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+is paper analyzes government subsidies based on the service design (i.e., headway) and fare structures of an urban rail transit
system while considering necessary financial support from the government. To capture the interactions among the operator
performance, government subsidies, and passengers in an urban rail transit system, a profit maximizationmodel with nonnegative
profit constraint is formulated to determine the optimal fare and headway solutions. +en, the social welfare that results from the
operator profit maximization model is analyzed. Finally, a numerical example from Changsha, China, is employed to verify the
feasibility of the proposed model. +e major results consist of optimized solutions for decision variables, i.e., the fares and train
headways, as well as subsidies to the operator. +e fare elasticity factor under two fare structures significantly affects fares and
demand. As the fare elasticity factor increases, the social welfare gradually decreases and a deficit occurs at low fares and demand,
while subsidies rise from 0 to ¥24658.00 and ¥38089.16 under the flat fare and distance-based fare structures.

1. Introduction

In recent decades, large-scale investment by local authorities
in China has greatly promoted the pace of urban rail transit
(URT) construction and operation. According to the “An-
nual Statistics and Analysis Report of URT 2019”, up to the
end of 2019, there were 208 URT lines in (mainland) China,
distributed in 40 cities, including Shanghai, Beijing,
Guangzhou, and Nanjing, with a total length of 5180.6 km in
operation, and the ridership has exceeded 237.1 billion
passengers per year. In general, operators in most cities are
overdependent on the government’s subsidies (data source:
China Association of Metros, 2019 [1]).

A comprehensive review of the transportation issues was
conducted by Farahani et al. [2], which discussed and
compared the models and solution methods of trans-
portation network design problem. Although many studies
have investigated the optimization of public transportation,

the literature on methods for optimizing URT system op-
eration with subsidy constraints while considering different
fare structures is still relatively scarce. For instance, Li and
Love [3] conducted a retrospective analysis of a rail line that
was procured using a public-private partnership in con-
junction with land value capture. +ey showed that the
economic viability of that URT system could be ensured by
considering the land value capture. Canca et al. [4] devel-
oped a mathematical programing model that maximized net
profit by simultaneously determining the infrastructure
network and line planning problem. +e effect of a sur-
charge-reward scheme relieving crowding and queuing
congestion in a URT system was investigated in Tang et al.
[5], who formulated a bilevel model to design and optimize
the surcharge-reward scheme. Since fares are closely related
to operator profit and subsidies, the implementation of fare
differentiation is one of the practical policies adopted in
public transport management [6]. Further studies on the
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relations between fares and operator performance as well as
passenger travel behavior have been conducted. For ex-
ample, a model was developed to optimize the transit fare
structure with demand elasticity, but with a fixed service
frequency [7]. +en, Chien and Spasovic [8] proposed a
model that optimized fares by considering demand without
excessively simplifying spatial characteristics and demand
patterns. +e work of Chien and Spasovic [8] was extended
by Sharaby and Shiftan [9], who studied the impacts of fares
on demand and travel behavior. +e optimization of fares
has often been related to the service frequency (or its inverse,
the headway, in this study), which has been investigated by
many researchers. Chien and Tsai [10] constructed an op-
timization model for maximizing profits and considered the
impact of varying demand on headway and fare. Jin et al.
[11] proposed a social welfare maximization model for
optimizing fare levels by considering the demand and service
quality of public transport. Wang and Deng [12] developed a
model for optimizing distance-based fare structure (DBF)
and headway by considering the maximum operator profit
and minimum per capita subsidy for passengers. Besides,
passengers consider many factors in their travel choices,
including service levels, generalized travel time, and fares
[13].+ese factors can be subsumed into the passenger travel
behavior of public transportation systems.

Different fare structures are mainly used as one of the
indicators for evaluating passenger travel behavior, operator
performance, and other aspects. For flat fare structure (FF)
optimization, Wang et al. [14] investigated public transit
service (i.e., flat fare and frequency) operation strategies in a
bimodal network. Jin et al. [11] focused on a flat fare
structure and found that low fares are preferable from the
viewpoint of maximizing social welfare. For DBF optimi-
zation, Tsai et al. [15] proposed a profit maximization model
for maximizing DBF and service headway. +rough sensi-
tivity analyses, the results indicate that the optimized fare
and headway decrease as the demand increases, which re-
sults in a profit increase. In addition, some studies also
proposed models that optimized other fare structures, such
as a zonal fare [13], a sectional fare [16], and an Origin-
Destination (OD) fare [17]. Besides, several papers have
discussed the feasibility and importance of FF and DBF [18].
+e present study only considers FF andDBF since these two
are the most widely used fare structures in public
transportation.

