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In recent years, the prohibition of trucks which could cause environmental pollution on urban roads has become widespread in
China. However, some truck restriction policies might lead to a reduction in logistics transportation efficiency. With the help of
big data, technology companies have developed many truck applications, such as HCB, truck home, and truck help, to provide the
drivers available traffic information. In this context, this paper put forward a truck path optimization model considering en-
vironmental impact (TPOM-EI), which is solved by a heuristic algorithm—ant colony optimization (ACO) algorithm. Most
previous studies focused on unilateral benefits rather than overall benefits; this paper aims to propose a path optimization model
based on real-time minimization of social and transportation costs. Finally, data of Xiqing Economic and Technological De-
velopment Zone in Tianjin city (XQ-EDZ) have been used to demonstrate the applicability of the proposed algorithm./e results
show that logistics truck path has a huge impact on social costs, and real-time activities in various areas will also change the path of
a truck. /is research will also help logistics truck drivers to choose the best route in real time.

1. Introduction

With the rapid development of economy and the explosive
growth of urban population in China, urban problems such as
traffic congestion and environmental pollution have become
increasingly serious, affecting the people’s lives and the sus-
tainable development of cities. Logistics transportation is an
important factor causing the above problems. In order to solve
these problems, traffic management department tried to limit
the run paths of trucks, especially high-emission trucks, to
reduce traffic congestion and environmental pollution. Many
logistics transportation policies have been formulated, such as
imposing fines on carbon-intensive roads, truck restrictions,
and promoting clean energy trucks.

However, there are some deficiencies about the impact of
logistics policies on logistics benefits in the current study.
First of all, there is no definitive conclusion on whether

urban logistics policies are conducive to solve problems such
as urban congestion and urban environmental pollution in
academia. Tamagawa et al. [1] have concluded through
simulation experiments that the combinedmeasures of truck
restrictions and discounted tolls on highways have a huge
effect on improving urban pollution emissions. Arvidsson
[2] has proposed that increasing the full load rate instead
increased truck exhaust emissions in severe pollution areas.
Russo and Comi [3] put forward that the use of environ-
mentally friendly vehicles is the best choice for achieving
sustainable urban development in small- and medium-sized
cities. Teo et al. [4] have studied the environmental benefits
of charging an exhaust emission penalty policy for high-
emission trucks, and the results showed that this policy
actually increased exhaust emissions.

Besides, we have found that the intensity of land de-
velopment has been increasing, construction land has
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continued to expand beyond the original boundary, and
urbanization has accelerated further. In the process, the
traffic characteristics of suburban roads changed signifi-
cantly. Due to the changes, suburban roads originally hold a
lot of transit traffic and gradually transform to the short-
distance traffic. Suburban roads gradually have an urban
road function, especially in development zone. /e phe-
nomenon of mixed passenger and freight traffic became
increasingly serious, which caused frequent traffic accidents.
/ese traffic accidents also brought about other problems
such as noise and air pollution that made people complain.

At present, traffic management department only im-
plements a traffic control measure for one or more closed
areas from a static perspective. /ere is no detailed dem-
onstration of how to plan the restricted areas scientifically.
Related academic research achievements are few. If the
restricted areas are too large, the transportation cost will be
increased. On the contrary, it will not be able to effectively
reduce the social cost (e.g., traffic safety, environmental
pollution, etc.). /e social cost and transportation cost of
trucks traveling on different paths are also different. How to
find the optimal truck path has become a key issue in the
division of the restricted areas.

In the past research, most researchers have tended to
minimize the traffic congestion and environmental pollution
caused by logistics trucks with unilateral benefits rather than
overall, which led to a reduction in logistics transportation
efficiency [5–9]. Some researches lack quantitative evalua-
tion and analysis using empirical methods in policy de-
velopment. Usually, the methods are modeling and
simulation, and the data sources come from enterprise
surveys. /at is why the policy formulation lacks flexibility,
timeliness, and robustness.

Based on the above, we try to find a method to optimize
logistics transportation truck path with the objective func-
tion of minimizing social and transportation costs in real
time. /e social costs contain the traffic congestion cost,
emissions cost, and safety cost. Our research would provide
solutions for dynamic dispatch of trucks by traffic man-
agement department. Besides, trucks are gradually con-
nected to the Internet with the help of big data and Internet
of /ings technology, and some software such as “truck
home” for truck navigation has appeared. It would provide
practical application scenarios for our research.

2. Literature Review

As an important part of the urban transportation system,
logistics transportation has a significant contribution to
improving the quality of urban economic and social oper-
ations, but it will also bring about negative effects such as
environmental pollution and traffic congestion [10]. In order
to reduce the negative externalities generated by logistics
transportation, the traffic management department usually
implements traffic control measures for trucks entering the
urban area. /e most typical one is truck restrictions. Truck
restrictions can significantly reduce the freight traffic flow in
restricted areas (generally the central area), thereby effec-
tively reducing the interference of trucks on the urban center

shopping environment and traffic, which have better social
benefits [11]. Meanwhile truck restrictions will cause trucks
to enter, pass, and stop difficultly. /at will increase the cost
and efficiency of logistics transportation, affect the quality of
distribution services [12], and even make logistics trans-
portation become a shortcoming of urban logistics under the
truck restriction policy [13]. In addition, truck restrictions
may also cause new problems. For example, logistics
transportation companies use passenger vehicles transport
goods to reduce transportation costs, which will increase
traffic volume and environmental pollution in restricted
areas [14]. Related policies and strategies, models, and al-
gorithms are reviewed in detail below.

