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)is study aims to investigate the key feature variables and build an accurate decision model for merging behavior during the
execution period by using a data-driven method called random forest (RF). To comprehensively explore the feature variables
during merging execution period, nineteen candidate variables including speeds, relative speeds, gaps, time-to-collisions (TTCs),
and locations are extracted from a dataset including 375 noise-filtered vehicle trajectories. After the variable selection process, an
RF model with 9 key feature variables is finally built. Results show that the gap between the merging vehicle and its putative
following vehicle and the ration of this gap to the total accepted gap are the two most important feature variables. It is because
merging vehicle drivers can easily observe the putative leading vehicles and control the relative speeds and positions to the putative
leading vehicles and they tend to leave more space for their putative following vehicles. Relative speed between the merging vehicle
and its following vehicle in the auxiliary lane is the only variable related to the vehicles in the auxiliary lane, which means merging
vehicles mainly focus on the traffic condition in the adjacent main lane. Evaluation of the performance in comparison with the
state-of-the-art method reveals that the proposed method can obtain much more accurate results in both training and testing
datasets, which means RF is practical for predicting the merging decision behavior during execution period and has
better transferability.

1. Introduction

As a basic driving task, lane changing has drawn great at-
tention recently. Lane changing behavior was considered to
be an important reason for traffic oscillations and accidents
[1–4]. It was estimated that lane change crashes account for 4
to 10% of all crashes in the US [5]. Lane-changing behavior is
complicated and risky because it is influenced by vehicles in
both the current lane and the target lane. Several factors such
as velocities and gaps should be taken into account during
the lane changing process.

Luckily, with the rapid development of communication
technology, driving assistance systems have been developed
to help drivers to make safer decisions [6, 7]. Lane-changing
decision assistance is one of the key functions of driving
assistance systems. It can help drivers make safer decisions
to start a lane change. )rough the Vehicular Ad-hoc
Network (VANET), vehicles can communicate with the

surrounding vehicles and roadside unites [8–10]. )e lane-
changing decision assistance systems can well deal with the
situation of discretionary lane-changing by using the data
from surrounding vehicles and roadside unites. However,
for merging areas on freeway, the judgment rules might be
not applicable [11]. In merging areas, drivers need to change
to the adjacent main lane within the limited distance, which
may result in traffic congestions and even breakdowns
[12–17].

As a sequential decision process, the whole merging
process can be simplified as a sequential two-step model
(gap searching and merging execution) or a three-step
model (gap searching, merging position searching, and
merging execution) [18–21]. However, most previous
studies focused on the gap searching process but
neglected the merging execution period. Several seconds
are needed to execute the merging behavior and the traffic
condition may change dynamically during the whole
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merging execution period. )e ignorance of the merging
execution process would lead to reduction of accuracy of
traffic simulation and autonomous driving. )us, there is
a critical need to model the merging decision behavior
during the execution period. During the merging exe-
cution period, the merging vehicles have interactions
with putative leading (PL) and putative following (PF)
vehicles in the adjacent main lane and the leading (L) and
following (F) vehicles in the auxiliary lane. Various
influencing factors might be considered for merging
decision and should be analyzed in depth. However,
previous studies [17] showed that there is multi-
collinearity between the variables. It was pointed by Balal
et al. [22] that most of the lane changing related variables
are highly correlated, implying that only a few repre-
sentative or key variables might be sufficient to describe
the interactions of vehicles. However, the selection of key
variables is not an easy work. )erefore, the variable
selection process should be conducted before building
parametric models such as logit model. Improper se-
lection of the key variables might make the performance
of the model deteriorate too seriously to be applied to
merging assistance systems.

