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Due to the complexity of the operation control of urban rail transit and diversity requirements for section running time standards,
based on actual train operation data, this paper proposes a curve fittingmethod to find the interrelation between running time and
energy consumption. According to features of the energy consumption-running time curve, the discriminant criterion of outliers
is constructed to select the candidate fitting data set from the original data set. To fit the energy consumption-running time curve
from two-dimensional scatter points, we propose a B-spline curve fitting method based on a genetic algorithm and the fitting
method is proven to have high fitting accuracy and convergence speed. Furthermore, we propose an optimization method for the
fitting curve based on dynamic adjustment of the fitting data set which is selected from the candidate fitting data set to obtain the
optimal energy-running time curve. &e validation of Guangzhou Metro’s actual operation data shows that the energy-running
time curve fitted and optimized by our method has lower energy and better continuity and smoothness and could be used for
evaluation of train drivers’ performance and energy consumption of train operation diagram.

1. Introduction

Under the background of developing green traffic and
building energy-saving cities, urban rail transit has become
one of the main means of solving the problem of urban
traffic congestion due to its low energy consumption and low
pollution. In most Chinese cities, urban rail transit has
developed rapidly in the last few years. By the end of 2019,
about 40 cities inMainland China had opened 208 urban rail
transit lines, with a total length of 6,736.2 km of which
5,180.6 km was subway lines, accounting for 76.9%. China’s
urban rail transit has developed by leaps and bounds, but it
also faces many problems such as high energy costs and low
management level. &erefore, reducing the energy con-
sumption level of urban rail transit will help to give play to
the advantages of urban rail transit and maintain its
competitiveness.

Energy consumption directly related to urban rail transit
is mainly generated by stations and trains. Train energy
consumption includes operation energy consumption and
auxiliary energy consumption such as lighting, ventilation,

and air conditioning. Operation energy consumption is the
main source of energy consumption of urban rail trains,
which generally accounts for more than 50% of the train
energy consumption and takes a large proportion of the
operating expenditure. &e effective reduction of operation
energy consumption not only meets the requirements of
developing green traffic but is also an effective way for urban
rail transit enterprises to reduce costs and improve benefits.
&erefore, it is of great significance to study the traction
energy consumption of urban rail transit.

Generally, the operation curve of urban rail trains is
optimized to minimize the operation energy consumption to
obtain the optimal running time and energy consumption
considering the requirements of section running time. In the
trial operation stage of the train, the manufacturer presets
several operation curves for selection during formal oper-
ation according to some parameters such as the vehicle
performance, the horizontal and vertical section of lines, the
section length, and the user requirements of the urban rail
enterprise. Nowadays, there has been much research on the
energy-saving operation strategy of urban rail trains. As
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early as 1980, Milroy [1] began to study the train operation
energy consumption optimization problem. Based on the
maximum principle, he proposed a short-distance energy-
saving operation strategy for urban rail transit which in-
cluded three stages: traction, coasting, and braking and
established the optimal control model to minimize the
energy consumption under a constant slope, laying the
foundation for modern urban rail train optimal control
theory. Khmelnitsky [2], on the basis of an analytical
method, further considered the change in line slope, the
difference of section speed limits, and the relationship be-
tween traction force and braking force with changes in speed
and proposed a numerical algorithm for optimizing the
operation strategy. Chang and Sim [3] established a mul-
tiobjective optimization control model considering comfort,
punctuality, and energy consumption and used an improved
genetic algorithm (GA) to calculate the switching point of
coasting mode so as to achieve the effect of saving energy by
reasonably increasing the coasting time. Ke et al. [4] opti-
mized the section operation strategy of urban rail transit by
using the maximum-minimum ant colony cloning optimi-
zation algorithm and proved that their proposed algorithm
had a higher computational efficiency than other intelligent
algorithms. Liu et al. [5] used the maximum principle to
optimize the energy-saving operation strategy of the train
and then used a numerical algorithm to solve the switching
point of the train operation mode, also achieving good
results. Villalba et al. [6] proposed an optimization model
based on the train speed relationship and set a speed limit for
trains traveling between stations to minimize energy con-
sumption, achieving a 19% reduction in energy consump-
tion compared to current levels. Bocharnikov et al. [7]
designed a fitness function with variable weightings which
was used to identify optimal train trajectories by running a
series of simulations in parallel with a genetic algorithm
search method and optimized traction energy consumption
during a single-train journey by the optimal train
trajectories.

However, the optimization of the operation curve is a
complex optimization problem for which it is difficult to
obtain the optimal solution. Meanwhile, operation curves
preset by the manufacturer are limited and unable to cover
all running time requirements of daily train operation.
&erefore, aiming at the theoretical limitations of optimi-
zation of operation energy consumption at a certain running
time, this paper attempts to study the relationship between
section running time and reasonable energy consumption
from a data-driven perspective by using the abundant train
operation data formed in the operation process of urban rail
enterprises.