2.1. Logistics Transportation Policies and Strategies. As early
as 1948, the Journal of Economics published related research
on “carrot and stick” policy, which divided the feedback of
policy on object behavior into punishment and incentive. As
far as urban logistics transportation policies are concerned,
many cities generally adopt punitive policies, such as pen-
alties for fines for trucks that enter the specified area of a
nonspecified time or for trucks that exceed the standard./e
purpose of implementing the urban logistics penalty policy
is to alleviate urban traffic congestion and environmental
pollution. Urban traffic congestion and environmental
pollution are considered to be largely caused by logistics
transportation. According to the statistics, delays and other
losses caused by traffic congestion amount to 1% of EU’s
overall GDP [15].

In the 1980s, in the Italian capital of Rome, an area of five
square kilometers is designated as the central restricted
traffic zone. /is area restricts the entry and exit of trucks
unless paying an entry fee [16]. Santiago implemented an
annual traffic restriction policy on vehicle control in 2008,
that is, from April to August in the winter (Southern
Hemisphere), restricting 40% of vehicles without exhaust
catalysts from entering the urban area to reduce emissions
[17].

Since their development, many cities around the world
have implemented freight restrictions. In Germany, gov-
ernment and urban planning departments have formulated a
number of truck restrictions for decades, such as levying
highway tolls for trucks which load more than 12 tons in
order to reduce the externalities brought by logistics
transportation [18]. In Ahmedabad of India, the urban
transport policy department has established controls on
trucks to restrict them into and out of the restricted area
except from 11 pm to 7 am in the next day or from 1 pm to 4
pm [19]. /ere are also logistics truck restrictions due to
temporary international activities. During the 2012 Olympic
Games in London, the United Kingdom imposed temporary
restrictions on trucks. It generally claims that logistics
transportation activities should run outside normal oper-
ating hours [20].

In Beijing, truck restrictions were due to road
maintenance and temporary foreign affairs in the early
years. Recently, department of traffic management has
launched a series of policies and strategies to reduce
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congestion pressure with the increasing number of ve-
hicles. Since 2008, it has been forbidden to enter the roads
within the Fourth Ring Road from 6 am to 11 pm, and
trucks over 8 tons are forbidden to enter Fifth Ring Road
from 6 am to 10 pm in Beijing. Other cities in China have
begun to implement plate number restrictions since 2010,
such as Guangzhou, Shanghai, Tianjin, and Qingdao
[21, 22].

2.2. Exhaust Emission Model. One of the most important
reasons to restrict logistics transport truck is severe pollution
caused by its exhaust emissions. /erefore, the study of
exhaust emission model can evaluate the effectiveness of the
truck restrictions. Many scholars have researched on the
quantitative evaluation of vehicle exhaust emissions and
developed a variety of models for quantitative evaluation of
exhaust emissions. According to the model’s application
level and development ideas, the existing exhaust emission
models can be divided into three levels: macro, meso, and
micro.

Macroscopic exhaust emissions evaluation uses the
emission factor based on average speed as a calculation
parameter to calculate and evaluate the tail gas emissions.
Macro emission models include the MOBILE model de-
veloped by the US Environmental Protection Agency [23],
the EMFAC model developed by the California Air Re-
sources Agency [24], and the COPERTmodel developed by
the European Environment Agency on their own [25].
Mesoscale models are mainly used to analyze and evaluate
exhaust emissions in lanes, traffic communities, and other
areas. Typical mesoscale exhaust models include MEASURE
model and VT-Micro model./emicroexhaust model could
analyze the emissions of specific areas, roads, or intersec-
tions and evaluate real-time exhaust emissions of motor
vehicles. Typical microexhaust models include CMEM
model and ONRORD model.

Sugawara and Niemeier [26] obtained the exhaust
emissions at different average vehicle speed using MOBILE
model as the optimal objective function value. Ericsson et al.
[27] studied the path selection behavior of travelers by
extracting basic traffic data from Delong, Sweden, with the
goal of minimizing transportation fuel and exhaust emis-
sions. Kyoungho and Hesham [28] analyzed the actual se-
lection behavior of motor vehicle drivers and found that
some drivers choose the shortest path in order to save time
or avoid congestion. Jaeyoung et al. [29] combined the
microsimulation model TRANSIMS with the microenergy
consumption model VT-Micro and applied genetic algo-
rithms to study the time consumption, energy consumption,
and emissions of transportation corridors.

2.3.PathOptimizationAlgorithm. In 1959, Dutch computer
scientist Dijkstra proposed the Dijkstra algorithm [30]. Its
main idea is to construct a path tree by increasing the
length of the path and develop the leaf nodes of the path
tree to obtain the shortest path from the root node to the
leaf node path. In 1962, Floyd [31] proposed the Floyd
algorithm. /e algorithm constructed the shortest path

matrix of each two points in the graph through the weight
matrix of the graph. /ese algorithms are classic path
optimization algorithm.