Another stream of the literature related to our work
focuses on operator performance and passenger travel be-
havior. A series of studies have been conducted to analyze
the operators’ performance. A model that optimizes oper-
ator performance such as frequency and vehicle fleet sizes
with financial policies was formulated by Jara-Dı́az and
Gschwender [19], which investigated the effect that overall
economic policies may have on the operation of public
service. +e efficiency of and the substitutability between
different management policies have been analyzed in [20].
+e model features operator performance between cars and
transit. Several studies have analyzed the passengers’ travel
characteristics. Gkritza et al. [21] pointed out that riders are
sensitive to changes in absolute fare levels as well as relative

price. Considering the effect of fares on passenger travel
behavior, Nassi and Costa [22] evaluated a region’s optimal
fare system by using the analytic hierarchy process (AHP).
Table 1 highlights the novelties of the model proposed in this
paper through comparison with previous studies.

As reviewed above, previous studies have optimized fare
structures and subsidies separately, but no published study
has compared the impact of subsidies for different fare
structures by considering social welfare. More related to our
study, several scholars have investigated operation perfor-
mance with subsidy constraints. To explore different fi-
nancial constraints, Zhou et al. [23] proposed a maximum
social welfare model for optimizing bus transit systems.
+rough numerical study, the results showed that the effects
of subsidies on social welfare differed for fixed and flexible-
route bus systems. Wang and Deng [12] studied the impact
of per capita subsidy on passengers and proposed an effi-
ciency-oriented model for maximizing the efficiency of per
capita subsidy. A break-even subsidy model for optimizing
fares and headways has been developed by Wang et al. [24].
+is study identified the effect of two fare structures and
headway on operational subsidies.

We recognize that the subsidy to operators may be re-
lated to operator performance and fare structures. Our work
is extended from Zhou et al. [23] and Wang et al. [24] by
considering the impact of fare structures and operator
performance on operations. +erefore, we formulate a profit
maximization model for operators who charge fares that
optimize social welfare and determine the headway opti-
mized in response to the government’s financial constraints.
+e major contributions of this paper are summarized as
follows:

(i) +is research comprehensively considers subsidy
constraints and fare structures of URT system op-
timization to determine the operator performance
and passenger travel behavior. A profit maximiza-
tion model, with a many-to-many demand pattern,
for optimizing fares and headways to maximize the
operator profit is developed by considering flat fare
(FF) and distance-based fare (DBF) structures as
well as a subsidy constraint.

(ii) +is paper compares the performance of FF and
DBF structures through numerical studies. It is
found that FF requires more subsidies and is more
attractive for long-distance passengers, while DBF is
more profitable and attractive for short-distance
passengers.

(iii) We investigate the operator performance under the
government’s subsidy constraints and different fare
structures and compare the effectiveness of the two
fare structures at attracting passenger demand and
maximizing social welfare. +rough the operator
profit maximization model with fare structures and
subsidy constraints, we obtain the levels of the
demand and fares that require no subsidy.

(iv) We obtain the optimal function of fare and head-
way. Besides, the fare levels significantly affect op-
erator performance, thus affecting subsidies to
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operators. Comparing the effects of changes in fare
elasticity factor on subsidies, we find that the fare
elasticity factor affects the DBF fare rate (i.e., the
variable component of DBF fare) more than the FF
fare and affects the revenue more than the operating
cost under FF and DBF.

+e paper is organized as follows. In the next section,
preliminaries are described, including the URT network
characteristics and important functions related to optimi-
zation models. Section 3 presents the operator profit models
under FF and DBF and provides the solution discussion for
two models. +e performance and application of our pro-
posed models are evaluated through numerical experiments
in Section 4. Finally, conclusions with major findings as well
as prospective research directions are provided in Section 5.

2. Preliminaries

In this paper, a URT line is represented by (S, E), which
contains the station set and section set. Let S � 1, 2, . . . , N{ }

be the set of nodes for stations and let E � eij|i, j ∈ S  be the
set of sections for the line. For each section eij ∈ E, the
distance between stations i and j (i, j ∈ S) is dij. Let DS, S �

1, 2, . . . , N represent the total length of the line between the
OD stations. +e following assumptions are made before
formulating the models.

(i) Assumption 1. +e URT trains are assumed to have
the same number of railcars and the same fixed
dwell times at each station.

(ii) Assumption 2. +e study period is assumed to be
one hour, i.e., demand is an average hourly pas-
senger flow of the day. We neglect here the dif-
ferences between peak and off-peak hours in order
to focus on subsidies, fare structures, and operator
profit maximization model.

