
Research Article
Autonomous Bus Fleet Control Using Multiagent
Reinforcement Learning

Sung-Jung Wang and S. K. Jason Chang

Department of Civil Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan

Correspondence should be addressed to Sung-Jung Wang; d00521018@ntu.edu.tw

Received 6 October 2020; Revised 21 May 2021; Accepted 19 June 2021; Published 3 July 2021

Academic Editor: Saber Fallah

Copyright © 2021 Sung-JungWang and S. K. Jason Chang.-is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Autonomous buses are becoming increasingly popular and have been widely developed in many countries. However, autonomous
buses must learn to navigate the city efficiently to be integrated into public transport systems. Efficient operation of these buses can
be achieved by intelligent agents through reinforcement learning. In this study, we investigate the autonomous bus fleet control
problem, which appears noisy to the agents owing to random arrivals and incomplete observation of the environment. We
propose a multi-agent reinforcement learning method combined with an advanced policy gradient algorithm for this large-scale
dynamic optimization problem. An agent-based simulation platform was developed to model the dynamic system of a fixed stop/
station loop route, autonomous bus fleet, and passengers.-is platformwas also applied to assess the performance of the proposed
algorithm. -e experimental results indicate that the developed algorithm outperforms other reinforcement learning methods in
the multi-agent domain. -e simulation results also reveal the effectiveness of our proposed algorithm in outperforming the
existing scheduled bus system in terms of the bus fleet size and passenger wait times for bus routes with comparatively lesser
number of passengers.

1. Introduction

Autonomous vehicles (AVs) are bringing about a radical
transformation in the public transportation sector.-e fleet
control problem associated with AVs has led to new
challenges and topics of research. Fagnant and Kockelman
[1] defined the current opportunities, barriers, and policy
recommendations for AVs. Winter et al. [2] determined the
optimal fleet size for a shuttle service of AVs considering
the minimal total cost as an objective. Boesch et al. [3]
explored the relationship between the served demand and
the required AV fleet size. Yap et al. [4] studied the
preferences of travelers in using AVs as a last-mile feeder
system. Zhang et al. [5] analyzed the generalized cost for
autonomous buses, which is one of the key elements for
analyzing passenger preferences in using autonomous
buses. Chen and Kockelman [6] explored the impact of
pricing strategies on the market share of shared autono-
mous electric vehicles.

Scheltes and de Almeida Correia [7] compared the utility
of AVs with that of other transportation modes as the last-
mile connection. Montes et al. [8] developed an experi-
mental platform for autonomous buses. Zhu and Korn-
hauser [9] developed strategies for the fleet management of a
large-scale autonomous taxi system with the objective of a
minimum fleet size. Hyland and Mahmassani [10] presented
a taxonomy for AV fleets and developed a model for AV fleet
management problems. Optimal assignment strategies for
fully AVs were then explored with the objectives of the
minimum fleet miles and minimum traveler wait time [11].
Shen et al. [12] simulated an integrated AV and public
transportation system and proposed repurposing low-de-
mand bus routes using shared AVs as an alternative. Salonen
and Haavisto [13] presented passenger experiences, per-
ceptions, and feelings when using a driverless shuttle bus in
Finland. Abe [14] provided an overview of the impacts of
autonomous buses and taxis by quantifying the costs of
travel in Japan.
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While the above studies and assessments cover diverse
research topics, most of them treat the AV fleet control
problem as a centralized architecture. Moreover, none of
these previous studies have considered that AVs are natu-
rally decentralized and self-governing intelligent agents,
which learn to make decisions in an uncertain environment
without external intervention.

Fleet control problems are widely considered using
module-based dynamic programming to optimize a selected
objective function with general heuristics by which agents
abide. -ese mathematical programming models require
fixed rules and assumptions to facilitate model convergence
on a solution. -is is a difficult task in a dynamic environ-
ment, as a solution may become outdated when the demand
distribution changes. Reinforcement learning is amodule-free
method in which agents learn the action policy by interacting
with a complex environment; this method has been shown to
be effective in stochastic and high-dimensional situations.-e
number of autonomous shuttle trials has increased rapidly
over the last few years, and these trials together with research
on autonomous bus operation schemes and mobility services
[15–17] have begun to attract the interest of various cities,
universities, and private companies aiming at improving the
safety in urban areas, reducing the cost for last-mile trans-
portation, decreasing congestion, and improving the network
connectivity for the user [18].