As early as 1959, Dantzig and Ramser proposed the
vehicle routing problem (VRP), which belongs to NP-hard
problem [32]. Solving VRP problems can be divided into
precise algorithms and heuristic algorithms. Only when the
problem size is small can accurate algorithms find the op-
timal solution in an acceptable time. /ere is not much
research on the precise solution of VRP. /e most repre-
sentative is the branch pricing cutting algorithm proposed
by Dinh et al. [33]. Subsequently, Ren et al. further improved
the algorithm performance by using a strategy of increasing
the number of cuts and proposed the precise set partitioning
algorithm [34]. In this paper, we would solve a truck route
problem considering environmental impact. Since this
problem is more complicated than the classical vehicle path,
heuristic algorithms are often used for solving it. /e more
commonly used algorithms include particle swarm opti-
mization, ant colony algorithm, and parallel tabu search
heuristic method [35–37].

In this paper, we aim to find the optimal truck paths
considering transportation costs and social costs for solving
the real-time logistics transportation scheduling. /e re-
mainder of the paper is organized as follows. Section 3 shows
the description of the problem and develops a model to
design truck paths based on ant colony algorithm. In Section
4, we present the process of the algorithm. A case study in
Tianjin city of China is present in Section 5. At last, the
conclusions are provided in Section 6.

3. Model Foundation

3.1. Problem Description. At present, many cities have
implemented truck restrictions strategy in order to reduce
regional environmental pollution, traffic congestion, and
safety issues. But it is more appropriate to say that the
strategy would reduce the people’s loss in the restricted zone.
Trucks passing through different areas can cause unequal
loss on people in the restricted zone. /e unequal loss is
social costs which contain congestion cost, emissions cost,
and safety cost./e loss is also proportional to the amount of
activity in different areas. According to statistics surveys of
urban residents, the tolerance of trucks in commercial and
residential areas is significantly lower than that in industrial
areas.

As shown in Figure 1, the truck departs from origin point
O and reaches destination point D in Sioux Falls network.
/ere are 24 nodes in the network and the lines represent
routes. All the routes divide the restricted zone into 14 areas.
Each area has different land use properties. When a truck is
passing through a route, it will have a negative impact on the
passed areas which are enclosed by the route. /e truck that
passes through route i, j is denoted by (i, j). Assume that the
path of the truck’s OD is the bold green line. When the truck
passes route (O, 2), it only affects the people in area 1, while it
would affect the people in areas 1 and 2 when the truck
passes route (2, 3). Each area could calculate the whole loss S
and each route has a certain loss. Take route (13, 14) as an
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example; the total loss of people in areas 9 and 10 can be
expressed as

S13,14 �
1
2

L1 · S9

L1 + L2 + L3
+

L1 · S10

L1 + L4 + L5 + L6
􏼠 􏼡, (1)

where S13,14 denotes the loss when the truck passes route (13,
14), S9 and S10 denote the loss of areas 9 and area 10, re-
spectively, and L denotes the length of each route.

/e activity and congestion are different for each area at
a different time horizon. If we do not consider the social cost,
the truck should choose the shortest path to pursue maxi-
mum benefits. However, it could have a serious impact on
traffic congestion, environmental pollution, and safety in
dense areas. /e truck should avoid high-impact areas to
reduce social costs. In summary, we establish a model
considering the environmental impact and area property to
minimize social costs and transportation costs. /e specific
optimization model is given in Section 3.2.

3.2. Truck Path Optimization Model considering Environ-
mental Impact (TPOM-EI). Logistics transportation truck
running on urban roads has many negative impacts on local
residents. Firstly, compared with private cars, logistics
transportation truck runs slower with longer bodies that
there would be higher probability of causing traffic con-
gestion. /e book of Highway Capacity Manual shows that
the standard car conversion coefficient of a truck is 4 times
that of a private car. Secondly, logistics transport truck
produces more emissions, especially when it is running on
urban roads with frequent deceleration and idling. Finally, it
has poor drivability due to its heavy weight and causes traffic
accidents in high-density areas. /erefore, we select traffic
congestion, exhaust emission, and traffic safety as the as-
sessment of the increased social costs brought by logistics

transportation truck. Truck path optimization model con-
sidering environmental impact (TPOM-EI) has been put
forward in this paper.

3.2.1. Traffic Congestion Cost. Logistics transportation truck
could exacerbate traffic congestion [38]. Due to the char-
acteristics of a large body and low speed, it is difficult for
private cars to overtake during peak hours, which become a
bottleneck on urban road. Let TC be the traffic congestion
cost; it is a measure of the marginal congestion cost of trucks
traveling on urban road.

TC � 􏽘
i

􏽘
j

􏽘
t

􏽘
m

􏽘
k

λ1 · Bm · T
t
ij · N

t
ij,m · ψm,k · x

t
ij,k,

T
t
ij � tij · 1 + a

qt
ij

Cij

􏼠 􏼡

b

⎛⎝ ⎞⎠,

(2)

where Bm is the conversion coefficient of truck type m
converted to the standard car. Nt

ij,m denotes number of
truck type m passing through route (i, j) at time horizon t.
xt

ij,k is decision variable; xt
ij,k � 1 means that the truck k

passes through route (i, j) at time horizon t; otherwise,
xt

ij,k � 0. ψm,k is decision variable; ψm,k � 1 means that the
truck k belongs to type m; otherwise, ψm,k � 0. λ1 is the cost
conversion factor of traffic congestion.

Tt
ij is road resistance function for route (i, j) at time

horizon t. We use the BPR (Bureau of Public Road) function
in this paper. tij denotes free flow time of a truck passing
route (i, j). qt

ij expresses the traffic flows of route (i, j) at time
horizon t. With the help of transportation big data infor-
mation platform, we can obtain real-time traffic flows for
urban road.Cij is the capacity of the route (i, j). a and b are
the parameters of road resistance function, respectively.