In order to establish the relationship between section
running time and optimal energy consumption, the data
fitting method is very suitable. &e fitting curve can visually
show the changing trend of discrete data and has a wide
range of applications in engineering practice. &e selection
of the fitting data set directly affects the accuracy and effect
of the final fitting curve, so it is very important to choose a
suitable fitting data set. M. Rza Mashinchi et al. [8] designed
the granularity box regression method based on border

regression to preprocess the data set containing outliers,
eliminated outliers deviating from the fitting curve, and then
conducted linear regression analysis on the data. Hossein
Hassain et al. [9] demonstrated the importance of elimi-
nating noise from the data set in plant growth curve fitting
and proposed that using singular spectrum analysis to
process data can effectively eliminate noise. Sanpeng Zheng
et al. [10] improved the classical moving least squares
method and could automatically identify outliers from the
discrete data set to reduce the influence of outliers on the
fitting curve through a weight function and to ensure the
fitting effect. Ping Chen et al. [11] proposed a Gibbs sam-
pling algorithm to detect additive outliers and patches of
outliers in bilinear time series models based on the Bayesian
view and demonstrated the efficacy of detection and esti-
mation by Monte Carlo methods. Galvez et al. [12] applied
the firefly algorithm, a powerful metaheuristic nature-in-
spired algorithm, to compute the approximating explicit
B-spline curve for a given set of noisy data points. Trejo-
Caballero et al. [13] proposed a linear combination of radial
basis functions (RBFs) to tackle the curve fitting problem
with a set of data points including noises.

Considering the influence of the passenger loading rates
on the correlation between the running time and the energy
consumption, we construct the data set of train operation
based on a given loading-rate standard. &e train operation
data in this paper refer to the operation information of each
train in the research section and operation direction, in-
cluding the section operation curve, the section running
time, and the corresponding energy consumption. Ignoring
specific details such as the operation speed, acceleration,
operation mode, and other parameters of the operation
curve, we construct energy consumption-running time data
points (E-Tpoints) by taking the section running time as the
abscissa and the energy consumption as the ordinate to
study the change laws between running time and energy
consumption and obtaining the optimal energy consump-
tion-running time curve (the optimal E-T curve).

&e optimal E-T curve shows the lowest operation en-
ergy consumption in different section running times.
Meanwhile, the corresponding train operation curves of E-T
points can provide abundant running curve support for the
operation of the train under different running times. And
due to the optimality of each point of the curve, the rea-
sonableness of the operation strategy adopted by a train in
the section can be evaluated accordingly by the comparison
between the actual operation energy consumption and the
optimal operation energy consumption. What is more, with
the optimal E-T curve of each section in the train operation
diagram, the optimal energy consumption of the entire
operation diagram can also be calculated to evaluate the
energy consumption level of the existing operation diagram
and make up the optimal energy consumption timetable.

To obtain the optimal E-T curve, we first construct the
discriminant criterion of the energy consumption level of
the train operation data to eliminate the obvious unrea-
sonable data with high energy consumption from the
original train operation data set and obtain a candidate set of
fitting data points after the preliminary screening to improve
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the accuracy of curve fitting. Secondly, based on the can-
didate fitting data set, a B-spline fitting method is adopted.
Finally, based on the feedback of the fitting results, we es-
tablish an optimization method to improve the quality of the
fitting curve by the dynamic adjustment of the fitting data
set.

2. Candidate Fitting Data Set

&e section operation curve of urban rail trains generally
includes several parts such as “maximum traction-cruising
(or coasting)-maximum braking.” However, minor changes
in operating strategy and control parameters will cause
changes in the curve, running time, and energy consump-
tion, resulting in a diversity of section operation data of
trains. Even the same running time may correspond to
several different train operation curves, as shown in Figure 1.

As described above, the train operation strategy (the
operation curve) of the train operation data and the running
time under the strategy are defined as E-Tpoints. Because of
the diversity of train operation data in rail sections, E-T
points are relatively unordered and scattered in the coor-
dinate system. In order to study the relationship between
section running time and energy consumption and to obtain
the optimal E-T curve, it is necessary to construct the dis-
criminant criterion of outliers of E-T points, remove un-
reasonable energy consumption data from the original data
set, and filter out a better data set to ensure the fitting effect
of the E-T curve.

Although there may be a one-to-many relationship be-
tween section running time and the train operation curve, each
running time should have the unique optimal energy con-
sumption [14, 15]. Figure 2 shows that optimal energy con-
sumption and running time have a negative correlation and
the uniqueness of the optimal energy consumption in a certain
running time. &us, the outliers of E-Tpoints can be removed
according to the interrelation of the train operation data.

Taking the four data points in Figure 3 as an example,
according to the approximate inverse relation between
optimal energy consumption and running time, the optimal
energy consumption EB at running time TB must be less
than EA because TB>TA, so point B should be removed.
Similarly, compared with point C, point D needs to be
removed.

Setting the original data set of E-Tpoints as P� {pi(Ti, Ei),
i� 1, 2, 3, }, according to the above analysis, the optimal data
set P∗ � p∗i (T∗i , E∗i ), i � 1, 2, 3, . . .  should satisfy the
following law: ∀p∗1(T∗1 , E∗1 ), p∗2(T∗2 , E∗2 ) ∈ P∗, if T∗2 ≥T∗1 ,

thenE∗2 /T
∗
2 ≤E∗1 /T

∗
21, E∗2 ≤E∗1 , and generally, ∀p∗1(T∗1 , E∗1 ),

p∗2(T∗2 , E∗2 ) ∈ P∗, if T∗2 > T∗1 , thenE∗2 /T
∗
2 <E∗1 /T

∗
21, E∗2 <E∗1 .

Based on the features of the optimal data set, the dis-
criminant criterion of outliers of the original data set is
constructed as follows:
∀p1T1, E1, p2T2, E2∈P, if E1 � E2, T1 >T2, then p1 is

worse than p2. ∀p1(T1, E1), p2(T2, E2) ∈ P, if T1 � T2, E1 >
E2, then p1 is worse than p2. ∀p1(T1, E1), p2(T2, E2) ∈ P, if
T1 ≥T2, E1 >E2 or (E1/T1)> (E2/T2), then p1 is worse than
p2.