(iii) Assumption 3. All revenue of operators is obtained
from fares, and no other revenue sources are
considered (e.g., advertisement revenue). +is
means that the subsidies found here are only related
to operations.

(iv) Assumption 4. +e average waiting time of pas-
sengers at all stations along a URT line is the same
constant fraction of the headway, i.e., usually half of
the headway if passengers and trains arrive uni-
formly over time.

2.1. Fare Structures. Since FF and DBF are considered here
the fare per passenger trip can be written as follows:

P �
P, (for FF),

P � p0 + pdij, (forDBF),

⎧⎨

⎩ (1)

where the fare, P, for DBF includes a fixed component p0
and a variable component, p.

2.2. Elastic Demand Function. Let Qij be the URTpassenger
volume from stations i to j and qij be the potential demand
during the study period. Referring to Wang and Deng [12]
and Wang et al. [24], we can obtain the passenger elastic
demand function:

Qij � qij 1 − ewwt − errt − epP , (2)

where wt, rt are the waiting time per passenger and train
riding time, respectively, and ew, er, eP are parameters for
waiting time, riding time, and fare, respectively.

+e total riding time of passengers between stations i and
j is the sum of the train running time, (dij/v), and train
dwell time, |j − i − 1| · t0, where t0 is the average train dwell
time at each station. +e passenger riding time, rt, can be
expressed as

rt �
dij

v
+|j − i − 1| · t0. (3)

According to assumption 4, the average passenger
waiting time is wt � σ · H, where σ � 0.5 is the waiting time
parameter. +us, (2) can be rewritten as

Qij � qij 1 − ewσH − errt − epP . (4)

To ensure the nonnegativity of the demand, the elastic
demand function should satisfy the following condition:

Table 1: Related studies.

Citation Considering social welfare
Fare

structures Considering subsidy Demand pattern

FF DBF Many-to-many elastic demand
Chien and Spasovic [8] ✓ ✓ — — ✓
Chien and Tsai [10] — ✓ ✓ — ✓
Wang and Deng [12] — ✓ ✓ ✓
Huang et al. [17] — ✓ ✓ ✓
Jara-Dı́az and Gschwender [19] ✓ ✓ — ✓ —
Basso and Silva [20] — ✓ — ✓ —
Zhou et al. [23] — ✓ — ✓ —
Wang et al. [24] — ✓ ✓ ✓ ✓
Sun et al. [25] ✓ ✓ — ✓ —
Ling et al. [26] — ✓ — ✓ —
+is study ✓ ✓ ✓ ✓ ✓
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0≤ 1 − ewσH − errt − epP≤ 1. (5)

2.3. Operating Costs Function. Following Wang et al. [24],
the total operating cost consists of three components: train
operating cost (CT), rail line maintenance and operation cost
(CL), and station service and operation cost (CS); i.e.,

C � CT + CL + CS. (6)

+e train operating cost includes the variable cost, NcO

(i.e., the cost of trains operating on the line), and the fixed
cost, βεNcO (i.e., the cost of reserve trains waiting to be
operated), which can be expressed as

CT � NcO + βεNcO. (7)

+e number and cost of reserve trains are, respectively, ε
times and β times those of the operating trains. In (7), the
number of operating trains, N � (TR/H), equals the train
round trip time, TR, divided by the headway, H. +e train

round trip time is TR � 2((Ds/v) + LSt0) + tz, comprising
the nonstop line-haul travel time (Ds/v), dwell time, LSt0,
and the train reversing time tz.

+e second term is the sum of the variable cost, (c1/H)

(the cost for line use related to the operating frequency 1/H)
and the fixed cost c0Ds (i.e., the cost of the rail line
maintenance related to the total length of the line), which
can be expressed as

CL � c0Ds +
c1

H
. (8)

+e last term comprises the fixed cost for a station
operating and variable cost (i.e., the number of passengers
served per hour). +e service costs grow linearly with the
passenger volume at each station, which can be expressed as

CS � Λ0LS + Λ1 
i,j∈S

qij 1 − ewσH − errt − epP . (9)

+en, the operating cost function (C) under FF and DBF
can be reformulated as follows:

C �

C � (1 + βε)
TR

H
· cO + c0Ds +

c1
H

  + Λ0LS + Λ1 
i,j∈S

Qij, (for FF),

C � (1 + βε)
TR

H
· cO + c0Ds +

c1
H

  + Λ0LS + Λ1 
i,j∈S

Qij, (forDBF).