3.2.2. Exhaust Emissions Cost. Different types of trucks
produce unequal exhaust emission volume, and the exhaust
emissions of a truck are also different at different speeds./e
classification of logistics transportation truck types is based
on the MOBILE model. /e trucks are divided into four
types: Heavy-Duty Gasoline Vehicles (HDGV), Light-Duty
Diesel Vehicles (LDDV), Light-Duty Diesel Trucks (LDDT),
and Heavy-Duty Diesel Vehicles (HDDV). /e total masses
of all the logistics transportation trucks are above 3.5 tons.

Emissions such as CO, NOx, hydrocarbon, and PM are
emitted when the truck is working. In this paper, we choose
the CO and NOx for the measure of truck exhaust emissions.
Exhaust emission factors are determined using the MO-
BILE6.2 model, which is an emission factor model intro-
duced by the US Environmental Protection Agency [39].

With the help of the Vehicle Mass Analysis System
(VMAS), we have obtained exhaust emission factors at
different speeds, which can be seen in Table 1./en, by using
the least-squares method to obtain the velocity-emission
curve, we can gain the exhaust emission factors at any speed.

Previous studies rarely considered the impact of land use
properties on environmental pollution. In fact, different land
use properties have different tolerance levels for truck
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Figure 1: Logistics transportation truck path optimization
diagram.
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exhaust emissions. People can hardly tolerate the pollution
caused by the operation of trucks in residential areas and
commercial areas. On the contrary, people’s response is
relatively mild in industrial areas and logistics storage areas.
/erefore, we innovatively propose the index of regional
pollution tolerance, defined as D.

D
t
f � Uf · G

t
f, (3)

where Dt
f is the tolerance of area f at time horizon t. Uf

denotes the average land price of area f. Gt
f denotes the

vitality of area f at time horizon t, which can be expressed by
the density of activities people in the area. /e total cost of
exhaust emissions can be expressed as

EC � 􏽘
i

􏽘
j

􏽘
t

􏽘
m

􏽘
k

􏽘
w

λ2 · D
t
f · N

t
ij,m · Lij · E

w
ij,m(v) · ψm,k · x

t
ij,k,

(4)

where Lij is the length of the route (i, j). Ew
ij,m(v) is the

exhaust emission factor of the wth pollutant of type m on

route (i, j). It relates to truck’s speed. λ2 is the cost conversion
factor of exhaust emissions.

3.2.3. Traffic Safety Cost. Because the weight of the logistics
transportation truck is heavy when it is full of cargo, it
becomes difficult to brake and slow down when the truck is
traveling at a fast speed. In addition, there is a large pos-
sibility of rollover owing to the high gravity center.
/erefore, trucks would increase the risk of traffic accidents
when they are traveling on urban roads. /e occurrence of
accident rates is highly correlated with regional population
density. We define SC as the traffic safety cost:

SC � 􏽘
i

􏽘
j

􏽘
t

􏽘
m

􏽘
k

􏽘
f

λ3 ·
Pf · r

t
f

Af

· sm · x
t
ij,k · y

f

ij, (5)

where Pf and Af denote the total population and acreage of
area f, respectively. rf is travel rate of area f at time horizon t.
sm is the safety factor of typem. y

f
ij is decision variable; y

f
ij �

1 means that the route (i, j) belongs to the area f; and
otherwise, y

f
ij � 0. λ3 is the cost conversion factor of traffic

safety.

3.2.4. Logistics Transportation Cost. /e logistics trans-
portation cost mainly considers the fuel cost and time cost.
LC is used to express the logistics transportation cost:

LC � 􏽘
i

􏽘
j

􏽘
t

􏽘
m

􏽘
k

λ4 · T
t
ij + Lij · σm􏼐 􏼑 · x

t
ij,k, (6)

where σm is the fuel cost per kilometer and λ4 is the cost
conversion factor of time.

In summary, we establish the truck path optimization
model considering environmental impact (TPOM-EI) which
minimizes social costs and logistics transportation costs./e
objective function of the model is as follows.

minZ � TC + EC + SC + LC

� 􏽘
i

􏽘
j

􏽘
m

􏽘
t

􏽘
k

􏽘
w

􏽘
f

λ1 · Bm · T
t
ij · N

t
ij,m · ψm,k + λ2 · D

t
f · N

t
ij,m · Lij · E

w
ij,m(v) · ψm,k + λ3 · Pf · r

t
f · sm · y

f

ij

Af + λ4 · T
t
ij + Lij · σm

⎛⎝ ⎞⎠ · x
t
ij,k,

(7)

subject to

􏽘
i

x
t
ij,k ≤ 1, (8)

􏽘
j

x
t
ij,k ≤ 1, (9)

􏽘
m

N
t
ij,m � 􏽘

k

x
t
ij,k, (10)

x
t
ij,k + x

t
ji,k ≤ 1, i< j,∀i, j. (11)

It is shown from equation (7) that each subfactor
considers time horizon with the decision variablext

ij,k. λ1, λ2,
andλ3 are used to unify cost conversion of factors.

Equations (8) and (9) restrict each node to be accessed
only once. Equation (10) guarantees that truck traffic is
conserved. Equation (11) ensures that each route can only be
visited once.