Recently, data mining techniques have received a lot of
attention in transportation fields due to their ability to deal
with the large-scale data. Some of them can naturally
overcome the multicollinearity problem andmake full use of
the training data. )us, this study tried use a famous ma-
chine learning technique, random forest (RF), to model the
merging decision behavior during execution period. It can
not only produce more accurate prediction results but also
excavate the hidden information among the data. More
importantly, RF can effectively select the key variables. )e
main contribution can be summarized as follows: first, this
study gives a comprehensive analysis of the influencing
variables of merging decision. Second, the proposed RF
method can accurately predict the merging decision during
execution period, which can improve the safety and comfort
level of driving assistance system if it could be incorporated
into lane changing assistance system. )ird, a key feature
selection process is conducted to investigate the influencing
factors. )ese contributions can not only help understand
the diverse influences of different variables on the merging
decision but also shed new insights for driver assistance
systems and autonomous driving.

)e remainder of the paper is organized as follows.
Section 2 will provide a state-of-the-art review on the
existing studies followed by section 3, which gives the
methodology to build a RF model. Section 4 describes the
NGSIM data used in this paper and comprehensively ana-
lyzes the influencing variables. Results and discussions are
presented in section 5. Finally, the concluding remarks are
presented in section 6.

2. Literature Review

Predicting merging decision has always been one of the
focuses of transportation researches. A great number of
models have been developed based on different theories. )e

first comprehensive lane changing framework was devel-
oped by Gipps [23] based on gap acceptance theory. )en,
similar frameworks were adopted in other studies [24–27].
However, the gap acceptance theory has been criticized that
it cannot reflect the real behavior of drivers. To overcome the
deficiency, logistic and logit models were introduced by
some researchers [15, 28, 29]. To account for the hetero-
geneity among drivers, mixed models were proposed by
Weng et al. [30] and Li [31]. Game theory models were also
developed to model the merging behavior [32, 33]. However,
the prediction accuracy of the parametric models is barely
satisfactory and the collinearity of influencing variables
makes it difficult for researchers to choose appropriate
variables to build accurate models [22].

Recently, data-driven methods, such as classification
and regression tree (CART), Bayesian network, and fuzzy
logic models, were used in building merging models or
lane changing models and achieved promising results
[16, 34–38]. CART was applied by Weng et al. [11] to
model the merging decision in work zone area during
execution period, in which time-to-collision (TTC) was
considered as a risky factor. Considering the difference
between cars and heavy vehicles, Moridpour et al. [39]
presented the lane changing model based on fuzzy logic
for heavy vehicles. A cooperative merging strategy was
developed by Xu et al. [40] for vehicles with V2V and V2I
networks, which is applicable to cooperative merging
operations under saturated traffic conditions. However,
the majority of previous studies separately considered
speeds, relative speeds, and gaps as the influencing
variables and ignored the interaction of variables. In
addition, considering the complexity of merging be-
havior, a comprehensive analysis of all possible influ-
encing factors should be conducted to better understand
the merging decision during execution period.

Previous studies showed that the variables of lane
changing behaviour were highly correlated with each other
[17, 22, 31]. )us, selecting some representative or key
variables might better describe the interactions of vehicles.
However, feature selection has never been an easy work.
Feature selection methods can be classified into statistics
based methods [41], information theory [42], manifold [43],
and rough set [44]. Besides, data-driven methods are also
widely used for feature selection [34, 45, 46]. In this study, a
popular data-driven method called random forest was ap-
plied in this paper to model the merging decision during the
execution period. Compared with other models in the lit-
erature, the RF has several unique features and advantages.
First, it is able to handle multisource heterogeneous data
without long-time data processing. Second, as an ensemble
machine learning technique based on CART, RF inherits the
advantage of CART that can automatically accommodate
missing data of independent variables. )ird, RF overcomes
the deficiency of CART and can automatically resist outliers
and is not easy to be affected by small perturbations in the
training data. Finally, RF can select the key variables from
high dimension data by the importance of all independent
variables [45, 47]. RF has been successfully used in traffic
prediction and produced promising results [48–51].
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3. Methodology