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(10)

2.4. Revenue Function. According to assumption 3, the
revenue of the URT system is a sum of the fares paid by all
passengers. +e revenue function (R) under FF and DBF can
be expressed as

R �

R � P · 
i,j∈S

qij 1 − ewσ H − errt − ep
P , (for FF),

R � 
i,j∈S

P · qij 1 − ewσ H − errt − ep
P , (forDBF).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

3. Model Formulation

3.1. Operator Profit Maximization Model. In this section,
operator profit maximization model is analyzed with a
subsidy constraint under two fare structures (i.e., FF and
DBF). +e decision variables are headway H and fare P. In
view of (1)–(11), the operator profit (π( H, P) or π( H, P))
maximization problem can be formulated as follows. For FF,

π( H, P) � P · 
i,j∈S

qij 1 − ewσ H − errt − ep
P 

− (1 + βε)
TR

H
· cO + c0Ds +

c1
H

  + Λ0LS + Λ1 
i,j∈S

qij 1 − ewσ H − errt − ep
P ⎛⎝ ⎞⎠,

(12)

subject to
R − C + Sflat ≥ 0. (13)
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For DBF,

π( H, P) � 
i,j∈S

P · qij 1 − ewσ H − errt − ep
P 

− (1 + βε)
TR

H
· cO + c0Ds +

c1
H

  + Λ0LS + Λ1 
i,j∈S

qij 1 − ewσ H − errt − ep
P ⎛⎝ ⎞⎠,

(14)

subject to
R − C + Sdistance ≥ 0. (15)

Constraint (i.e., R − C + S≥ 0) guarantees the non-
negativity of the operator profit. +us, the profit should be
nonnegative after the government’s subsidies.

3.2. Solution Discussion. It is easy to verify that the operator
profit function is concave with respect to decision variables,
i.e., fare and headway (more details are shown in Appendix
A.). +erefore, we consider the first-order conditions of (12)
or (14); i.e., set to zero the partial derivative of the objective
function π( H, P) (or π( H, P)) with respect to H (or H) and
P (or P), and obtain the functions for the optimal fare and
headway as follows.

For FF,

P
∗

�
i,j∈Sqij 1 − ewσ H − errt + Λ1ep 

2epi,j∈Sqij

,

H
∗

�

�����������������
(1 + βε)TR · cO + c1

ewσ P − Λ1( i,j∈Sqij



.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

For DBF,

P
∗

�
i,j∈Sdijqij 1 − ewσ H − errt + epΛ1 

2epi,j∈Sqijdij

,

H
∗

�

�������������������������
(1 + βε)TR · cO + c1

ewσi,j∈Sqij p0 + pdij  − Λ1 



.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

In the subsidization scheme, a government provides
subsidies to compensate for operating deficit if and when the
operator faces a negative profit [27]. +e subsidy should
satisfy the following.

For FF,

Sflat � max C − R, 0 . (18)

For DBF,
Sdistance � max C − R, 0 . (19)

Substituting (16) and (17) into (18) and (19), we can
obtain the subsidy to an operator under for FF and DBF as
follows.

For FF,

S
∗
flat � max (1 + βε)

cOTR

H
∗ + c0Ds +

c1
H
∗  + Λ0LS

+ Λ1 − P
∗

  
i,j∈S

qij 1 − ewσ H
∗

− errt − ep
P
∗

 , 0
⎫⎪⎬

⎪⎭
.

(20)

For DBF,

S
∗
distance � max (1 + βε)

cOTR

H
∗ + c0Ds +

c1
H
∗  + Λ0LS

+ 
i,j∈S
Λ1 − P

∗
 qij 1 − ewσ H

∗
− errt

− ep p0 + pdij , 0.

(21)

In general, the user surplus is computed as the integral of
the fare function (that is, the inverse of the demand func-
tion) concerning the total passenger volume. Following Sun
et al. [25], let B(P) be the inverse demand function of the
elastic demand function [28].

B(P) � Q
− 1
ij �

1 − ewwt − errt − Q/i,j∈Sqij 

ep

. (22)

+en, the user surplus U can be expressed as follows:
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U �

U � 
Qij

0
(B(P) − P)dq �

1
2ep


i,j∈S

qij 1 − ewσ H − errt − ep
P 

2
, (for FF),

U � 
Qij

0
(B(P) − P)dq �

1
2ep


i,j∈S

qij 1 − ewσ H − errt − ep
P 

2
, (forDBF).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

We now compute the social welfare resulting from the
fare and headway obtained by the profit maximization
model with subsidy constraints. Combining profit and user
surplus, social welfare (Y(P, H) or Y(P, H)) can be written
as follows.