4. Model Solution

/e TPOM-EI proposed in this paper belongs to the NP-
hard problem. /erefore, the model is solved by a heuristic

Table 1:/e factors of exhaust emission at different speeds (g/km).

Speed Emissions HDGV LDDV LDDT HDDV

10 CO 69.01 25.88 27.45 31.30
NOx 2.37 24.71 25.41 31.58

15 CO 53.74 18.09 20.15 24.89
NOx 2.44 21.66 23.33 28.24

20 CO 42.67 14.74 17.61 20.14
NOx 2.52 20.35 22.19 25.53

25 CO 34.42 13.11 14.74 16.49
NOx 2.59 18.72 21.01 23.34

30 CO 28.71 10.20 11.67 13.91
NOx 2.66 16.60 18.42 21.73

35 CO 24.19 8.08 9.65 11.80
NOx 2.74 14.30 16.24 20.43

40 CO 30.16 6.11 8.40 10.20
NOx 2.82 12.72 14.08 19.48
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algorithm—ant colony optimization (ACO) algorithm. ACO
algorithm is a simulation evolution algorithm based on ant
foraging behavior proposed by Dorigo et al. [40]. When the
ants forage, although ants cannot communicate with each
other, each ant will leave a certain concentration of pher-
omone on the path it has traveled. /e next ants would have
a high probability to choose the path with more pheromone.
Ants use the indirect communication method to achieve
efficient coordination of group behavior. Under collective
cooperation, the ant colony will search blindly and randomly
from the beginning and gradually find and stabilize the
optimal foraging path state [41]. Compared with other
heuristic algorithms, ACO algorithm has stronger global
search ability and better distributed parallel mechanism and
self-learning ability. Moreover, the efficient cooperation
between ants through pheromones also improves the ability
to find the optimal solution.

4.1. Parameter Definition. /e main parameter definitions
are given as shown in Table 2.

4.2. Moving and Pheromone Update Strategy

4.2.1. Moving Strategy. Moving strategy is an important part
of ACO algorithm, which is a basis for ants to find all
possible paths. Each ant selects the next node according to
pheromone and heuristic information. In the initial state, the
pheromone of each route is constant C, and the heuristic
information is the reciprocal of the length of the route. /e
heuristic information reflects the expected degree of the ant
to move between any two nodes. /en the probability that
the kth ant moves from node i to node j can be expressed as

p
k
ij �

ταij · ηβij
􏽐h∉tabuk

i
ταih · ηβih

, j ∉ tabu
k
i ,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where αand β control the weight of pheromone and heuristic
information in the moving strategy. Generally, paths with
higher pheromone concentrations and shorter lengths are
more likely to be selected. But this does not mean that, after
the kth ant arrives at node i, it must select node jwhose route
has the largest pk

ij as the next access node, because this would
lose the opportunity to find some better solutions, thereby
reducing the global search ability of the algorithm.

In order to ensure that each path search can randomly
select nodes with a high probability, we combine the roulette
method to improve themoving strategy./is kind of moving
strategy is called a pseudorandom proportional moving
strategy. /e ant chooses the next node j to be visited, which
can be expressed as

j �

argmax
h∉tabuk

i

ταih · ηβih􏽮 􏽯 R≤R0,

S, R>R0,

⎧⎪⎪⎨

⎪⎪⎩
(13)

where R is a random number obeying [0,1] uniform dis-
tribution. R0is a preset parameter between 0 and 1. When
R≤R0, the ant will definitely choose the node corresponding
to the maximum moving probability. When R>R0, the ant
will choose the node according to the principle of roulette. S
is the set of access nodes. A node is randomly selected
according to the probability distribution given by equation
(12). /e specific steps to determine S are as follows:

Step 1: ∀j ∉ tab uk
i , calculate moving probability pk

ij and
cumulative probability qk

i (n), where qk
i (n) is equal to

the sum of all previous n moving probabilities.
Step 2: Generate a uniformly distributed random
number r in [0, 1].
Step 3: Find two cumulative probabilities qk

i (n − 1) and
qk

i (n) which fulfill the condition qk
i (n − 1)≤ r≤ qk

i (n).
/e node sets corresponding to qk

i (n) and qk
i (n − 1) are

N1 and N2, respectively. We would determine
S � N1 ∩N2.

4.2.2. Pheromone Update Strategy. Since pheromone and
heuristic information will jointly guide the ant behavior, the
heuristic information is always equal to the inverse of the
length of the route, and the pheromone will change when an
ant passes through. If there is too much pheromone
remained on the route, the effect of the heuristic information
on the ants’ choice of path would be greatly reduced.

/erefore, in order to ensure that the effectiveness of
the heuristic information will not be affected by excessive
pheromone, the pheromone on all routes needs to be
updated in ant colony activities. /e update methods
contain local update and global update. /e local update
means that the ant should update the pheromone every
time it passes through a route. /e global update means
that the ant updates the pheromone of all the routes that it
has passed through. /e experiments show that the global
update strategy is more effective and can better reflect the
overall advantages and disadvantages of the solution.
/erefore, we choose the global pheromone update
strategy in this paper.
Δτk

ij represents the total amount of pheromone released by
the kth ant on route (i, j). /en, after K ants complete the
traversal search, the total amount of pheromone changes on
each route (i, j) which can be seen in the following equation:

Δτ(i, j) � 􏽘
k

Δτk
ij, (14)

Δτk
ij �

ρ · Q

TCk

, ant k pass route (i, j),

0, otherwise,

⎧⎪⎪⎨

⎪⎪⎩
(15)

where Q is a constant, indicating the total amount of
pheromone released by all ants on the path after the traversal
search. TCk represents the total cost generated by the kth
ant. ρ denotes the pheromone retention capacity. /e
pheromone of the updated route (i, j) can be expressed as
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τij �
ρ · τij + Δτ(i, j), ∃ ant k pass route (i, j),

ρ · τij, otherwise.
⎧⎨

⎩ (16)

4.3. Ce Optimization Process of ACO Algorithm. /is
section presents a multicriteria hierarchical ant colony
optimization algorithm to solve the TPOM-EI in the pro-
posed logistics transportation network. /e steps of ACO
algorithms are given in Table 3.