Predicting merging decision can be simplified as a
classification problem. Some classical machine learning
techniques, such as CART, are very suitable for modeling
merging decision. )ough CART is efficient and easy-to-
use, it is also easy to be affected by small perturbations in
the training data [52]. To improve the robustness and
generalization capacity of CART, an ensemble learning
technique called random forest, which combines the
bagging technique, CART, and random subspace
method, was proposed by Breiman [45]. RF is an en-
semble classifier composed of a group of decision tree
classifiers and gets the prediction result by a simple
majority vote. )e RF model can improve the prediction
accuracy of merging decision as well as help connected
and autonomous vehicles (CAVs) make safer decisions
during merging process. A brief description of random
forest is given in this section and detailed fundamentals
of mathematics can be referred to Breiman [45].

In RF, bootstrap aggregating (bagging) is the most basic
theory. Suppose we have a training dataset (X, Y) with N

training samples (X1, y1), (X2, y2), . . . , (XN, yN) , where
Xi � x1

i , x2
i , . . . , xK

i  and yi represent the feature vector and
the response variable of the sample i, respectively. )rough
bagging, RF generates B new training sets (Xb, Yb) by
sampling from (X, Y) uniformly and with replacement for
N times. By sampling with replacement, some observations
may be repeated in each data set (Xb, Yb) and some may not
appear. )e probability that each sample in (Xb, Yb) not
selected is (1 − (1/N))N.

)en, we can get

lim
N⟶∞

1 −
1
N

 
N

�
1
e
≈ 0.368. (1)

Equation (1) indicates that about 36.8% of the samples
are not used in the training process, which is called OOB
(Out of Bag) data. )ese data can be used for validation.
)us, cross-validation or separate test data are not necessary
like other machine learning methods. In RF, the OOB error
has been proved to be an unbiased estimation of general-
ization error.

)e random subspace method is also used in RF. It can
also be called attribute bagging or feature bagging, which
means each tree is constructed based on a random subset of
the feature variables. )is method is designed to reduce the
correlation between the trees and improve the generalization
accuracy because the RF uses a simple majority vote of all the
trees.

Combining the above two methods and CART, the basic
steps of RF can be shown in Figure 1 and summarized as
follows:

(I) Initiate the algorithm, set b � 1.
(II) Use the bootstrap sampling method to obtain a new

data set (Xb, Yb) by random sampling with re-
placement for N times, and the data that are not
sampled will form a set called OOB set.

(III) Randomly select m feature variables (m< J) and
use the selected variables for splitting to train a
decision tree Tb based on the new sample set
(Xb, Yb). )e decision tree will grow the deepest
and is not pruned.

(IV) For b � 2, . . . , B, repeats steps II-III.

)e importance of the variables can be sorted by OOB
data. RF can screen out important variables in the complex
feature variable space, which is conducive to deepen the
understanding of the research object. Assuming that the
sample subset obtained by bootstrap method is
b � 1, 2, . . . , B, the process of using RF to calculate the
importance of variable xj is as follows:

(1) Suppose b � 1, and determine the OOB data LOOB
b,j .

(2) Use Tb to predict OOB data LOOB
b,j , and get the

number of accurate predicted samples ROOB
b .

(3) For the feature variable xj, j � 1, . . . , J, the following
calculations are adopted:

(a) Randomly change the variable values xj in LOOB
b

to get a new data set LOOB
b,j

(b) Use Tb and LOOB
b for prediction and get the

number of correct classification ROOB
b

(c) Calculate the reduction value of classification
accuracy, ROOB

b − ROOB
b,j

(4) For b � 2, . . . , B, repeat steps (1–3), and calculate the
average value of the reduced value of the classifi-
cation accuracy to obtain the importance measure-
ment of the variable xj:

Training 
data

Bootstrap 
sampling

New 
dataset 1

New 
dataset 2

New 
dataset N...

Randomly select m features 
for each new dataset

Bulid 
CART 1

Bulid 
CART 2

Bulid 
CART N...