&e above rules can simply distinguish and eliminate
some obvious bad points, but there may be some points of
poor quality that cannot be eliminated. &erefore, we
define the inferiority to measure the quality of these points,
and the greater the inferiority, the worse the energy con-
sumption of one point. ∀p(T, E) ∈ P, the neighboring
point with less running time of point p is p1(T1, E1), T1 <T,

and p1′
�→

is the direction vector of the tangent at point p1 on
the E-T curve, so the inferiority of point p is defined as
follows:

δ(p) �
δ p1′

�→
, p1p
���→

 

δ p1′
�→

, 0 

, (1)

where δ( p1′
�→

, p1p
���→

) is the angle between vector p1′
�→

and p1p
���→,

δ( p1′
�→

, 0) is the angle between vector p1′
�→

and the horizontal
axis, and δ(p) ∈ (0, 1].

Based on the discriminant criterion of outliers, we can
preliminarily remove outliers and points with unreasonable
energy consumption from the original data set
P � pi(Ti, Ei), i � 1, 2, 3, . . .  and obtain the candidate fit-
ting data set Ps � ps

i (Ts
i , Es

i ), i � 1, 2, 3, . . . . &e specific
steps of the algorithm are as follows:

Step 1. Order all E-T points in the original data set in
ascending order according to the running time. |P| is
the size of set P, and the initial number of elements in
set P is Num.

Step 2. Remove outliers based on the discriminant
criteria. Set i � 0, and compare the energy consumption
of pi and pi+1, where pi, pi+1 ∈ P. If Ti+1 � Ti, Ei+1 >Ei,
or Ti+1 >Ti, Ei+1 ≥Ei, then P � P − pi+1 , |P| � |P| − 1.
Set i � i + 1.
Step 3. If i<Num − 1, return to Step 2; otherwise, set
Ps � P d and take Ps as the candidate fitting data set.

In this algorithm, we obtain the candidate fitting data set
by the discriminant criterion of outliers, and the definition of
inferiority is used in the dynamic adjustment of the fitting
data set later.

Velocity

T0 Time

Vmax

Vmin

Figure 1: Multiple operation curves can correspond to the same
running time.
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3. A B-Spline Curve Fitting Method Based on a
Genetic Algorithm for the Optimal E-T Curve

For the selected train operation data set, the running time
and energy consumption of the data constitute scattered
points that could be fitted as an E-T curve. B-spline has the
powerful function of expressing and designing free-form
curves and surfaces and is one of the most popular main-
stream methods for the mathematical description of shapes.
So the B-spline curve can be used to fit a set of two-di-
mensional data points based on the train operation data
[16, 17].

3.1. B-Spline Curve Fitting Method for the Selected Data Set.
An ordered data set Q � qi (Ti, Ei), i � 1, . . . , m  is selected
from the candidate fitting data set Ps (Q⊆Ps), and the
parameter vector of Q is T � ti, i � 1, . . . , m . &e mathe-
matical definition of the B-spline curve over the knot vector
U � u0 � · · · � uk ≤ uk+1 ≤ · · · ≤ un ≤ un+1 � · · · � un+k+1  is
shown as follows:

B(t) � 
n

j�0
PjNj,k(t), (2)

where k is the degree of curve, Pj(j � 0, 1, . . . , n) are control
points, and Nj,k(t)(j � 0, 1, . . . , n) are the B-spline basis
functions. Basis functions are calculated using the following
equations:

Nj,0(t) �

1, uj ≤ t< uj+1,

0, otherwise,

⎧⎪⎨

⎪⎩
(3)

Nj,k(t) �
t − uj

uj+k − uj

Nj,k−1(u) +
uj+k+1 − u

uj+k+1 − uj+1
Nj+1,k−1(u).

(4)

If necessary, the convention (0/0) � 0 in equation (4) is
applied. When the data set Q falls on the B-spline curve,
∀qi ∈ Q should be satisfied:

qi � B ti(  � 
n

j�0
PjNj,k ti( , i � 1, . . . , m, (5)

which is written in matrix form as follows:

Q � NP, (6)

where Q is the data set matrix and N is the B-spline basis
function matrix that could be calculated by the parameter
vector T and the knot vector U.

&e B-spline curve should go through the start point and
end point and then

Q0 � B t0(  � P0,

Q1 � B t1(  � P1.
(7)

Aiming at the minimum square sum of error (SSE)
between the fitting data points and actual data points, the
objective function can be expressed as

Velocity

E-T curve

TimeTmin T1 T2 T3

Energy

V-T curve

t

Figure 2: &e interrelation between section running time and energy consumption.

E

T
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A

B

C

D

TA TB

Figure 3: Removal of points with high energy consumption.
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f � 
m−1

i�1
Qi − B ti(  

2
� 

m−1

i�1
Ri − 

n− 1

j�1
PjNj,k ti( ⎡⎢⎢⎣ ⎤⎥⎥⎦

2′

, (8)

where

Ri � Qi − Q0N0,k ti(  − QmNm,k ti( , i � 1, 2, . . . , m − 1.