5. Case Study

Xiqing Economic and Technological Development Zone of
Tianjin city (XQ-EDZ) was mainly dominated by the lo-
gistics industry in the early years with numerous logistics
stations. With the acceleration of urbanization, the pop-
ulation of XQ-EDZ has been increasing and regional
functions have been continuously improved. However, the
traffic conditions are very poor due to the high proportion of
logistics transportation trucks. A few years ago, the local
government department adopted measures to prohibit truck
traffic on several major roads, but the policy did not achieve
the expected results and even worsened traffic condition and
safety. /erefore, we use XQ-EDZ as a case study to dem-
onstrate the applicability of the proposed algorithm. Several
experiments are performed to validate the effectiveness of
the proposed model.

Figure 2 shows the core area of Xiqing Economic and
Technological Development Zone with 242.63 km2 and 134
roads which contain 18 highways, 75 main roads, and 41

secondary roads. Different land use properties are repre-
sented by different colors. Blue lines are traffic network and
the internal roads of each area are not shown in the figure.
/ere are 10 logistics stations in the zone, which are rep-
resented by A to J. Logistics transportation trucks enter or
exit from the direction of① to⑨. /e white arrows indicate
the entrance of each logistics station. To simplify the
problem, we set the arrival rate of trucks at each logistics
station based on the size and source, which is shown in
Table 4.

/rough statistical data of public transportation station
provided by Tianjin Rail Transit, we have obtained the
people’s travel time distribution in different types of areas on
workday. /is can be seen in Figure 3. /e figure shows that
different types of areas have significant differences in travel
time distribution. Commercial area has the maximum
number of trips compared with other areas and it has three
peak hours in a day, while the residential area only has two
peak hours.

We solve the TPOM-EI model by ACO algorithms.
Properly choosing the value range of αandβ can get better
search results; we adopted the recommended values in the
literature [42]. /e parameter values are as follows. K� 200,
Iter� 500, α � 3, β � 1.5, and ρ � 0.75, λ1, λ2, λ3, λ4 are the
cost conversion factors, which could be defined by the ratio
of per capita GDP to social welfare value in Tianjin city.

In this paper, we divide one day into 24 time periods. So,
we would gain 24∗9∗10� 2160 kinds of path optimization
results. In order to highlight the TPOM-EI model, we screen
out valuable results in massive results. Taking the model
validity into consideration, we pick out 12 typical scenarios

Table 2: /e sets, indices, and parameters used for solving the
TPOM-EI.

Parameter Definition
K Set of the ant colony
k Index of ants
Iter Maximum number of iterations
NC Iteration counter, NC≤ Iter
τij Pheromone concentration on route (i, j)

ηij

Heuristic information concentration on route (i, j),
ηij � 1/Lij

α Weight of pheromone concentration
β Weight of heuristic pheromone concentration
ρ Pheromone retention capacity
Q Total amount of pheromone
S Set of access nodes
TCk Total cost of the kth ant
tab uk

i Set of tabu list when kth ant is located at node i

tab uk
i+

Set of nodes allowed to be visited by the kth ant at
node i

pk
ij

Probability of the kth ant moving from node i to node
j

qk
i (n) Sum of all previous n moving probabilities
R Random number obeying [0, 1] uniform distribution
R0 Preset parameter between 0 and 1

Δτk
ij

Total amount of pheromone released by the kth ant on
route (i, j)

Δτ(i, j) Total gap of pheromone on route (i, j)
Zk Total cost of travel for ant

Table 3: /e steps of ACO algorithms.

ACO algorithm
Inputs: O–D nodes (o, d) and parameters of K, NC, α, β, ρ, Q
/e arrival rate for each truck and the travel time distribution for
each area
/e real-time traffic flow on each route
Returns: optimal truck paths
Step 1. Initialization:
Initialize border nodes and tabu list
For each k ∈ K do
Let border node o be the origin location
i⟵ o/i ∈ tub uk

o+

End for
Step 2. Path selection:
For i⟵ 1 to |K| − 1 do
For each k ∈ K do
Choose the next node j according to the equation mentioned
Add edge i, j to tab uk

j⟵ i

End for
End for
Step 3. Path extension:
Compute Zk ∀k ∈ K /Zk is the total cost of travel for ant k
Update Δτ(i, j) and τij according to the equation mentioned
While not end condition do
Go to Step 2
End while
Print optimal truck paths
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that have different results solved by the shortest path model
and the proposed model in this paper. Table 5 shows the
truck path optimization results in off-peak hour (2 pm-3
pm).