-us, this study aims to develop an optimal fleet control
scheme for autonomous buses using the reinforcement
learning method. -e challenge in our work is to teach these
agents to make optimal decisions for satisfying passenger
trip demand using highly dynamic and stochastic un-
structured data and incomplete observations of the envi-
ronment. In this study, we adopt the multi-agent
reinforcement learning (MARL) model and a temporal-
difference (TD) learning algorithm to provide an effective
method for solving optimal fleet control problems. -e
major contributions of this study are as follows:

(1) An MARL algorithm was developed to solve the
autonomous bus fleet control problem, proving to be
a promising approach in such systems

(2) An agent-based simulation platform for autonomous
bus fleet control was developed for training and
evaluating the proposed algorithm

(3) Experimental results revealed that the proposed al-
gorithm outperformed other MARL methods and
could decrease the fleet size and wait times for low-
frequency routes in comparison with existing
scheduled bus systems

-e remainder of this paper is organized as follows. In
Section 2, related studies on reinforcement learning and
multi-agent issues are reviewed. In Section 3, a new MARL
algorithm is formulated and applied to an autonomous bus
fleet control problem. In Section 4, themajor components and
a schematic for autonomous bus fleet control simulator are
depicted. In Section 5, an approach to the problem based on
the MADDPG algorithm is described, and the test scheme is
described in detail, including the operation environment and

simulation process for evaluating the performance of the
proposed algorithm. In Section 6, the performance of the
proposed algorithm is compared with that of the deep
Q-network algorithm and the existing scheduled bus system.
Finally, concluding remarks are presented in Section 7.

2. Related Works

2.1. Reinforcement Learning. Reinforcement learning (RL)
has garnered increasing attention recently. It has a natural
application to the case of autonomous agents, which receive
sensations as inputs and take actions that affect their en-
vironments to achieve their own goals [19]. One of the most
important breakthroughs in RL was the development of
Q-learning (Watkins, 1989). Q-learning produces a Q-table,
which is used by an agent to determine the best action to take
based on a given state. However, Q-tables may be ineffective
in large state-space environments. -e Google DeepMind
team created a neural network as an alternative to the
Q-table, resulting in the deep Q-learning (DQN) method
[20], which has proven to be successful in learning human-
level performance for Atari games. To use Q-learning for
control problem, first, the values of state–action pairs must
be learned, and then these action values should be used
directly to implement the policy and select greedy actions.
All methods of this form can be referred to as value-based
methods. A policy gradient (PG) is another reinforcement
approach [21]. -is method approximates a stochastic
policy. -e policy is represented by a neural network whose
input is a representation of the state and whose output is the
action selection probabilities. -e weights in this neural
network are represented by the policy parameters, thus
producing a policy-based method. -e merging of these two
algorithmic families (Q-learning and PG) results in the
actor-critic (AC) method, which has a separate memory
structure to represent the policy explicitly independent of
the value function.-e policy structure is known as the actor
because it is used to select actions, whereas the estimated
value function is referred to as the critic because it criticizes
the actions made by the actor [19].

Silver et al. [22] introduced an off-policy AC algorithm
that learns a deterministic target policy from an exploratory
behavior policy with continuous actions, referred to as the
deterministic policy gradient (DPG) algorithm. -e deep
deterministic policy gradient (DDPG) algorithm is a variant
of the DPG in which the policy, μ, and critic, Qμ, are ap-
proximated with deep neural networks [23]. Schulman et al.
[24] proposed and analyzed trust region methods for op-
timizing stochastic control policies, referred to as trust re-
gion policy optimization (TRPO). In TRPO, an objective
function (the “surrogate” objective) is maximized subject to
a constraint on the size of the policy update. -e problem
can be efficiently solved approximately using the conjugate
gradient algorithm after making a linear approximation of
the objective function and a quadratic approximation of the
constraint. -is algorithm is effective in optimizing large
nonlinear policies, such as neural networks. However, TRPO
is relatively complicated and is not compatible with archi-
tectures that include noise (such as dropout) or parameter
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sharing (between the policy and value function, or with
auxiliary tasks).

Schulman et al. [25] introduced an algorithm that can
realize the data efficiency and reliable performance of TRPO
using only first-order optimization with clipped probability
ratios. -is new method, proximal policy optimization
(PPO), demonstrates superior performance in comparison
with that of other online PG methods and has become the
default RL algorithm at OpenAI. An overview of the RL
methods described above is illustrated in Figure 1.

2.2.Multiagent Reinforcement Learning. In MARL methods,
autonomous agents learn to solve dynamic tasks online
using algorithms that originate in TD RL [26]. Challenges in
applyingMARL arise from the curse of dimensionality in the
number of agents, which incurs high computational costs.
However, MARL approaches are becoming increasingly
popular. For example, Foerster et al. [27] demonstrated
multiple agents sensing and acting in complex environments
having partial observability with the goal of maximizing
their shared utility. Leibo et al. [28] analyzed the dynamics of
policies learned by multiple self-interested independent
learning agents using the DQN method, and the results
indicated the effect of the sequential nature of real-world
social dilemmas on cooperation. MARL also has been ap-
plied on transportation system as well such as Sukhbaatar
and Fergus [29] that introduced CommNet, which is a
backpropagation method for MARL that can learn con-
tinuous communication between a dynamically changing set
of agents; this method was applied to a four-way traffic
junction. Nguyen et al. [30] explored an AC-RLmethod with
a particular decomposition of the approximate action-value
function applied to a real-world taxi fleet optimization
problem. Lin et al. [31] proposed a contextual MARL
framework (DQN) to achieve explicit coordination among a
large number of agents for online ride-sharing platforms.
However, the above assessments apply traditional RL
methods, such as DQN or AC, which are poorly suited to
multi-agent environments because the best policy of each
agent is affected by changes in the policies of other agents,
resulting in a nonstationary environment.