Vote for prediction

Figure 1: Flow chart of random forest.
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B



B

b

R
OOB
b − R

OOB
b,j . (2)

Previous studies have shown that the merging decision
could be influenced by a number of highly correlated var-
iables [22, 35]. )us, the feature selection process must be
conducted before building parametric merging decision
models. By bagging and random space method, RF can
naturally overcome the collinearity of influencing variables.
Furthermore, the importance values can be utilized to rank
the influencing variables and select the key feature variables
through a forward stepwise or backward stepwise elimi-
nation process, which will be described in section 5.3.

4. Data Preparation

4.1. Data Description and Processing. In this section, vehicle
trajectory data collected by the Federal Highway Admin-
istration (FHWA) in the NGSIM project are adopted to
verify the proposed RF model. As an open-source dataset,
the NGSIM dataset can provide rich and accurate vehicle
trajectory data collected on both freeway and urban road
[14]. It has been widely used in traffic studies such as traffic
flow analysis and driving behavior modeling [18, 37, 53, 54].

Previous studies have shown that the US-101 dataset had
the best accuracy and consistency [18, 55]. )us, this dataset
is chosen in this study. Figure 2 shows schematic diagram of
data collecting site. One can find that the chosen 640 meters
long segment is located between an on-ramp and an off-
ramp with five main lanes and one auxiliary lane. Videos

were captured from 7:50 a.m. to 8:35 a.m. on June 15, 2005,
which was a sunny day.)e dataset is updated at a resolution
of 10 fps (frames per second) and contains three subsets
containing 15 minutes trajectory data [56]. Table 1 shows the
aggregate statics of speed and volume for every subset. )e
coordinates, speed, and acceleration of every vehicle at any
instant can be easily obtained from the NGSIM dataset.
Previous studies have shown that some random noises
existed in the NGSIM data [55, 57]. Filtering and smoothing
techniques should be adopted before using. In this study, a
data smoothing technique called symmetric exponential
moving average filter (sEMA) proposed by )iemann et al.
[57] is applied before further data analysis. In addition, the
local coordinates of three subsets are unified to filter the
inconsistency of the local coordinates. Detailed steps of data
processing can be referred to Li and Sun [17], Li [31], and Li
and Cheng [15]. After processing, trajectories of 375
merging vehicle trajectories are extracted from the dataset.
All of the vehicles are passenger cars with lengths from 2.5m
to 7.8m.

4.2. Data Extraction. After selecting the accepted gap, one
merging vehicle needs several seconds to find the right time
to merge into the adjacent lane and the driver may keep on
adjusting the speed and relative position through acceler-
ation deceleration during the execution period. At any time,
a merging driver can either choose to continue merging or
complete merging as shown in Figure 3. Let yt

n define the nth

merging vehicle’s decision at time t. Obviously, yt
n is a binary

variable, shown in the following equation:

y
t
n �

1merging vehicle n selects to completemerging at time t

0merging vehicle n select to continue adjusting at time t
 , n � 1, . . . , N, t � 1, . . . , Tn. (3)

Previous studies showed one second is suitable for a
driver to make decisions [11, 28, 34, 37]. )us, we also
choose one second in this study. )en, Tn represents the
total time to complete merging for vehicle n. Obviously, a
merging vehicle can have several observations of yt

n � 0, but
only have one observation of yt

n � 1. By extracting the
trajectory data of 375 merging vehicles, 1583 observations
are obtained in this paper, that is, 375 observations are
selecting to merge (yt

n � 1) and 1208 observations are not
(yt

n � 0). It means that it takes 3.23 seconds on average for a
vehicle to complete merging after making the decision of gap
selection.

During the process of merging execution, it has some
certain influence on the additional lane and the main lane.
At the same time, themerging behavior is also affected by the
traffic flow state of the two lanes and the surrounding ve-
hicles. )erefore, the main factors that affect the decision-
making of merging vehicles are the speeds, relative speeds,
and gaps in the adjacent main lane and the auxiliary lane.