For FF,

Y(P, H) � P − Λ1(  · 
i,j∈S

qij 1 − ewσ H − errt − ep
P 

− (1 + βε)
TR

H
· cO − c0DS +

c1
H

 

− Λ0LS +
1
2ep


i,j∈S

qij 1 − ewσ H − errt − ep
P 

2
.

(24)

For DBF,

Y(P, H) � 
i,j∈S

P − Λ1  · qij 1 − ewσ H − errt − ep
P 

− (1 + βε)
TR

H
· cO − c0DS +

c1
H

 

− Λ0LS +
1
2ep


i,j∈S

qij 1 − ewσ H − errt − ep
P 

2
.

(25)

4. Numerical Study

We illustrate an application of the proposed models for
Changsha’s Metro Line 2 in China. A numerical study in-
vestigates the effects of the key model variables and subsidies
for different fare structures. In the following analysis, the
baseline values of parameters are set as follows:

+e average speed is assumed to be 40 km/h, while the
average train dwell time, train reserving time, and passenger
waiting time at each station are set to be 1/120 h, 0.08 h, and
0.5 h, respectively. +e hourly operating cost is ¥1950/ve-
hicle-hour, the unit fixed cost of the line is ¥ 3800/km, and
the unit fixed cost of each station is ¥ 4200/km-hr. +e
demand elasticity parameters for waiting time, riding time,
and fare are set at 0.6, 0.15, and 0.1, respectively. +e upper
and lower boundary of the train operating headway are set at
1/30 (or 2 minutes) and 1/5 (or 12 minutes), while those of
the fare are set at 0 and 12, respectively. +e values of other
input parameters are shown in Table 2. Note that additional
references for these parameters can be found in Wang and
Deng [12], Wang et al. [24], and China Railway Fourth

Survey and Design Institute Group Co., Ltd. [29]. +e values
for the demand elasticity parameters are estimated based on
historical data [12, 24]. +e actual data of Changsha’s URT
line 2 are obtained from a survey conducted during the
planning period, as shown in [29].

4.1. Numerical Results. +e optimized results for the oper-
ator profit (OP) models under FF and DBF are presented in
Table 3. +e results are slightly different for two fare
structures, while the headways and fare levels are extremely
sensitive to the objective. For comparison, optimized so-
lutions are provided from the OPmodels with fare structures
and subsidy constraints. Decision variables at which the OP
model maximizes profit are ¥ 4.88 for fare and 8.56min for
headway under FF. For DBF, the corresponding optimized
values are ¥ (1.97 + 0.294dij) for fare and 9.82min for
headway.

+e subsidy is zero and fares are at a higher level for both
FF and DBF under the OP models in this numerical study,
which means that the subsidy constraint is not binding. For
comparison, it must be noted that the problem studied in
Sun et al. [25] differs from the one presented here. Sun et al.
[25] reported that the financial constraint is binding at
optimality in public transit subsidization, and the operators
break even after subsidies. However, the subsidy constraint
is not binding at optimality when considering the OP
models, i.e., Sflat � 0 (or Sdistance � 0). +us, when the OP is
positive, no subsidy is needed. In the case of high demand
and fares, this is reasonable because operators seek to
maximize their profits. +e previous study considered the
situation where the optimal profit was negative and pro-
posed an efficiency-oriented subsidy optimization method
that seeks tomaximize the per capita subsidy, so there was an
operating deficit in Case [12]12.

4.2. Fare Structures Discussion. +e elastic demand function
used in this paper is sensitive to the trip length. +e travel
behavior (i.e., demand and trip length) of passengers under
FF and DBF is shown in Figure 1, which plots the demand
and fares vs. trip length. When a passenger’s trip length is
9.93 km, FF and DBF fares are equal. When the trip is below
9.93 km, the demand with DBF exceeds that with FF, but the
fare with DBF is lower than with FF.

Taking the maximum demand gap for example, in the
first set of the data (i.e., the first bars indicating demands
under FF and DBF in Figure 1(a)), DBF demand is 1.5 times
that under FF, whereas FF fare is 2.25 times that under DBF.
+erefore, the FF revenue is higher than that under DBF (as
shown in Table 1). In Figure 1(b), the DBF demand declines

6 Journal of Advanced Transportation



Table 2: Notation.