-e OpenAI team proposed a counterfactual PGmethod
by expanding DDPG for multi-agent domains in the
MADDPGmethod, which uses the framework of centralized
training with a decentralized execution. Using this method,
agent populations can discover complex physical and
communicative coordination strategies that can coordinate
agents in mixed cooperative-competitive environments [32].
-e MADDPG method introduces a training regimen uti-
lizing an ensemble of policies for each agent, resulting in
more robust multi-agent policies. MADDPG has been used
in many applications such as Wang et al. [33] that proposed
a data-driven multiagent power grid control scheme using
MADDPG for the large-scale energy system with more
control options and operating conditions. Zhu et al. [34]
applied MADDPG to solve the flocking control problem of
multi-robot systems in complex environments with dynamic
obstacles. Lei et al. [35] introduced edge computing between

terminals and the cloud using MADDPG to address the
drawbacks of the traditional power cloud paradigm. In
practice, MADDPG operates efficiently on a variety of co-
operative and competitive multi-agent environments.
However, MADDPG is deterministic policy gradient,
intended for continuous action only. -erefore, we replace
the DPG with a state-of-the-art stochastic policy gradient
method, PPO, to satisfy the discrete action of introducing
autonomous bus operation.

3. Methodology

To formulate the autonomous bus fleet control problem
(using the notation), we consider a standard RL setting in
which an agent (i.e., an autonomous bus) interacts with an
environment over a number of discrete time steps. At each
time step, t, the agent observes a state, st, and selects an
action, at. -e goal of the agent is to maximize the expected
reward, r, from each state, st, for policy π. -is is also called a
value-based RL method. One example of such an algorithm
is Q-learning, which can be defined as follows:

Q
∗
(s, a) � r + c × maxQ s′a′( . (1)

When the action-value function is represented using a
neural network with parameters θ, the DQN algorithm is
obtained. DQN learns the action-value function, Q∗, cor-
responding to the optimal policy by minimizing the loss as
follows:

L(θ) � Es,a,r,s′ Q
∗
(s, a|θ) − r + c × maxQ

∗
s′, a′(   

2
 .

(2)

DQN sets a target function, Q, whose parameters are
periodically updated with the most recent θ. -e learning
process can be stabilized by including the use of an expe-
rience replay buffer, D, containing tuples (s, a, s′, a′).

In contrast to value-based methods, policy-based
methods directly adjust parameter θ of policy π to maximize
the objective, J(θ), by taking steps in a direction through
gradient ascent, ∇θJ(θ). -is results in the PG algorithm,
which can be defined as follows:

∇θJ(θ) � Es∼pπ ,a ∼ πθ ∇θlog πθ(a|s)Q
π
(s, a) . (3)

If the PG works as an actor learning an approximation of
the true action-value function, Qπ(s, a), through TD or
Monte Carlo predictions, this Qπ(s, a) is called the critic and
leads to a variety of AC algorithms.

It is possible to extend the PG framework to deter-
ministic policies, μθ: S↦A with continuous actions,
resulting in the DPG algorithm. Under certain conditions,
we can formulate the objective function as follows:

∇θJ(θ) � Es∼D ∇θμθ(a|s)∇aQ
μ
(s, a)|a�μθ(s) . (4)

When the policy, μθ, and critic, Qμ, are approximated
with deep neural networks, the DDPG algorithm is obtained.

-e above algorithm families generally act on a single
agent. For an environment with N agents and the set of
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deterministic policies μ � μθ1, . . . , μθN , we can formulate
the gradient of the expected return for agent i as

∇θi
J μθi(  � Es,a∼D ∇θi

μθi ai|oi( ∇ai
Q

μθ
i s, a1, . . . , aN( |ai�μθi oi( ) ,

(5)

where s � (o1, . . . , oN) and consists of the observations of all
agents, i.e., the MADDPG algorithm. -e framework of the
MADDPG method is represented by centralized training
with decentralized execution, enabling the policies to use
additional information to ease the training. -e centralized
action-value function, Q

μθ
i , can be updated as

L(θ) � Es,a,r,s′ Q
uθ
i s, a1, . . . , aN(  − y 

2
 ,

y � ri + cQ
μθ′
i s′, a1′, . . . , aN

′( |
aj
′�μθj
′ oj( 

.