However, previous models considered the above vari-
ables separately and ignored the interaction between vari-
ables. Some studies showed that the gaps between the
merging vehicle and PF vehicle in adjacent main line were
linearly related to the total gap during the merging process
[20]. Figure 4 shows the scatter plots of the PF gaps and the
accepted gaps according to the dataset used in this study. A
strong linear relationship can be found in Figure 4. One can
also find that the range of the ratio of the PF gap to the
accepted gap for yt

n � 1 is rather smaller than that for yt
n � 0,

indicating that this ratio might be an important factor for
merging decision. )erefore, the ratio of the PF gap to the
accepted gap is also considered as the influence variable in
this paper.

In addition, a surrogate safety measure combining ve-
hicle speeds, space gap, and time-to-collision (TTC) was also
considered, because merging driver needs to control vehicle
to avoid rear end accidents with the surrounding vehicles.
TTC is defined as
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TTC �
xL − xF − L

VF − VL

, (4)

where xL and xF are the longitudinal position coordinates of
the front bumper of the leading and following vehicle, re-
spectively; VL and VF are the speeds of leading and following
vehicle, respectively; and L is the length of leading vehicle.

Figure 5 shows the interactions between a merging
vehicle and its surrounding vehicles. Table 2 shows the
candidate variables and their explanations. It should be
pointed out that TTC is negative when the following vehicle
moves slower than the leading vehicle, which means that the
collision would never occur. In addition, when the speed of
the following vehicle is equal to or slightly larger than the

M

PF PL

M
F M L

Figure 3: Merging decision during from the start to the end of the execution process.

Table 1: Aggregate statics of three subsets.

Time period
Main lane Auxiliary lane

Volume (vph) Time mean speed (km/h) Volume (vph) Time mean speed (km/h)
7:50 a.m.∼8:05 a.m. 8148 44.00 464 63.99
8:05 a.m.∼8:20 a.m. 7552 38.80 464 59.26
8:20 a.m.∼8:35 a.m. 7108 33.61 496 55.44

Direction of traffic

On-ramp Off-ramp

Study area
640m

Figure 2: Schematic diagram of U.S. Highway 101.
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Figure 4: Relationship between the lag gap and the accepted gap in the main line.
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leading vehicle, TTC will be infinite or too large. In order to
restrict these situations, we will set the TTC range to
(0, 100 s], that is, when TTC is negative or greater than 100 s,
it is set to 100 s.

Table 3 shows the main statistical characteristics of the
candidate variables for merging behavior. One can find that
the merging vehicles move faster than both PF and PL
vehicles and the PF vehicles have the lowest average speed.
Both the leading and following vehicles in the auxiliary lane
move faster than the merging vehicles. Additionally, the
average speed of merging vehicles reduces from 12.477m/s
to 12.086m/s during the merging process to accommodate
for the mainline traffic speed, which can also be reflected by
changes of average ΔVPL and ΔVPF. It is interesting to find
that GapPF increases from 9.616m to 16.081m while GapPL
does not change much. It means GapPF plays an important
role and the PF vehicles tend to yield to the merging vehicles
during the merging execution period. One can also find that
the TTCPL has the lowest average value during the merging
process, indicating that the traffic conflicts between the
merging vehicles and PL vehicles might be the most serious.

A Pearson’s correlation analysis is conducted to corre-
lation coefficients between dependent variable and

independent variables, as shown in Table 4. Bold values are
the insignificant correlation coefficients at 0.95 confidence
level. One can find that the dependent variable yt

n has
significant correlations with several independent variables,
such as VPL and GapPF. It is interesting to find that there is
no significant correlation between GapPL and yt

n.
(GapPF/Gap) has the strongest correlation with yt

n.