Parameters Description Baseline value
cO Average train operating cost per hour (¥/h-vehicle) 1950
ew Elasticity parameter for wait time (1/h) 0.6
er Elasticity parameter for riding time (1/h) 0.15
ep Elasticity parameter for the fare (1/¥) 0.1
LS Number of stations 19
Pw Lower boundary of the fare (¥) 0
Pw Upper boundary of the fare (¥) 7
t0 Train dwell time at each station (h) 1/120
tZ Train reversing time (h) 0.08
v Train speed (km/h) 40
β Idle trains multiplier (the cost of the nonoperating trains is β-times of the operating trains) 0.24
c0 Fixed maintenance costs per line kilometer (¥/km) 3800
c1 Cost parameter related to the rail line frequency (¥/h) 525
ε Reserve factor (the nonoperating trains are ε-times the number of the operating trains) 0.25
σ Ratio of waiting time to headway (1/h) 0.5
τ Lower boundary of the headway (h) 1/30 h (or 2 minutes)
τ Upper boundary of the headway (h) 1/5 h (or 12 minutes)
Λ0 Fixed cost parameter for each station (¥/km) 4200
Λ1 Service cost parameter per passenger at each station (¥) 0.5

Table 3: Optimized solution.

Optimized solution FF DBF
Fare (¥) 4.88 1.97 + 0.294dij

Headway (min) 8.56 9.82
Revenue (¥/h) 283754.21 245907.52
Operating costs (¥/h) 214949.64 218266.28
Operator profit (¥/h) 68804.57 27641.24
Passenger surplus (¥/h) 146131.37 225264.98
Total social welfare (¥/h) 214935.94 252906.22
Subsidy (¥/h) 0 0
Demand (pass./h) 57967 70989
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Figure 1: Demand and fare for a given operation plan.
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when the trip exceeds 9.93 km. +e DBF demand is almost
zero when the trip exceeds 17 km, but there are still some
passengers under FF. +is occurs because the profit loss
caused by the reduction in demand exceeds the profit gain
caused by the increase in fares (i.e., the increase in the fare is
not enough to compensate for the reduction in demand). For
example, the DBF fare is about ¥5.88 when the trip is 17 km,
which is 1.32 times higher than FF, but the demand is less
than 0.5 of that under FF (in Figure 1).

4.3. Subsidy Discussion and Operator Performance

4.3.1. Effects of Subsidies on Operator Profit. Figures 2(a) and
2(b) show the changes in subsidies as the fares and headway
change under FF and DBF. +e trend under the two fare
structures is similar, and the subsidy has a negative corre-
lation with fare and headway, as expected. As can be seen,
the subsidy under DBF decreases faster as the headway
increases, compared to the change of the subsidy with the

change of the fare. In contrast, the subsidy under FF changes
more significantly as the fare changes. +e blue part of
Figure 2 shows the operator needs a lower subsidy, while the
red part shows the operator needs a higher subsidy. In
contrast, at the same headway, higher fares increase revenue.
Note that the vertical scale in Figure 2 extends below zero, to
allow for a possible negative profit.

Figures 3 and 4 show numerical results associated with
various subsidies under FF and DBF. Considering the re-
lation between subsidy and fare with fixed optimal headway
H
∗ (see Figure 3(a)), as FF fare increases, the subsidy de-

creases from a peak value towards a minimum value,
dropping to zero when P1 � 2.60. However, the subsidy
reaches its vertex (minimum value of ¥ − 68804.57) when the
FF fare is ¥ 4.88 (i.e., the operator needs no subsidies when
the profit exceeds ¥ 0.0). Beyond the value of FF fare at the
vertex, the subsidy rises in a parabolic form from its min-
imum value, crossing the point of zero value where
P2 � 7.16. For a fixed optimal fare P

∗ (see Figure 3(b)), the
subsidy becomes zero when H � 0.0314 h. +e graph shows
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the subsidy attains a minimum value of ¥ − 68804.57 at a
headway of 0.143 hours (8.56 minutes).

For DBF (see Figure 4), a similar trend is observed to that
for FF. For a fixed optimized headway H

∗ (see Figure 4(a)),
the optimized subsidy is ¥ − 27641.24 when the fare is ¥
(1.97 + 0.294dij). When P

∗
� E1.97 + 0.108dij and P

∗
� E

1.97 + 0.479dij, the subsidy is zero. +e reason is similar to
that for FF. For a fixed optimized fare P

∗ (see Figure 4(a)),
when the subsidy is minimal, the headway is 0.164 hours
(9.82 minutes). When H � 0.0558 h, the subsidy is zero.

4.3.2. Effects of Fare Parameter on Operator Performance.
+e fare levels significantly affect operator performance [7],
thus affecting subsidies. +erefore, we explore the effects of
fare elasticity parameter on subsidy. Figures 5(a)–5(d)
compare the subsidies with the change of fare and head-
way for three elasticity factors: ep � 0.05, ep � 0.10, and
ep � 0.15.