(6)

In order to satisfy the discrete action of introducing
autonomous bus operation, we replace the DPG with a state-
of-the-art stochastic SPG method, PPO. PPO is based on
trust region methods (TRPO), and the “surrogate” objective
is maximized subject to a constraint on the size of the policy
update. -e theory governing TRPO is justified by using a
penalty instead of a constraint, as follows:

maximizeE
πθ at|st( 

πθold at|st( 
At − βKL πθold ·|st( .πθ ·|st(   .

(7)

Because it is difficult to select a single value of β, an
additional modification is proposed as follows:

Lt(θ) � min rt(θ)At, clip rt(θ)( , 1 − ε, 1 + ε At, (8)

where rt(θ) denotes the probability ratio,rt(θ) �

πθ(at|st)/πθold(at|st);
At is an estimator of the advantage

function [36] at time step t; and ε is a clip parameter that
moves rt(θ) away from one to avoid excessively large policy
updates.-emodifiedMADDPG algorithm for autonomous
bus fleet control is presented in Algorithm 1.

4. Simulator for Autonomous Bus Fleet Control

Unlike mathematical programming problems in which the
data are stationary relative to the algorithm and can be
evaluated by paradigms, RL applies naturally to the case of
autonomous agents, which introduce complex difficulties in
training and evaluation. One solution in traffic studies is to
create a simulator that is representative of the real world to
define a specific problem domain. In this study, we generated
large amounts of simulated experience to accelerate the
learning process beyond what would be possible using actual
experience. -e simulator was coded in Python 3.6.1 within
an IDE of PyCharm. For the autonomous bus fleet control
system, the simulated events were considered as discrete
variables (e.g., agents make decisions); therefore, we used
SimPy under the MIT License as the simulation framework.
SimPy is a discrete-event simulation library. -e behavior of
the active components (such as vehicles, passengers, or
messages) was modeled using processes. All processes live in
an environment, which follows the structure of an OpenAI
Gym, enabling the application of RL algorithms. For sci-
entific computing, NumPy, a fundamental package, was
used, and Matplotlib was applied to plot the training and
validation results.

In this study, we built a simulator as an environment for
autonomous bus fleet control where the autonomous bus is
the only “intelligent” agent. -e major components and a
schematic of the environment are depicted in Figure 2 and
discussed as follows:

Route: a fixed stop/station loop route.
Autonomous buses (V): each agent i ∈ V; there are m
agents (i � 1 . . . m). -e numerical digit along with
agent i represents the number of passengers in the car.
Here, “v” indicates that agent i is traveling in the
current direction, whereas “-” indicates that agent i is
idle and waiting for a policy update. An agent can
occupy the same space as another agent without col-
lision. Agents can only travel along the defined route
and can perform a U-turn at any stop/station.
Stop/station (S): each stop/station o ∈ S; there are n
stops/stations (o � 1 . . . n) where passengers are

DPG

Reinforcement learning

Value-based Policy-based

Q-learning Policy gradient

DQN DDPG PPO

Actor-critic

TRPO

Figure 1: Overview of reinforcement learning methods.
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allowed to enter or leave an agent. Stations 1 and n are
terminal stations.
Passenger (P): each passenger k ∈ P; the sign “v”
represents the direction in which the passenger plans to
travel.

-e system dynamics are approximated by the following
parameters.

(i) Car capacity (C): 12 seats with a maximum of 6
standees

(ii) Maximum car speed (Vmax): 20 km/h
(iii) Distance between stops/stations (D): 200–450m

(iv) Stop time (st): time required for vehicle decelera-
tion (12 s), and acceleration (12 s)

(v) Load time (ltk): time required for passenger k to
enter or exit a car, which is a random variable from
a truncated normal distribution with a range of
0.6–6.0 s and a mean of 1.75 s

(vi) Dwell time (dt): time spent in opening and closing
bus doors, plus the time spent for passenger flow
onto and off the bus

(vii) Passenger arrivals at each stop/station are assumed
to be a Poisson distribution, with arrival rates (λ) in
a test period

Agent 1Stop/station

-

V3

VVVV

VVΛ

VVΛΛ

ΛΛΛΛΛ

1

2

3

n Λ5

Agent mAgent 2

Figure 2: Schematic of the simulation environment.

for episode� 1 to M do
for t� 1 to max-episode-length do
for each agent i
Execute action a� a1, . . . , aN  and observe reward r and new state s′
Store (s, a, r, s′) in replay buffer D

s←s′
for agent i� 1 to N do
Sample a random mini batch of S samples (sj, aj, rj, s′

j) from D

Set y′ � r
j

i + cQπ′
i (s′

j
, a1′, . . . , aN

′)
Update critic by minimizing the loss
L(θ) � Es,a,r,s[(Qπ

i (sj, a
j
1, . . . , a

j

N) − y′)2]
Update actor using PPO stochastic PG
Lt(θ) � min(rt(θ)At, clip(rt(θ)), 1 − ε, 1 + ε)At

end for
Update target network D parameters for each agent i
θold←θ

end for
end for

ALGORITHM 1: Modified MADDPG for autonomous bus fleet control.
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5. Transformation of the Problem

By interacting with the environment, for each agent i ∈V at
each time step t, the agent i receives the environment’s state
st ∈ STATU, where STATU is the set of possible states, and
selects an action at ∈ ACTS, where ACTS is the set of actions
available in state st; the goal of the agent is to maximize the
expected reward r, for policy π. One time step later, in part as
a consequence of its action, agent i finds itself in a new state
st+1. In the following, we provide the state space, action
space, and rewards that are required by the algorithm.