(9)

According to the least squares principle, calculate the
partial derivative of control points Pl(l � 1, 2, . . . , n − 1) as
follows:

zf

zDl

� 
m−1

i�1
−2RiNl,k ti(  + 2Nl,k ti(  

n

j�1
PjNj,k ti( ⎡⎢⎢⎣ ⎤⎥⎥⎦, (10)

and then

− 
m−1

i�1
RiNl,k ti(  + 

m−1

i�1


n−1

j�1
DjNj,k ti( Nl,k ti(  � 0, (11)



m−1

i�1


n−1

j�1
Nj,k ti( Nl,k ti( ⎛⎝ ⎞⎠Dj � 

m−1

i�1
RiNl,k ti( . (12)

Transform equation (12) into matrix form and then

NTN D � R, (13)

where

N �

N1,k t1(  . . . Nn−1,k t1( 

⋮ ⋱ ⋮

N1,k tm−1(  . . . Nn−1,k tm−1( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R �

N1,k t1( R1+ · · · +N1,k tm−1( Rm−1

⋮ ⋱ ⋮

Nn−1,k t1( R1+ · · · Nn−1,k tm−1( Rm−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

D �

D1

⋮

Dn−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(14)

&e control point matrix P can be calculated approxi-
mately as follows:

P � NTN 
− 1
NT

Q. (15)

Furthermore, the mathematical expression of the fitting
curve Qc can be obtained as

Q
c

� N NTN 
− 1
NT

Q. (16)

Letting qC
i ∈ Qc be the point on the fitting curve cor-

responding to parameter ti, and the sum of squares of the
least squares error SSE is calculated as

SSE � 
m

i�1
qi − q

C
i




2
. (17)

According to the above theory, the key of the B-spline
curve fitting method is to find out the parameter vector T

and the knot vector U of the fitting data set. In previous
researches, the knot vector is always fixed, and then, the
parameter vector c be selected by methods such as uniform
parameterization, the Gauss–Newton approach, and cen-
tripetal model parameterization. Alternatively, the param-
eter vector is first determined by the cumulative chord
length parameterization, and then, the knot vector is cal-
culated [18, 19]. However, the accuracy of the fitting curve
obtained by these methods is not satisfying, and it is difficult
to obtain the optimal fitting curve. &erefore, in this paper,
we combine the GA and B-spline curve fitting method to
solve the nonlinear problem by changing the parameter
vector and node vector simultaneously [20]. Meanwhile,
considering the internal relationship between the parameter
vector and the knot vector, when the parameter vector and
the number of control points are determined, the appro-
priate knot vectors can be directly calculated by the average
ordered parameter method [21, 22]. In this way, each ad-
jacent knot interval corresponds to at least one data point
that ensures that the fitting curve has high fidelity.&erefore,
the fitting problem of the B-spline curve is transformed into
the problem of using a GA to find out the optimal parameter
vector and control points without coding the parameter
vector and knot vector at the same time, which reduces the
complexity of the algorithm.

3.2. Genetic Algorithm Design in B-Spline Curve Fitting

3.2.1. Notation. All the relevant notations used in the ge-
netic algorithm are listed in Table 1.

3.2.2. Selection of the Initial Population and Chromosome
Coding. &e initial population of the genetic algorithm is
generally generated randomly. According to the features of
the B-spline curve, we generate the initial population of size
N randomly in this paper. Coding methods usually include
binary coding and real coding. In order to reflect the in-
creasing characteristic of the parameter vector in the
B-spline curve more intuitively, real coding is adopted in this
paper.&e chromosome of each individual in the population
is coded as an (m+ 1)-dimensional increasing real vector in
the following equation:

G1, G2, . . . , Gm, Gm+1 , (18)

where G1 � 0, G2 � 1, and Gm+1 ∈ (0, 1].
&e top m genes of the chromosome represent the pa-

rameter vector corresponding to the fitting data, which are
increasing and randomly selected within the interval[0, 1].
While the (m + 1)th gene of the chromosome represents the
number of control points, the number cannot be less than
four because the degree of the B-spline curve is three. So we
select Gm+1 randomly within the interval [4, m].

3.2.3. 4e Fitness Function. &e fitness function is directly
related to the quality of the final result and the optimization
efficiency of the genetic algorithm. In order to obtain a fitting
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curve with the least squares error with as few control points
as possible, we design the fitness function as

fitness �
1

1 + SSE + λ × n
, (19)

where SSE is the least squares error and λ is the weight factor
of control points.

λ affects the number of control points of the fitting curve.
Generally, the more control points there are, the higher the
precision of curve fitting, but it is easy to fall into “over-
fitting” if there are too many control points.

3.2.4. Crossover. Common crossover methods include sin-
gle-point crossover, two-point crossover, uniform crossover,
and linear crossover. In this paper, the top m genes of in-
dividual chromosomes represent the parameter vector, so
the new chromosome obtained after crossover should also
maintain the increasing feature of parameter vectors, and
thus, linear crossover is more suitable.

Two individuals are randomly selected from the set of
parent chromosomes, random number r is generated within
the interval[0, 1], and the linear crossover is operated if
r< ρc as follows:

h1′ � sh1 +(1 − s)h2,

h2′ � (1 − s)h1 + sh2,

⎧⎨

⎩ (20)

where s is a random number in the interval [0, 1] and h1′ and
h2′ are the new chromosomes after crossover. In this way, the
topm genes of the new chromosome keep increasing, and we
also need to round the (m + 1)th gene of the chromosome to
an integer because Gm+1 is the number of control points.