Note that Figures 5(a) and 5(b) represent the changes of
subsidy for different fare and headway under FF, while
Figures 5(c) and 5(d) represent the changes under DBF. +e
effects of the fare and headway on the subsidy under FF and
DBF show similar trends, but the fare and headway trends
are somewhat different. It is found that a larger ep-value
requires higher subsidies. A smaller ep-value indicates
higher demand and fares, and hence a more profitable
operation.

Table 4 further presents the optimized URT system
solutions for three elasticity factors: ep � 0.05, ep � 0.10, and
ep � 0.15. Comparing the effects of changes in fare elasticity
factor on operator performance, passenger behavior, and
subsidies under FF and DBF, the fare elasticity factor has a
more significant effect on fares and demand, and thus the
subsidy varies more widely. For FF, the comparison shows
that the FF fare decreases by 65.8%; i.e., the FF fare decreases
from ¥9.64 to ¥3.3 for fare elasticity factors of ep � 0.05 and
ep � 0.15, respectively. For DBF, the fare elasticity factor has
a more significant effect on the variable component of DBF
fare which decreases by 83.3%, i.e., the variable component
of DBF fare decreases from ¥0.78/dij to ¥0.13/dij for fare
elasticity factors of ep of 0.05 and 0.15, respectively.

When ep remains at the same level, it has a similar effect
on the subsidies under the two fare structures. As ep in-
creases, the social welfare gradually decreases and a deficit

occurs at the lower fare and demand. +erefore, the sub-
sidies rise from zero to ¥24658.00 and ¥38089.16 under the
FF and DBF. In addition, the revenues of two fare structures
differ greatly (reduced by 68.53% and 61.24%), whereas the
operating cost of FF and DBF decrease by only 8.14% and
8.04%. +e reason is that ep significantly affects fares and
demand, which have a greater effect on revenue than on
operating cost. It is found that the subsidy is zero when ep is
0.05 or 0.10 because if the fare and demand are high, the
revenue exceeds the operating cost. +e same is true for
DBF.

5. Conclusions

+is study focuses mainly on service design and subsidy
issues and investigates subsidies to URT operators. +e
operator profit (OP) model primarily considers demand and
train operation plan to pursue operating profit. +is study
extends the existing literature on operator performance and
passenger characteristics under subsidy constraints by
considering fare structures. +e numerical examples explore
the operator performance and passenger characteristics by
comparing different fare structures. Operator performance
is mainly measured by service level (e.g., service frequency)
and operational subsidies needed from the government,
while the comparative analysis under FF and DBF reflects
the passengers’ behavior. By analyzing the OP model, this
paper provides some important findings.

(1) +is paper analyzes the operator’s profit with fare
structures and subsidy constraints while comparing
the impact and performance of FF and DBF through
proposed models and numerical results. Assuming
that the passengers’ travel behavior is homogenous,
the results for different fare structures are slightly
different (as in Table 2). +e influence of decision
variables on the operational subsidies under FF
exceeds that under DBF (shown in Figures 3 and 4).
In general, DBF is more attractive for short-distance
passengers, while FF is more attractive for long-
distance passengers (see Figure 1).

(2) +e subsidy is zero under the OP models in this
numerical study, which means that the subsidy
constraint is not binding. Profit maximization does

Table 4: Optimal solutions with different fare parameters.

Optimal solution
ep � 0.05 ep � 0.10 ep � 0.15

FF DBF FF DBF FF DBF

Fare (¥) 9.64 1.97 + 0.78dij 4.88 1.97 + 0.29dij 3.3 1.97 + 0.13dij

Headway (minute) 5.93 7.07 8.56 9.82 10.71 11.79
Revenue (¥/h) 585051.39 447631.76 283754.21 245907.52 184112.53 173515.54
Operating cost (¥/h) 227269.12 230116.67 214949.64 218266.28 208770.53 211604.70
Operator profit (¥/h) 357782.27 217515.09 68804.57 27641.24 − 24658.00 − 38089.16
Passenger surplus (¥/h) 316619.46 549028.77 146131.37 225264.98 90194.69 123887.64
Social welfare (¥/h) 674401.73 766543.86 214935.94 252906.22 65536.69 85798.48
Subsidy (¥/h) 0 0 0 0 24658.00 38089.16
Demand (Pas./h) 60527 77814 57967 70989 55621 64951
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not require subsidies. If profit is negative when the
social welfare is positive, then a subsidy may raise the
profit to zero (“break-even”) but should not raise it
further. Wang and Deng [12] considered the situa-
tion where the optimal profit was negative and
proposed an efficiency-oriented subsidy optimiza-
tion method that seeks to maximize the per capita
subsidy, so there is an operating deficit in that case.