(1) State space (STATU): the state space of each agent is
composed of two dimensions of situational elements.
Specifically, it includes information about the ob-
servation space and car states. Observation space
constitutes the car position, number of passengers in
the car, stop/station call status, and in-car requests.
For car states, the space includes moving, idling,
intent to station o� 1, and intent to station o� n.

(2) Action space (ACTS): each agent i chooses the action
to execute from its state space in the current envi-
ronment by using policy π: S↦A. We define it as the
agent’s awareness of eight situational elements in two
dimensions. For a cluster of agents, the action space
in time step t is represented as follows:

0:_move_move: nonstop,
1:_move_idle: stop at the next stop/station,
2:_idle_ds_move: idling, direction to station o� 1;
nonstop,
3:_idle_ds_idle: idling, direction to station o� 1;
stop at the next stop/station,
4:_idle_os_move: idling, direction to station o� n;
nonstop,
5:_idle_os_idle: idling, direction to station o� n;
stop at the next stop/station,
6:_idle_idle: idling, continue idling,
7:_idle_intend_os: idling, intend to station o� 1,
8:_idle_intend_ds: idling, intend to station o� n,
9:_idle_intend_idle: idling, intend to idle.

(3) Rewards: the objective is to minimize the average
squared passenger wait time, as this objective tends
to maintain low wait times while encouraging fair
service for all passengers. -e reward function is
expressed as

−
wtk

c
 

2

. (9)

Note that wtk is the wait time of passenger k, and c is
the reward discount based on Bellman Error.

5.1. Simulation Process. -e analyst first defines a scenario,
including the fleet size (L), number of stops/stations (n),
spatial-temporal demand rate of passenger requests (λ),
length of an episode (τ, initial � 1h), and maximum number
of episodes (L, initial� 300). Based on the scenario data, the

simulation creates a dictionary for the ACTS, and state
STATU. -e STATU and ACTS are references for building
the neural network.-e simulation is process-driven; at each
process step (Δs), the simulation updates the position and
state of the agents and passengers into STATU, and the agent
takes action accordingly. A critic value reward of the action
is assigned in lieu of a reward function, followed by an actor
update action policy for the agent. -e simulation then
checks whether the Timer of the simulation hour is> 1; then
τ � τ + 1, Timer� 0; this process is repeated until τ � L.

A random generator (class PASSENGER) is employed to
generate the passenger origin stop/station (ok), destination
stop/station (dk), and created time (ctk) for each passenger
k ∈P.

-e class BUSES defines the operating behavior for each
agent i ∈V and the legal actions a ∈ACTS by which agent i

abides. -e agent i makes decisions to select actions with the
aim of minimizing passenger wait times. A decision epoch
occurs upon agent arrival or completion of loading. Agent
arrival is triggered when an agent reaches a stop/station or
on completion of the previous idling event. -e loading
completion event is triggered when the loading process is
complete and the agent is ready to take the next action.
Agent i cannot pass a stop/station if a passenger wants to
disembark at that location and cannot perform a U-turn
until all the passenger requirements in the present direction
have been serviced. If agent i is moving, it must decide
whether it will stop at the next stop/station. If agent i is
idling, it must select an intended movement direction. If
agent i is approaching the terminal station, it must stop at
the next stop/station. Upon agent i making a decision, the
simulation updates the reward for agent i. When agent i is
called by passenger k, the system returns “False” if agent i is
full; otherwise passenger k enters the list of passengers
carried by agent i, and the simulation records the pick-up
time (ptk). When passenger k reaches the destination, they
are removed from the list of passengers carried by agent i.

-e wait time of passenger k is calculated as
(wtk � ptk − ctk). Here, ctk is the time at which passenger k
appears at the stop/station, which is given by the random
generator (class PASSENGER), and ptk is the time at which
passenger k is picked up. Upon completion of a simulation
episode τ, the simulator accounts for the total passenger
waiting time PW(τ) and the number of passengers served
PS(τ). -e average wait time AW(τ)of episode τ is then
calculated as follows:

AW(τ) �
PW(τ)

PS(τ)
. (10)

Figure 3 depicts flowchart of the simulation process. -e
process marked in pink represents scenario data that the
analysis plans to test, whereas the processes marked in blue
represent the interfaces with the MARL algorithm.

