions of all
problems within 2.5% of optimality, which outperforms the
standard Benders decomposition without valid inequalities on
all of the considered instances. In addition, the results show
that our approach can provide sufficiently variable stopping
patterns.,ere are several directions for future research. Firstly,
we will consider trains with different speed and capacity.
Secondly, the uncertain passenger demand will be explored in
the future. At last, the improved Benders decomposition should
be designed for the PTSP with relaxed strong connectivity
constraint (7).
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