(3) +e fare structures and levels significantly affect
operator performance, thus affecting subsidies to
operators. Comparing the effects of changes in the
fare elasticity factor on subsidies under FF and DBF,
we find that a larger fare parameter value requires
higher subsidies. A smaller fare parameter value
indicates higher demand, so the operation is more
profitable (see Figure 5 and Table 4).

Although the proposed model provides useful insights
into operation and policy evaluation of URT, it neglects
some important URT characteristics that should be con-
sidered in the future. In further studies, work should be
pursued in the following areas.

(1) In this paper, the subsidy is computed based on the
headways and fares, which means the subsidy is
treated as a financial constraint. From the perspec-
tive of management, it represents a cost-plus con-
tract widely applied in China, in which operating
losses are fully covered by the government. Future
studies may consider additional policies and in-
centive mechanisms to induce operators to reduce
operating costs and improve services.

(2) +e models presented here focus on the operator
profit with subsidy constraints but ignore the effects
of passenger choices and behaviors on subsidies. +e
current study may be extended to consider the effects
of service levels and passenger travel choices on
subsidies.

(3) A linear form of elastic demand function is used in
this paper, which depends on the travel times and
fares (FF and DBF). +e fares are the same for all
passengers under FF while they vary with the trip
length under DBF. In the future, fares that vary over
time or for different passenger types (e.g., students,
the elderly, and the disabled) may be considered.

Appendix

A. Proof Progress

To obtain the optimal solutions for the headway and fare, we
set the partial derivative of the objective function π( H, P)

(or π( H, P)) with respect to H (or H) and P (or P) to zero.
For FF,

zπ( H, P)

zP
� 

i,j∈S
qij 1 − ewσ H − errt − 2ep

P + epΛ1  � 0,

zπ( H, P)

z H
� ewσ 

i,j∈S
qij Λ1 − P(  +

(1 + βε)TR · cO + c1

H
2 � 0.
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(A.1)

For DBF, we have

zπ( H, P)

zP
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i,j∈S
dijqij 1 − ewσ H − errt − 2ep p0 + pdij  + epΛ1  � 0,

zπ( H, P)
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(A.2)

+en, we obtain the optimality conditions.
For FF,

P
∗

�
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(A.3)

For DBF,

P
∗

�
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2epi,j∈Sqijdij
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H
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(A.4)

Substituting (A.3) and (A.4) into objective functions (12)
or (13), and considering the constraint Sflat � max C − R, 0 

or Sdistance � max C − R, 0 , we obtain the subsidy to an
operator under FF and DBF as follows.
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For FF,

S
∗
flat � max (1 + βε)

cOTR

H
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H
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For DBF,

S
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H
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+e second-order partial derivatives of π( H, P) (or
π( H, P)) and with respect to H (or H) and P (or P) can be
derived as follows. For FF,

z
2
π( H, P)

zP
2 � − 2ep 

i,j∈S
qij,

z
2π( H, P)

z H
2 � − 2

(1 + βε)TR · cO + c1

H
3 ,

z
2π( H, P)

zPz H
�

z
2π( H, P)

z HzP
� − ewσ 

i,j∈S
qij.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.7)

For DBF,
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According to (A.7) and (A.8), we can obtain the fol-
lowing Hessian matrices under FF and DBF, respectively.
For FF,
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For DBF,
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z
2π( H, P)

zP
2

z
2π( H, P)

z HzP

z
2π( H, P)

zPz H

z
2π( H, P)

z H
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 2
(1 + βε)TR · cO + c1

H
3 − ewσ 

i,j∈S
qijdij

− ewσ 
i,j∈S

qijdij − 2ep 
i,j∈S

qijd
2
ij

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� 4
(1 + βε)TR · cO + c1

H
3 ep 

i,j∈S
qijd

2
ij − ewσ 

i,j ∈ S

qijdij
⎛⎝ ⎞⎠

2

.
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As shown in Figure 6, all values of the Hessian matrices π
and π are greater than zero, that is, Hessian (π)> 0 and
Hessian(π)> 0. We can find that the Hessian matrices are
negative definite through specific numerical analysis, but the
sign of the Hessian matrices cannot be determined in the
analytical solution. +is implies that there is at least one
feasible solution for operator profit (OP) models, and we can
derive optimality conditions about the fare, headway, and
subsidy from (A.3)–(A.6).
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