To train each agent’s actor, we used a three-layer Tensor-
Flow neural network.-e units of the input layer were the same
as the observation space: 100 units in the first hidden layer, 50
units in the second hidden layer, and 10 units of action space in
the output layer. For each agent’s critic, we used a two-layer
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neural network with the same units of the observation space as
those in the input layer, 50 units in the first hidden layer, and
one unit in the output layer. -e network was trained using the
Adamoptimizer for faster training.We set each episode equal to
one simulation hour, with a maximum of 300 episodes for
implementing the training.-e actor network’s learning rate (a)
was set as 1e-4, while the critic’s (ß) was set as 1e−3.-is allowed
the critic to learn slightly faster than the actor as the learning of
the actor network relies on the critic network.

6. Experiments

Experiments were conducted using the simulator introduced
in Section 4. Considering the importance of spatial and
temporal resource dynamics, the passenger arrival times and
their destinations were set as random seeds. To test the
generalization performance of our proposed algorithms, two
comparisons were performed: (1) in the RL method com-
parison, we compared our proposed policy-based algorithm
with the valued-based Q-learning algorithm; (2) in the fleet
control method comparison, we compared the proposed
algorithm with the existing scheduled bus system. Fur-
thermore, the effect of the dispatched fleet size on passenger
wait times was also compared for the proposed algorithm
and scheduled bus system.

-e simulations were run on a standard 64-bit desktop
computer with 8GB of RAM and a 2.40GHz processor. A
single simulation experiment (1 h) for scheduled bus rep-
lication takes 2–10min for completion. Owing to the Ten-
sorFlow neural network technology and PPO algorithm,
MARL only takes 0.5–4 s to complete a training episode.
Experiments with larger fleet sizes, stops, and passenger
volumes take longer to run.

6.1. Algorithm Comparison Results. An evaluation of the
performance of proposed algorithm was conducted to
compare with DQN for single-agent and compare to

MADQN for multiagent environments. First, a single agent
was used to test the effectiveness of the algorithms and fine-
tune the parameters before further building on the simu-
lation. -e single-agent environment considered consisted
of five stops/stations with a 15-minute headway. Two travel
patterns with passenger request rates of 90 and 180 pas-
senger requests per hour were tested. -e performance was
measured based on the average passenger wait time gained
by the platform over 300 episodes. -e results indicate that
both the MADDPG and DQN algorithms can learn the
correct behavior in a single-agent environment. Moreover,
MADDPG performs better than DQN, as shown in Figure 4.

-e multi-agent environment consisted of 5 buses and
15 stops/stations with a 5-minute headway. Two travel
demand patterns of 810 and 1620 passenger requests per
hour were tested. -e results indicate that the MADDPG
algorithm functions effectively; however, the MADQN fails
to learn the correct behavior, as shown in Figure 5.

6.2. Comparison of Fleet Control Methods. In this study, we
compared the proposed algorithm with a scheduled bus
system in different scenarios, namely, a university campus,
an industrial zone, and a downtown street. To closely ap-
proximate real-world conditions, each scenario was
designed based on the bus planning guidelines [37] using the
procedure shown in Figure 6.

-e passenger service volume figures were adjusted to
reflect that the autonomous bus has fewer seats (12) than
those of a standard bus (43). In addition, we used the
reasonable peak-hour factor of 0.75 suggested by the
guidelines instead of the value of 1.0 in the original settings.

In a scheduled conventional bus system, the required
fleet size is defined as follows:

F �
R

h
, (11)
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Figure 3: Flowchart of the simulation process.
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where R is the round-trip travel time. Vehicles stop at all of
the n stops/stations such that

R � 2to(n − 1), (12)

where to is the average travel time between stops/stations.
With these formulations, we can obtain the proper route
distance and number of stops/stations.-e parameter values
and passenger service volume per hour for the three sce-
narios are summarized in Table 1.

Two metrics were evaluated in this study: the average
passenger wait time and vehicle-kilometers per hour.

Average waiting time of passenger: this metric repre-
sents the customer service quality. -e simulations
calculate the results for the MADDPG algorithm and
the scheduled bus model using equation (9).
Vehicle-kilometers per hour (VKH): this metric rep-
resents the operational cost of the fleet. -e simulations
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Figure 5: Performance comparison between the MADDPG and MADQN algorithms for travel demand patterns of 810 and 1620 pas-
sengers/h in a multiagent environment.
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Figure 4: Performance comparison between theMADDPG and DQN algorithms for a travel demand of 90 and 180 passengers/h in a single-
agent environment.
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calculate the results for the MADDPG algorithm and
the scheduled bus model using the following equation:

VKH � (totalmoving steps of agents in a episode) × D,

(13)

where D is the average distance between stops/stations.

-e performance of the MADDPG was evaluated based
on the learning process over 300 episodes. -e results of the
scheduled bus model were obtained from a 1 h simulation
replicated for an average of 10 times.