5. Modelling Results

After extracting enough data, the RF model is trained and
tested in this section to verify the effectiveness. A data mining
software called Salford Predictive Modeler is used in this study
[16]. )e data is randomly divided into two parts: 80% of the
lane change cases are randomly selected as the training data,
and the remaining 20% is used as the test data for validation.
)ough RF can use the OOB data for validation, we still do this
for comparison with the state-of-the-art methods.

5.1. Parameter Determination. )e number of decision
trees B is an important parameter of RF. When building
decision trees, RF does not prune it. )us, the modeling

VM

VPF

VF

VPL

VL

GapPF GapPL
Gap

GapLGapF
Y

LM

PL

F

PF

Figure 5: Schematic diagram of candidate variables.

Table 2: Candidate variables and explanations.

Candidate variables Descriptions
VM (m/s) )e speed of merging vehicle
VPL (m/s) )e speed of putative leading vehicle
VL (m/s) )e speed of putative following vehicle
ΔVPL (m/s) )e relative speed between merging vehicle and its putative leading vehicle
ΔVPF (m/s) )e relative speed between merging vehicle and its putative following vehicle
GapPL (m) )e gap size between merging vehicle and its putative leading vehicle
GapPF (m) )e gap size between merging vehicle and its putative following vehicle.
(GapPF/Gap) )e ratio of GapPF to the total gap
VL (m/s) )e speed of leading vehicle in the auxiliary lane
VF (m/s) )e speed of following vehicle in the auxiliary lane
ΔVL (m/s) )e speed difference between merging vehicle and its leading vehicle in the auxiliary lane
ΔVF (m/s) )e speed difference between merging vehicle and its following vehicle in the auxiliary lane
GapL (m) )e gap size between merging vehicle and its leading vehicle
GapF (m) )e gap size between merging vehicle and its following vehicle
TTCPL (s) )e TTC between merging vehicle and putative leading vehicle
TTCPF (s) )e TTC between merging vehicle and putative following vehicle
TTCL (s) )e TTC between merging vehicle and leading vehicle in the auxiliary lane
TTCF (s) )e TTC between merging vehicle and following vehicle in the auxiliary lane
Y (m) )e longitudinal position of merging vehicle
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accuracy of RF will increase rapidly with the increase of
the number of decision trees at first. However, after
reaching a certain number, generating more trees would
not improve the model accuracy but increase the com-
putational burden. Previous studies showed that the total
number of trees should be set at 200–500 [45, 50]. To
ensure the reliability of the modeling results, this paper
sets the number of trees at 500.

In RF, a randomly selected subset of features is used to
build each single tree. Reducing the number of sampled fea-
turesm would bring down the correlation among decision tree,
leading to less generalization error. However, a too small m

would also make the single tree suffer from large prediction

error. Different m has been used in different studies [49, 58];
thus, the number of sampled features m should be selected
carefully. To select the best m, RF models are trained with an
increasing number of m from 1 to 10. Table 5 shows the OOB
errors with a different number ofm. One can find that theOOB
error has the lowest value when m is 3. )us, the number of
randomly sampled features m is set at 3 in this study.

5.2. Variable Importance. )e variable importance can be
easily obtained by RF according to equation (2). )e rank
and importance values of independent variables are shown
in Table 6.

Table 3: Statistics of candidate influencing variables.

Candidate variables
yt

n � 0 yt
n � 1

Average Standard deviation Maximum Minimum Average Standard deviation Maximum Minimum