Meanwhile, based on the theory of inheritance of su-
periority, we set the crossover probability of good chro-
mosomes with a higher fitness to be larger than that of
chromosomes with lower fitness so as to ensure that superior
genes can be passed on to their offspring and improve the
optimization ability of the algorithm.&e dynamic crossover
probability ρc is calculated by the fitness of the population as
follows:

ρc �

ρc1 − ρc1 − ρc2(  fmean − f2( 

fmean − fmin( 
, f1 ≤fmean,

ρc1 − pc2 fmax − f2( 

fmax − fmin( 
, f2 ≤fmean <f1,

ρc1, f2 >fmean,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

where f1 is the larger fitness value of the two chromosomes
to be crossed while f2 is the smaller fitness.

3.2.5. Mutation. According to the coding method and the
characteristics of chromosomal genes, we adapt the single-
point mutation method, which means every gene on the
chromosome of every individual in the population may
mutate.

Let h1 � G1, G2, . . . , Gm, Gm+1  be one chromosome
from the set of parent chromosomes. For each gene Gi of h1,
we generate a random number r within the interval[0, 1] and
operate single-point mutation if r< ρu as

Gi
′ �

0, i � 1,

sGi+1, i � 2,

Gi−1 + s Gi+1 − Gi−1( , 2< i<m,

1, i � m,

Round Gi + s( , i � m + 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where s is a random number in the interval [0, 1], Gi
′ is the

new chromosome after mutation, and Round(Gi + s) when
i � m + 1 means that Gm+1 is rounded to an integer.

Also based on the theory of inheritance of superiority, in
order to preserve the superior genes, we set the good
chromosomes with high fitness to mutate with low proba-
bility, while the chromosomes with low fitness mutate with
high probability to seek new optimization directions. &e
dynamic mutation probability ρu is calculated by the fitness
of the population as

Table 1: Notation in genetic algorithm.

Parameters
N Population size
ρc Crossover probability
ρc1, ρc2 Parameters of the crossover probability
ρu Mutation probability
ρu1, ρu2 Parameters of the mutation probability
fmean Average fitness
fmax Maximum fitness
fmin Minimum fitness
H Set of parent chromosomes H � hi|i � 1, 2, . . . , N 

Cc Chromosomes produced by crossover
Cu Chromosomes produced by mutation
C Set of offspring chromosomes C � Cc + Cu

G1, G2, . . . , Gm, Gm+1  Individual chromosome gene
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ρu �

ρu1 fmax − f( 

fmax − fmean( 
, f≥fmean,

ρu2, f<fmean,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

where f is the fitness of the chromosomes to be mutated.

3.2.6. Selection. &e study shows that the convergence of the
GA mostly lies in the selection operator, which may be
roulette selection, the expected value selection method, and
the sorting selection method. We adapt the classic roulette
selection in this paper. We first calculate the fitness of the set
of parent chromosomes and the set of offspring chromo-
somes generated by crossover and mutation, respectively,
and then determine the selection probability of the indi-
vidual chromosome based on its corresponding fitness ratio
in all chromosomes, and finally, select the new generation
population according to the selection probability.

3.2.7. Algorithm Flow

Step 1. Input the degree of the B-spline curve, the fitting
data set Q, the size of the population N, the maximum
iteration number tmax, and the fitting precision ε. After
the initial population is randomly generated, we set
iteration number t � 1.
Step 2. Calculate the fitness parameters including
fmean, fmax, andfmin.
Step 3. Select a pair of chromosomes from the set of
parent chromosomes randomly, calculate the crossover
probability ρc, generate new chromosomes by the linear
crossover operation, and add the new chromosomes
into Cc.
Step 4. Select a chromosome from the set of parent
chromosomes in turn, calculate the mutation probability
ρu, operate single-point mutation on every gene of the
chromosome, and add the mutated chromosome into Cu.
Step 5. Calculate the fitness of the set of offspring
chromosomes C and select a new generation of size N

from the set Hand C by the roulette selection method.
Step 6. If t> tmax or SSE≤ ε, the algorithm is termi-
nated. Otherwise, set t � t + 1 and repeat steps 2 to 5.

&e algorithm flowchart is shown in Figure 4.

4. Fitting Curve Optimization Based on
Dynamic Adjustment of the Fitting Data Set

4.1. Optimization Model of the E-T Fitting Curve. We could
preliminarily screen the original data set by the discrimi-
nant criterion of outliers described in Section 2 and obtain
the candidate fitting data set. However, some points with
large inferiority in the candidate fitting data set may make
the curve fitting effect poor and are therefore not suitable
for inclusion in the fitting data set. For example, as shown
in Figure 5, points B and D could be eliminated by the
discriminant criterion of outliers so the candidate fitting

data set includes points A, E, F, C, andG, but points
E and F have relatively large inferiority compared with
other points and are bound to affect the curve trend, which
means the energy consumption of the fitting curve is not
optimal. &erefore, it is important to select the optimal
fitting data set from the candidate fitting data set to obtain
the optimal E-T curve, so we propose an optimization
model for the E-T fitting curve calculated by the fitting
method in Section 3.

Each point on the optimal E-T curve fitted by the
B-spline curve fitting method should satisfy the
following:

B Ti( ≤Eps
i
, ∀ps

i Ti, Ei(  ∈ P
s
, (24)

where B(Ti) is the ordinate value of the point on the fitting
curve when its abscissa value is Ti.