It can be seen from Table 5 that the TPOM-EI model has
increased the travel lengths by 6.03% to 25.11% compared
with the shortest path model. Although the travel length is
increased, the total social cost is reduced. By further analysis,
we consider adding time variables to optimize the truck’s
travel path in real time and join the arrival rates at different

time horizons. /e lengths of truck path optimization at
different time horizons are shown in Table 6.

We can see from Table 6 that the optimization of logistics
transportation truck paths has significant change for some
scenarios at different time horizons in workdays, such as②-J,
③-I, and ⑧-A. Because the social costs of these logistics
transportation truck paths are sensitive, in other words, these
paths have a large impact on social costs, the logistics trans-
portation truck paths are constantly adjusted as the activity of
each area changes. However, we also find some scenarios that
are not sensitive to the change of time horizons (e.g., ③-B,
⑦-D, and ⑦-F). /e increased cost of trucking logistics
transportation is far higher than the social cost reduction caused
by traffic congestion, environmental impact, and traffic safety.

We analyze the optimized results of logistics trans-
portation truck path further by contrasting the peak hour
and off-peak hour. We find that the length of an optimized
path during peak hours is farther than that during off-peak
hours. Because the social cost of some roads increases during
peak hours, trucks are forced to find other paths which
increases logistics transportation costs. Besides, we also find
an interesting result that the length of optimized path during
peak hours is less than that during off-peak hours (e.g.,④-H
and ⑥-E). It seems to be contrary to our expectations.
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Figure 2: Core area of Xiqing Economic and Technological Development Zone.

Table 4: /e arrival rate of trucks at each logistics station.

Arrival rate (veh/h) ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
A 15 15 20 12 3 15 5 5 6
B 12 10 15 20 5 12 5 10 5
C 10 10 12 8 5 10 2 6 12
D 15 12 10 10 8 10 12 15 15
E 15 18 5 8 15 25 15 2 10
F 8 10 2 3 15 5 6 4 2
G 10 12 5 2 10 8 5 6 5
H 20 15 10 5 6 12 15 8 6
I 10 12 2 8 8 6 12 3 3
J 10 10 2 2 6 5 12 2 6
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Figure 3: People’s travel time distribution in different types of areas on workday.

Table 5: Truck path optimization results in off-peak hour.

Scenarios Path direction Logistics stations Shortest lengths (km) Optimized lengths (km) Gap (%)
1 ① H 28.17 30.84 9.48
2 ② J 26.41 29.88 13.14
3 ③ B 6.70 7.74 15.52
4 ③ I 29.52 31.30 6.03
5 ④ H 13.69 15.44 12.78
6 ⑤ G 4.85 5.96 22.89
7 ⑥ B 22.47 24.02 6.90
8 ⑥ E 13.26 16.59 25.11
9 ⑦ D 20.04 23.68 18.16
10 ⑦ F 15.08 17.91 18.77
11 ⑧ A 17.70 19.56 10.51
12 ⑨ C 14.05 15.38 9.47

Table 6: /e lengths of truck path optimization at different time horizons.

Time horizons ①-H ②-J ③-B ③-I ④-H ⑤-G ⑥-B ⑥-E ⑦-D ⑦-F ⑧-A ⑨-C
0-1 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
1-2 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
2-3 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
3-4 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
4-5 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
5-6 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
6-7 29.28 27.60 6.70 30.47 15.44 5.96 24.02 16.59 20.04 17.91 19.56 15.38
7-8 30.25 30.52 7.74 31.30 15.44 6.22 24.02 15.25 23.68 17.91 21.02 17.63
8-9 30.84 31.75 7.74 32.96 13.69 6.73 25.91 15.25 23.68 17.91 21.02 17.63
9-10 30.84 31.75 7.74 31.30 13.69 6.73 25.91 15.25 20.04 17.91 19.56 15.38
10-11 30.84 30.52 7.74 30.47 15.44 6.22 24.02 16.59 20.04 17.91 19.56 15.38
11-12 30.84 29.88 7.74 31.30 15.44 5.96 24.02 16.59 20.04 17.91 19.56 15.38
12-13 30.84 29.88 7.74 30.47 15.44 5.96 24.02 16.59 20.04 17.91 19.56 15.38
13-14 32.76 30.52 7.74 31.30 15.44 6.22 24.80 15.25 20.04 17.91 19.56 15.38
14-15 30.25 27.60 7.74 30.47 15.44 5.96 24.80 16.59 20.04 17.91 19.56 15.38
15-16 30.25 27.60 7.74 32.96 15.44 5.96 24.02 16.59 20.04 17.91 19.56 15.38
16-17 32.76 30.52 7.74 32.96 13.69 5.96 25.91 16.59 23.68 17.91 19.56 17.63
17-18 32.76 31.75 7.74 32.96 13.69 6.73 25.91 15.25 23.68 17.91 21.02 17.63
18-19 32.76 31.75 7.74 32.96 13.69 6.73 25.91 15.25 23.68 17.91 21.02 17.63
19-20 32.76 31.75 7.74 32.96 13.69 6.73 25.91 15.25 23.68 17.91 21.02 17.63
20-21 30.25 31.75 7.74 31.30 13.69 6.73 25.91 15.25 23.68 17.91 21.02 15.38
21-22 32.76 31.75 7.74 31.30 15.44 6.22 24.80 16.59 23.68 17.91 19.56 15.38
22-23 29.28 27.60 7.74 30.47 15.44 5.96 24.02 16.59 23.68 17.91 19.56 15.38
23-24 28.17 26.41 6.70 29.52 13.69 4.85 22.47 13.26 20.04 15.08 17.70 14.05
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/en we conducted an in-depth analysis of these opti-
mization paths. We have found that the social costs of some
roads during peak hours have sharply risen, even higher than
the social costs on the shortest path, due to the differences
distribution of travel rate in the spatiotemporal network.
/erefore, there is a phenomenon of reducing the logistics
transportation costs while further reducing the social costs.