VM (m/s) 12.477 3.610 23.389 1.539 12.086 3.269 23.265 2.481
VPL (m/s) 10.997 3.324 19.839 1.578 11.454 3.129 19.967 1.794
ΔVPL (m/s) 1.480 2.233 13.089 − 5.481 1.092 1.928 10.895 − 5.247
GapPL (m) 13.699 16.781 172.256 0.491 13.821 15.507 152.789 0.631
VPF (m/s) 10.320 3.157 18.681 0.501 10.912 2.925 18.868 1.923
ΔVPF (m/s) − 2.157 2.247 4.344 − 12.554 − 1.175 1.845 4.113 − 11.484
GapPF (m) 9.616 13.660 129.836 0.202 16.081 14.100 134.491 0.410
(GapPF/Gap) 0.316 0.274 1.241 0.001 0.452 0.1864 0.900 0.040
VL (m/s) 14.864 3.541 23.543 3.661 15.550 3.106 21.909 6.610
ΔVL (m/s) − 2.103 3.135 5.656 − 13.708 − 3.173 3.396 − 15.255 7.837
GapL (m) 54.27 38.87 186.94 1.030 56.08 39.54 189.46 2.260
VF (m/s) 13.282 3.161 21.730 2.585 13.764 3.108 21.566 2.387
ΔVF (m/s) 0.980 3.010 13.445 − 11.474 1.082 3.070 10.741 − 12.470
GapF (m) 46.84 46.12 105.83 1.610 43.52 43.64 0.66 192.96
TTCPL (s) 38.63 42.67 100 0.02 42.98 42.96 100 0.38
TTCPF (s) 80.54 35.92 100 0.01 71.21 41.17 100 0.82
TTCL (s) 85.94 29.09 100 0.36 83.07 30.99 100 0.42
TTCF (s) 75.61 37.92 100 0.06 68.94 41.33 100 0.06
Y (m) 82.96 68.45 350.86 0.05 94.50 74.49 361.15 0.97

Table 4: Correlation coefficients between dependent variables and independent variables.

Correlation Coefficient P value
VM −0.047 0.062
VPL 0.059 0.019
VPF 0.081 0.001
ΔVPL − 0.164 0.0001
ΔVPF 0.190 0.0001
GapPL 0.003 0.901
GapPF 0.196 0.0001
(GapPF/Gap) 0.224 0.0001
VL 0.084 0.013
VF − 0.065 0.021
ΔVL − 0.140 0.0001
ΔVF 0.014 0.618
GapL 0.020 0.564
GapF −0.031 0.270
TTCPL 0.043 0.086
TTCPF − 0.106 0.0001
TTCL −0.043 0.210
TTCF − 0.076 0.007
Y 0.072 0.004
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According to Table 6, it can be seen that GapPF and
(GapPF/Gap) are the most two important variables, whose
importance values are much greater than other variables.
)e reason is probably that merging vehicle drivers can
easily observe the PL vehicles and control the relative speeds
and positions with them.)us, they tend to leave more space
for their PF vehicles. )is finding is consistent with that of
the previous studies [20].

5.3. Feature Variable Selection. From Table 6, one can find
that the relative importance values of several variables are
rather low, such as TTCL (0.18%), indicating that there are
some redundant or irrelevant variables in the RF model.
)erefore, a feature variable selection process introduced by
Genuer et al. [59] is applied in this study. )e basic steps are
shown as follows:

(1) Build a RF model with all candidate variables and
rank the variables with the relative importance values
in descending order

(2) Delete the variable with the lowest relative impor-
tance value and create a new variable set

(3) Build a new RF model with the new variable set and
rank the variables with the relative importance values
in descending order

(4) Repeat steps (2) and (3) until only one variable
remains

(5) Rank all the RF models established in steps (1) to (4)
according to the OOB error, and select the model
and feature variable set with the lowest error

After feature variable selection, nine feature variables are
remained and the OOB error is reduced from 9.1% to 8.9%,
indicating that reducing the number of feature variables will
not reduce the prediction performance. )e values of var-
iable importance in the model are shown in Table 7. It is easy
to know from Table 7 that GapPF and (GapPL/Gap) are still
the two most important factors. ΔVF is the only variable
related to the vehicles in the auxiliary lane, which means
merging vehicle drivers mainly focus on the traffic condition
in the main lane.