Based on the approximate inverse relation between the
optimal energy consumption and running time, the optimal
E-T fitting curve should satisfy the monotonicity and
continuity of the first and second derivatives, expressed
mathematically in equations (25) and (26), respectively:

B′ Ti( ≤ 0, B′ Ti( <B′ Ti+1( , ∀qi Ti, Ei(  ∈ Q, (25)

B″ Ti( ≥ 0B″ Ti( >B″ Ti+1( , ∀qi Ti, Ei(  ∈ Q. (26)

At the same time, considering the feasibility of fitting, the
number of points in the fitting data set should be guaranteed,
shown as follows:

|Q|≥ 3. (27)

On the basis of satisfying the above constraints, as many
points as possible must be included. &erefore, the objective
function of the optimization of the E-T fitting curve is put
forward as follows:

max|Q| − λ1SSE, (28)

where λ1 is the penalty factor of the least squares error SSE.
In summary, the optimization model of the E-T fitting

curve is as follows:

max |Q| − λ1SSE,

s.t.

B Ti( ≤Eps
i
, ∀ps

i Ti, Ei(  ∈ P
s
,

B′ Ti( ≤ 0, B′ Ti( <B″ Ti+1( , ∀qi Ti, Ei(  ∈ Q,

B″ Ti( ≥ 0B″ Ti( >B″ Ti+1( , ∀qi Ti, Ei(  ∈ Q,

|Q|≥ 3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

4.2. Optimization Algorithm Design Based on Dynamic Ad-
justment of the Fitting Data Set. Firstly, the fitting data set Q

is selected from the candidate data set Ps randomly, and
according to the E-Tcurve fitted by the B-spline curve fitting
method based on the GA, we constantly adjust the fitting
data set to improve the fitting results. Due to the fact that the
fitting precision ε is a tiny number and SSE< ε, SSE can be
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regarded as zero in the objective function. &e penalty
factors of the constraints in equations (24), (25), and (26) are
added to the objective function in the following equation:

max|Q| − λ2 

ps
i

Ti,Ei( )∈Ps−Q

B Ti( )−Eps
i
> 0

B Ti(  − Eps
i

 
2

− λ3 

qi Ti,Ei( )∈Q

B′ Ti( )>B′ Ti+1( )
B″ Ti( )< 0

δ Ti( ( 
2

− λ4 

qi Ti,Ei( )∈Q

B″ Ti( )< 0

B″ Ti( ( 
2
,

(30)

where λ2, λ3, and λ4 are the penalty factors, and generally,
λ4 < λ3 < λ2 because constraint in equation (24) relates to the
optimization of energy consumption, while the constraints
in equations (25) and (26) relate to the smoothness of the
fitting curve.

We design the optimization algorithm on the basis of the
theory of tabu search. We define bidirectional tabu lists
including the tabu list Q+(Q+ ∈ Ps − Q) for adding points to
the fitting data set and the tabu list Q− (Q− ∈ Q) for re-
moving points from the fitting data set. For q ∈ Q+ or
q ∈ Q− , η(q) is the tabu step size of point q and ηmax is the
maximum tabu step size.

&e steps to add points to the fitting data set Q are as
follows:

Step 1. Calculate the data set Q+
0 � ps

i (Ti, Ei)|

ps
i ∈ Ps − Q, B(Ti) − Eps

i
> 0} that does not meet the

constraint in equation (24).
Step 2. Select the point to be added. If Q+

0 � ∅, do not
add points to the fitting data set Q. Otherwise, if
Q+

0 ≠∅, Q+
0 − Q+ ≠∅, select point p ∈ Q+

0 − Q+ by the
roulette selection method and add point p into data
set Q. &e selection probability is calculated as
follows:

ρ+
(p) �

B Ti(  − Eps
i

 
2

p∈Q+
0 −Q+ B Ti(  − Eps

i
 

2. (31)

If Q+
0 ≠∅, Q+

0 − Q+ � ∅, select one point randomly
from the data set PTS � p|p ∈ Q+, η(p) � 1  and add
this point into the data set Q.
Step 3. Update the bidirectional tabu lists. As for the
new point p added into data set Q, set Q− � Q− ∪ p 

and η(p) � ηmax. For ∀q ∈ Q+, set η(q) � η(q) − 1, and
if η(q) � 0, set Q+ � Q+ − q .
&e steps to remove points from the fitting data set Q

are as follows:
Step 1. Calculate the data set Q−

0 � p(Ti, Ei)

|p ∈ Q, B′(Ti)>B′(Ti+1), B
’′(Ti)< 0} that does not

meet the constraints in equations (25) and (26).
Step 2. Select the point to be removed. If Q−

0 � ∅, do not
remove points from the fitting data set Q. Otherwise, if
Q−

0 ≠∅, Q−
0 − Q− ≠∅, select point p ∈ Q−

0 − Q− by the

roulette selection method and remove point p from data
set Q. &e selection probability is calculated as

ρ−
(p) �

[δ(p)]
2

p∈Q−
0−Q− [δ(p)]

2. (32)

If Q−
0 ≠∅, Q−

0 − Q− � ∅, select one point randomly
from data set MTS � p|p ∈ Q− , η(p) � 1  and remove
this point from data s Q.
Step 3. Update the bidirectional tabu lists. As for the
point p removed from data set Q, set Q+ � Q+ ∪ p 

and η(p) � ηmax. For ∀q ∈ Q− , set η(q) � η(q) − 1, and
if η(q) � 0, set Q− � Q− − q .

&e adjustment of the fitting data set Q terminates when
Q+

0 � ∅ and Q−
0 � ∅. &e algorithm flowchart is shown in

Figure 6.