-e comparison between the performance of the
MADDPG and that of the scheduled bus methods for three
scenarios is presented as follows.

Scenario 1. -is scenario was set as a university campus with
a short route (3.6 km) and low passenger demand (free flow).
-e low frequency was assigned as a 15-minute headway
with 5 stops/stations and was operated by one bus, similar to
the scale of recent autonomous bus pilot projects [18] -e
MADDPG method was significantly more efficient than the
scheduled bus method in terms of both the passenger wait

time and VKH in this scenario. -is is because MADDPG
has a more flexible dispatching strategy; for example,
MADDPG allows a bus to idle at a stop/station when no
passenger demand exists, or assigns a bus a U-turn to pick up
the nearest passengers. A comparison between the results of
the two methods is depicted in Figure 7.

Scenario 2. -is scenario was set as an industrial zone with a
medium-range route (4.5 km) and general passenger de-
mand (stable flow; unconstrained). -e headway was 10min
with 10 stops/stations and was operated by two buses. -e
MADDPGmethod outperformed the scheduled bus method
in terms of the passenger wait time but performed worse
than the scheduled bus method in terms of the VKH in this
scenario. -is is because the objective of MADDPG is to
minimize the average passenger wait time, which tends to
waste more vehicle kilometers in picking up passengers as
early as possible. A comparison between the results of the
two methods is depicted in Figure 8.

Scenario 3. -is scenario was set as a downtown street with a
longer route (5.6 km) and higher passenger demand (stable

Assign fleet size for each scenario

Assign traffic flow and headway 
for each scenario

Refer to guidebook (p21) to obtain 
passenger volume per load factors 
in lieu of traffic flow and headway 

for each scenario

Estimate number of stops/stations 
and route distance obtained using 

equations 11 and 12

Adjust number of 
stops/stations and route 

distance

Run simulation to 
check if it meets

assigned headway 

Finished
Yes

No

Figure 6: Procedure for design scenarios.

Table 1: Parameter and passenger volumes per hour for three scenarios.

Scenario 1 Scenario 2 Scenario 3
Simulation environment University campus Industrial zone Downtown street
Traffic flow Free flow Stable flow; unconstrained Stable flow; interference
Fleet size 1 2 5
Number of stops 5 10 15
Headway (min) 15 10 5
Average stop spacing (m) 450 250 200

Load factors

0.00–0.50 90 270 810
0.51–0.75 135 405 1215
0.76–1.00 180 540 1620
1.01–1.25 225 675 2025
1.26–1.50 270 810 2430
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flow; interference). -e high frequency was assigned as a 5-
minute headway with 15 stops/stations, and was operated by
five buses. -e performance of the MADDPG method was
similar to that of the scheduled bus method in terms of the
passenger wait time but was worse than that of the scheduled
bus method in terms of the VKH in this scenario. -is is
because the MADDPG free-route advantage for reducing
passenger waiting time is constrained by the high-frequency

operation. A comparison between the results of the two
methods is depicted in Figure 9.

-e results indicate that the performance of the
MADDPG algorithm is strongly related to the service fre-
quency.-eMADDPGmethod outperformed the scheduled
bus system in terms of passenger wait times and VKH when
the service frequency was comparatively low, as in Scenario
1. However, for higher service frequencies, such as in

1 car, 5 stops; h = 15min

MADDPG
Scheduled

300

350

400

450

500

550
Av

er
ag

e w
ai

tin
g 

tim
e (

s)

135 180 225 27090
Passenger service volume per hour

(a)

1 car, 5 stops; h = 15min

MADDPG
Scheduled

0

5

10

15

20

Ve
hi

cle
 (k

m
/h

)

135 180 225 27090
Passenger service volume per hour

(b)

Figure 7: Performance comparison between the MADDPG and SCHEDULED methods in Scenario 1 based on the average passenger wait
time and VKH.
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Figure 8: Performance comparison between the MADDPG and SCHEDULED methods in Scenario 2 based on the average passenger wait
time and VKH.
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Scenarios 2 and 3, the VKH generated by the MADDPG
method increased significantly to minimize the passenger
wait time.

6.3. Effect of the Dispatched Fleet Size. In comparison with
the scheduled bus headway, which cannot be adjusted ex-
actly according to the demand, the demand responsiveness
of the MADDPG method allows agents to operate when
there exists a requested service demand. A comparative
analysis of the effect of the dispatched fleet size on the level of
service was conducted by comparing the mean bus headway
between the MADDPG and scheduled bus methods. In an

online station system, the average passenger wait time was
half the headway. We used a target service level of a 5min
average passenger wait time as the main policy evaluation
criterion for a 10 stop/station loop route with a route dis-
tance of 4.5 km. Upon an average passenger wait time of over
5min, an additional bus joined the service. Various travel
request rates were tested, as shown in Figure 10.