5.4. Accuracy of the Model. Table 8 shows the prediction
accuracy for training data and testing data. For comparison,
a binary logit model and a CARTmodel are also built based
on the same dataset. Significant variables are selected by
stepwise selection method. )e final binary logit model is
shown as

P y
t
n  �

1
1 + exp 1.710 − 0.0829ΔVPL − 0.1481ΔVPF + 0.1321ΔVL − 0.01551GapPL − 2.076 GapPF/Gap(  − 0.0405Y( 

. (5)

Table 5: OOB errors with different m.

m 1 2 3 4 5 6 7 8 9 10
OOB error 9.6% 9.4% 9.1% 9.5% 9.5% 9.4% 9.7% 10.1% 10.4% 10.8%

Table 6: Rank of variable importance.

Rank Variables Importance value (%)
1 GapPF 27.35
2 (GapPF/Gap) 23.33
3 GapPL 9.82
4 Y 8.68
5 ΔVPF 6.82
6 TTCPL 5.77
7 TTCPF 3.69
8 ΔVPL 3.46
9 ΔVF 2.58
10 GapF 1.36
11 VPF 1.31
12 VF 1.28
13 VM 1.28
14 VL 1.03
15 ΔVL 1.02
16 VL 0.98
17 TTCF 0.95
18 GapL 0.68
19 TTCL 0.18
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)e results show that the prediction accuracy of the RF
model is much better than the binary logit model for both
training data and test data. One can also find that CART has
the highest prediction accuracy in training data. However,
the performance of CART in testing data is much poorer
than RF, indicating that RF has better ability to deal with
problem of overfitting than CART. In addition, due to the
influence of collinearity of variables, only six variables are
included in the binary logit model. Some variables that may
affect the merging decision behavior in a certain range are
ignored by the binary logit model, such as TTCPL and ΔVF.
It is clear that RF can overcome the collinearity problem and
deeply explore the complicated nonlinear relationships
between merging decision and influencing variables. One
can also find that the reduction of the accuracy in training
and testing dataset is also much smaller than the logit model
and CARTmodel, showing that RF is practical for predicting
the merging decision during execution period and has better
transferability.

6. Conclusions

)is study conducts a comprehensive analysis of the influ-
encing variables of merging decision and employs the random
forest (RF) to model the merging decision behavior during the
execution period. )e proposed RF method can accurately
predict the merging decision during the execution period and
investigate important influencing factors. )e US-101 vehicle
trajectory data are used to train and validate the RF model. To
comprehensively explore the influencing factors during
merging execution, 19 candidate variables are extracted in-
cluding speeds, relative speeds, gaps, time-to-collisions (TTCs),
and locations.

)e modeling results show that GapPF and (GapPF/Gap)

are the most two important variables, whose importance
values are much greater than other variables. It is probably
because that the merging vehicle drivers can easily observe
the PL vehicles and control the relative speeds and positions

with them and thus, they tend to leave more space for their
PF vehicles. To select the effective variables, a feature variable
selection process is adopted and 9 variables are selected in
the RF model finally. GapPF and (GapPF/Gap) are still the
two most important feature variables. ΔVF is the only
variable related to the vehicles in the auxiliary lane, which
means merging vehicles mainly focus on the traffic condition
in the adjacent main lane. Evaluation of the performances in
comparison with the state-of-the-art method reveals that the
proposed method can obtain much more accurate results in
both training ant testing datasets. )e reduction of the
accuracy in training and testing dataset is also much smaller
than that of logit model, showing that RF is practical for
predicting the merging decision behavior during execution
period and has better transferability.

Furthermore, it is obvious that merging drivers face
more challenges and may make improper decisions under
congested traffic conditions, which might cause long delays.
In future, if vehicles can receive the real-time information
about the traffic environment via VANETs, the proposed RF
models can help the merging vehicles make safer decisions.
)us, the results of this study can also improve the safety and
comfort of driving assistance systems and autonomous
driving systems.
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