5. Experimental Examples

&e train operation data samples in this paper are mainly
composed of actual train operation data and simulated data,
and the section running time range is 80–120 s. Generally,
the data samples are based on the actual operation data;
however, in the actual train operation process, the value
range of section running time is relatively limited (82–85 s).
We simulate some data samples as supplements by the
software named “Urban rail transit train traction calculation
and operation diagram energy consumption evaluation”
which is used by the operation department of Guangzhou
Metro. For each train operation data, we take the unit
distance (such as 0.1m) as the calculation step, and the
energy consumption is calculated by accumulating the
power (the traction force multiplies the distance) at all
distance steps. We extracted a bunch of E-T points to form
the original data set, as shown in Figure 7.

&e energy consumption of most data points shown in
Figure 7 is within a reasonable range; however, there are also
some points whose energy consumption value is obviously too
high. Based on the discriminant criterion of outliers, we pre-
liminarily remove outliers and points with unreasonable energy
consumption from the original data set, and all remaining points
after filtering constitute the candidate fitting data set in Figure 8.

Although the overall trend of the candidate data set
conforms to the characteristics of the E-T curve, it can be
seen from the partially enlarged view that some points are
unordered and have great inferiority that will definitely affect
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the fitting effect of the E-Tcurve and could not ensure optimal
energy consumption of the curve.&erefore, we have to select
the optimal fitting data set from the candidate data set by the
optimization model of the fitting curve proposed in Section 4,
and the model parameter settings are shown in Table 2.

We randomly select 68 points for the fitting data set Q.
From the candidate data set Ps, and as the number of it-
erations increases, data set Q is constantly adjusted and
eventually includes 82 E-Tpoints when Q+

0 � ∅ and Q−
0 � ∅.

&e results are shown in Figures 9 and 10.

In Figure 9, although the value of the objective function
fluctuates, the overall trend is to increase with the number of
iterations, and the data set Q+

0 that does not meet the con-
straint in equation (17) drops significantly and finally drops to
zero, indicating that the energy consumption of the fitting
curve points basically reaches the optimal value. Because we
have already removed some outliers from the original data set,
the number of points in the data set Q−

0 that does not meet the

Adjust the fitting data 
set

Add points

Remove points

Optimized
fitting data set

B-spline curve 
fitting

Select fitting data 
set randomly

Termination check

No

Output the 
optimal E-T curve
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Figure 6: Optimization algorithm flowchart.

35

30

25

20

15

10

E 
(K

W
·h

)

80 90 100 110 120
T (s)

35

10

High

Low

Figure 7: Scatter chart of the original data set. 80 85 90 95 100 105 110 115 120
T (s)

12

14

16

18

20

22

24

26

E 
(K

W
·h

)

104 105 106

15

15.5

16

92.5 93 93.5
19.7
19.8
19.9

20
20.1

Figure 8: Scatter chart of the candidate data set.

10 Journal of Advanced Transportation



constraints in equations (18) and (19) stays low all the time
and eventually decreases to zero as well, which ensures that
the fitting curve has good continuity and smoothness.

&e optimal energy consumption curve fitted by the opti-
mized fitting data set using the B-spline curve fitting method
based on the GA is shown in Figure 11. Figure 11(a) shows the
changing trend of the least squares error and the average fitness
of the population, and Figure 11(b) is the optimal E-T fitting
curve.

&e least squares error of the fitting curve decreases
rapidly, and the average fitness of the population increases as
the number of generations increases. In the 166th genera-
tion, the algorithm is terminated when the least squares
error SSE � 0.00943, which meets the requirements of fitting
accuracy, and the average fitness of the population also
stabilizes. &is proves that the B-spline fitting method based
on the GA proposed in this paper has strong optimization
ability, high fitting accuracy, and high convergence speed.

Meanwhile, the comparison between the optimized fit-
ting curve and the original fitting curve fitted by the can-
didate data set is shown in Figure 12.

&e original fitting curve is fitted by the candidate
fitting data set, while the optimized fitting curve is fitted
by the fitting data set optimized and adjusted by the
optimization algorithm in Section 4. Although the overall
trends of the two curves are similar, in a partially enlarged

view, the optimized fitting curve is smoother after
eliminating some points with great inferiority which have
an influence on the curve, and by contrast, the optimized
fitting curve is below the original fitting curve on the
whole, which means that the goal of energy consumption
optimization has been achieved well. Taking 0.1s as the
time interval, we, respectively, select 353 sample points
with the same running time from the original fitting curve
and the optimal fitting curve and all sample points are
from 84.1 s to 119.2 s. By accumulating the difference
ratio of all sample points, the energy consumption of the
optimal fitting curve is 0.69 KW h less than that of the
original fitting curve, and the maximum energy con-
sumption difference among all sample points is 0.16%.
From the calculation, the energy consumption of the
optimized fitting curve is lower than that of the original
fitting curve and the optimal fitting data set has fewer
fitting data points, which proves that the optimization
method of the fitting curve proposed in this paper can
select the optimal fitting data set from a large number of
original data points and obtain the optimal E-T curve.

&e optimal E-T curve can reflect the lowest operation
energy consumption under different section running times,
so each data point on the optimal E-Tcurve corresponds to
the optimal operation curves, such as the velocity-distance
(V-T) curve and time-distance (T-S) curve. In Figure 13, we

Table 2: Parameter values in the model.

Parameter Value
Degree of B-spline curve k 3
Initial population size N 40
Parameters of the crossover probability ρc1, ρc2 ρc1 � 0.9, ρc2 � 0.2
Parameters of the mutation probability ρu1, ρu2 ρu1 � 0.3, ρu2 � 0.8
Fitting precision ε 0.001
Maximum tabu step size ηmax 3
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randomly select three E-T points from the optimal fitting
data set and extract the corresponding V-Tcurves that have
the optimal energy consumption.