As expected, increasing the fleet size resulted in a de-
crease in passenger wait times. -e results indicated that the
MADDPG method was significantly better than the
scheduled bus system in using a smaller fleet size to serve a
greater travel demand. For example, in the MADDPG
method, two buses could serve up to 405 passengers per
hour; however, the scheduled bus system could serve only
180 passengers per hour. -e scheduled bus system required
five buses to serve the passenger volume of 2430 passengers
during the peak hour, whereas the MADDPG method re-
quired only four buses for the same passenger volume.

7. Conclusion

7.1. Summary. Fully-autonomous buses promise to increase
the competitiveness of public mobility services via elimi-
nating the costs and performance limitations of human
drivers and significantly reduce traffic accidents, hence
allowing to potentially revolutionize existing public trans-
portation systems. Multi-agent control systems are impor-
tant owing to the nature of spatial-temporal dynamic
environments and in environments where centralized in-
formation is unavailable, requiring agents to collaborate
with other agents as they may not contain all the data or
resources required to achieve the objective. -e study
findings demonstrated that the proposed algorithm could
successfully solve the multi-agent problem of autonomous
bus fleet control.
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Figure 10: Effect of the fleet size on the passenger wait time with
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Another important finding presented in this paper is that
the proposed method performed better than other RL ap-
proaches, such as DQN and MADQN and also out-
performed the existing scheduled bus method in reducing
fleet sizes and decreasing passenger wait times for lower-
frequency routes.

7.2. Contribution and Practical Implications. -is paper
makes several contributions to the transportation re-
search literature including proposing an MARL algo-
rithm and applied it to obtain the optimal dispatching
method for an autonomous bus fleet under several op-
erational rules and constraints, developing a discrete-
event simulation platform for autonomous bus fleet
operation to simulate real-world traffic activities, en-
abling the training and evaluation of the MARL algorithm
as well as the simulation of scheduled bus methods, and
revealing the performance of the proposed algorithm in
comparison with the scheduled bus method in three
scenario, namely, a university campus, an industrial zone,
and a downtown street to closely approximate real-world
conditions.

-e dispatching model presented in this paper can be
employed by autonomous bus fleet operators that plan to
offer an on demand service. Relative to scheduled bus
method, the more-efficient operation presented in this
paper allows fleet manager to either (1) keep their current
fleet size and reduce traveler wait times (i.e., improve
customer service quality) or (2) decrease their fleet size (i.e.,
reduce capital costs) but keep traveler wait times at sat-
isfying level. In addition to the above cost and service
quality advantages of the proposed method, this study
provides a robust solution algorithm to allow AVs to make
decisions rather than to provide decision support to vehicle
dispatchers, in which a brand new view on fleet control
problem is illustrated.

7.3. Future Research. -e proposed method is a demand-
responsive model that has the potential to fill gaps in the
service provision for low-density areas and can tackle the
“last-mile” problem, which makes it worth further ex-
ploration. Furthermore, the domain of self-driving ride-
hailing services (e.g., Waymo and DIDI) suggests an in-
teresting unscheduled, free-size, and free-route envi-
ronment that may be useful for MARL learning in the
future.

Abbreviations

Sets
P: Set of passengers, index by k ∈ P

V: Set of agents, index by i ∈ V

S: Set of stops/stations, index by o ∈ S

Simulation parameters
L: Maximum number of episodes
τ: Episode, initial as 1 h
Timer: Current simulation time
Δs: Simulation process step

F: Fleet size
λ: Spatiotemporal demand rate of passenger requests
C: Capacity of an agent
D: Distance between stop/station
R: Round-trip travel time
h: Headway of successive buses
to: Average trip travel time between stop/station
VKH: Vehicle-kilometers per hour
st: Stop time required for an agent at stop/station to

decelerate and accelerate again
ltk: Time required for passenger k to enter or exit a car
dt: Time spent in opening and closing bus doors, plus

time spent for passenger flow onto and off the bus
Vmax: Maximum speed of agent
ok: Origin stop/station of passenger k
dk: Destination stop/station of passenger k
ctk: Created time for passenger k
ptk: Pick-up time for passenger k
wtk: Waiting time of passenger k
PS(τ): Total number of passengers served in episode τ
PW(τ): Total passenger wait time in episode τ
AW(τ): Average passenger wait time in episode τ
Reinforcement learning parameters
ACTS: Dictionary of action space
STATU: Dictionary of environment state
D: Experience replay buffer
s: Current state of system ∈ STATU
a: Legal action ∈ ACTS
r: Current reward
s′: Updated state∈ STATU
a′: Updated legal action ∈ ACTS
π: Policy
θ: Parameter of policy
c: Reward discount
ϵ: Clip parameter of PPO
At: Estimator of advantage function at time step t

α: Learning rate of actor network
β: Learning rate of critic network
rt(θ): Ratio of new/old policy probability.
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