&e V-S curves with the optimal energy consumption can
provide abundant running curve support for the operation of
the train under different running time requirements.

6. Conclusions

In this paper, we propose a fitting method of the optimal
energy consumption-running time curve of an urban rail
section based on train operation data. &e main work
completed includes the following:
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(1) Based on the features of the section operation curve
of urban rain trains and correlations between the
running time and corresponding energy consump-
tion, the discriminant criterion of outliers is pro-
posed to select the candidate fitting data set from
many original data points, which reduces the scale of
the train operation data set as well as guaranteeing
the curve fitting quality.

(2) An improved B-spline curve fitting method is
proposed in which the parameter vector and knot
vector are optimized by the genetic algorithm,
which has a higher fitting accuracy and faster
convergence speed.

(3) On the basis of tabu search, we construct an opti-
mization model of the fitting curve by defining bi-
directional tabu lists to adjust and optimize the
fitting data set from the candidate data set dynam-
ically. It is proposed that the optimization method
could obtain the optimal E-T curve and ensure the
continuity and smoothness of the fitting curve at the
same time.

&e research on the optimal E-T curve based on
operation data of urban rain trains has certain practical
significance beyond theoretical limitations, and the op-
timal E-T fitting curve could be used in the selection of
section running time, evaluations of the energy con-
sumption of the train operation diagram, and perfor-
mance appraisal of train drivers. Further research will
focus on the optimization ability of the algorithm of
fitting curve optimization.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

&e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

&is work was supported by the National Natural Science
Foundation Council of China (nos. U1934216 and 71871226)
and by the Research Foundation of Guangzhou Metro
Group Co., Ltd. (no. HT170235).

References

[1] I. P. Milroy, Aspects of Automatic Train Control, Lough-
borough University, Loughborough, UK, 1980.

[2] E. Khmelnitsky, “On an optimal control problem of train
operation,” IEEE Transactions on Automatic Control, vol. 45,
no. 7, pp. 1257–1266, 2000.

[3] C. S. Chang and S. S. Sim, “Optimising train movements
through coast control using genetic algorithms,” IEE

Proceedings - Electric Power Applications, vol. 144, no. 1,
pp. 65–73, 1997.

[4] B. R. Ke, Block-layout Design Using MAX-MIN Ant System for
Saving Energy on Mass Rapid Transit Systems, IEEE Press,
New York, NY, USA, 2014.

[5] R. Liu and I. M. Golovitcher, “Energy-efficient operation of
rail vehicles,” Transportation Research Part A: Policy and
Practice, vol. 37, no. 10, pp. 917–932, 2003.

[6] I. V. Sanchis and P. S. Zuriaga, “An energy-efficient Metro
speed profiles for energy savings: application to the valencia
Metro,” Transportation Research Procedia, vol. 18, pp. 226–
233, 2016.

[7] Y. V. Bocharnikov, A. M. Tobias, C. Roberts, S. Hillmansen,
and C. J. Goodman, “Optimal driving strategy for traction
energy saving on DC suburban railways,” IET Electric Power
Applications, vol. 1, no. 5, pp. 675–682, 2007.

[8] M. R. Mashinchi, A. Selamat, S. Ibrahim et al., “Outlier
elimination using granular box regression,” Information
Fusion, vol. 27, pp. 161–169, 2016.

[9] H. Hassani, M. Zokaei, D. von Rosen, S. Amiri, and
M. Ghodsi, “Does noise reduction matter for curve fitting in
growth curve models?” Computer Methods and Programs in
Biomedicine, vol. 96, no. 3, pp. 173–181, 2009.

[10] S. Zheng, R. Feng, and A. Huang, “A modified moving least-
squares suitable for scattered data fitting with outliers,”
Journal of Computational and Applied Mathematics, vol. 370,
p. 112655, 2020.

[11] P. Chen, L. Li, Y. Liu et al., “Detection of outliers and patches
in bilinear time series models,” Mathematical Problems in
Engineering, vol. 2010, Article ID 580583, 256 pages, 2010.

[12] A. Gálvez and A. Iglesias, “Firefly algorithm for explicit
B-spline curve fitting to data points,” Mathematical Problems
in Engineering, vol. 2013, pp. 206–226, 2013.

[13] G. Trejo-Caballero, H. Rostro-Gonzalez, C. H. Garcia-
Capulin et al., “Automatic curve fitting based on radial basis
functions and a hierarchical genetic algorithm,”Mathematical
Problems in Engineering, vol. 2015, Article ID 731207,
14 pages, 2015.

[14] S. Su, T. Tang, X. Li et al., “Optimization of multitrain op-
erations in a subway system,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 673–684, 2014.

[15] X. Li, C. F. Chien, L. Li et al., “Energy-constraint operation
strategy for high-speed railway,” ICIC International, vol. 8,
no. 10, pp. 6569–6583, 2012.

[16] H. Kang, F. Chen, Y. Li, J. Deng, and Z. Yang, “Knot cal-
culation for spline fitting via sparse optimization,” Computer-
Aided Design, vol. 58, pp. 179–188, 2015.

[17] D. D. Hearn, Computer Graphics with OpenGL, Publishing
House of Electronics Industry, Beijing, China, 2004.

[18] W. Zheng, P. Bo, Y. Liu, and W. Wang, “Fast B-spline curve
fitting by L-BFGS,”Computer Aided Geometric Design, vol. 29,
no. 7, pp. 448–462, 2012.
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