By further analysis of the superiority of our model, we
have optimized the operations of logistics transportation
truck by using a method (S2 strategy) which just considered
shortest path to the method (S1 strategy) that considered
environmental impact we presented in this paper. /e re-
sults are shown in Table 7. Compared with S2 strategy, S1
strategy increases the time dimension, which causes the
computing time to be longer, and the time complexity of the
proposed model is increased by 31.29%. Although the total
running distance and exhaust emission of S1 strategy are
more than those of S2 strategy, the objective value of S1
strategy is better than that of S2 strategy. /e objective value
reduces from 562,428.30 to 583,954.62 because the social
costs are greatly reduced with the gap of average traffic safety

factor increasing by 66.20%, while the gap of average traffic
congestion factor reduced by 21.44%./e results have shown
that S1 strategy has a significant improvement over S2
strategy.

Finally, we summarize the similar features of truck path
optimization at different time horizons. We cluster the
lengths of path optimization by normalization and display it
by color chart seen in Figure 4. /e result shows three
significant time horizons, trough hours (23 pm−6 am), off-
peak hours (10 am−16 pm), and peak hours (6 am−10 am
and 16 pm−22 pm), respectively. During the trough hours,
there is no need to restrict logistics transportation truck path
and the truck can choose the shortest path to reduce
transportation cost. During the off-peak hours, traffic
management department takes control measures on im-
portant roads and logistics transportation trucks still have
several choices to plan their paths. However, traffic man-
agement department should pay more attention to social
costs to restrict logistics transportation truck traveling in
environmentally sensitive areas during the peak hours. Our
research not only could provide a quantitative basis for

Table 7: Comparison of optimization results between two strategies.

Strategy Computing
time (s)

Total running
distance (km)

Total exhaust
emission (kg)

Average traffic safety
factor (—)

Average traffic
congestion factor (—)

Objective value
(Yuan)

S1 386 3,117.5 1,210.825 0.708 0.527 562,428.30
S2 294 2,448.0 1,028.645 0.426 0.640 583,954.62
Gap (%) −31.29 −27.35 −17.71 66.20 21.44 3.83

–H –J –B –I –H –G –B –E –D –F –A –C
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 2 2 2 3 1 2 2 2
3 3 2 3 2 3 2 2 2 2 3 3
3 4 2 4 1 4 4 2 2 2 3 3
3 4 2 3 1 4 4 2 1 2 2 2
3 3 2 2 2 3 2 3 1 2 2 2
3 2 2 3 2 2 2 3 1 2 2 2
3 2 2 2 2 2 2 3 1 2 2 2
4 3 2 3 2 3 3 2 1 2 2 2
3 2 2 2 2 2 3 3 1 2 2 2
3 2 2 4 2 2 2 3 1 2 2 2
4 3 2 4 1 2 4 3 2 2 2 3
4 4 2 4 1 4 4 2 2 2 3 3
4 4 2 4 1 4 4 2 2 2 3 3
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Figure 4: /e color chart of truck path lengths at different time horizons.
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related policy development but also could help truck drivers
choose optimal paths in real time. Moreover, it might
provide theoretical guidance for the location of logistics
stations and the planning of land use.

6. Conclusions

/is paper has presented a truck path optimization model
considering environmental impact (TPOM-EI), which is
solved by heuristic algorithm, ant colony optimization
(ACO) algorithm. Transportation costs and social costs are
taken into consideration for optimizing the path of logistics
transportation truck. At the same time, the proposed model
has added to the time factor and gains real-time truck path at
different time horizons.

A case study using data of Xiqing Economic and
Technological Development Zone in Tianjin city (XQ-EDZ)
was carried out for a demonstration. In this paper, 12 typical
scenarios that have different results solved by the shortest
path model and the proposed model have been picked out.
Travel lengths of optimal truck path data demonstrated that
environmental impact is, indeed, strongly correlated within
urban impact areas.

/e TPOM-EI model could effectively reduce conges-
tion, thereby reducing pollutant emissions of logistics
transportation trucks, even if the total distance of trucks
increased./e results also showed that traffic congestion was
one of the most important factors of exhaust emission. In
addition, we considered the regional land use to reduce the
frequency of vehicles operating in sensitive areas, especially
densely populated areas, such as commercial areas, resi-
dential areas, and green/entertainment areas. /ese mea-
sures could improve air quality and travel safety and
promote social welfare effectively.

/e results have shown that some paths are sensitive,
that is, have a large impact on social costs. /e real-time
activity of each area can also change the travel path of a
truck. In general, the length of optimized path during peak
hours is farther than that during off-peak hours because the
social cost during peak hours further increases, making
trucks look for other paths to reduce social costs, while
inevitably increasing logistics transportation costs. Yet this
paper also found an interesting result that the length of the
optimized path during peak hours is less than that during
off-peak hours. /e social costs of some roads during peak
hours have sharply risen, even higher than the social costs on
the shortest path, due to the differences distribution of travel
rate in the spatiotemporal network.

Finally, similar features of truck path optimization at
different time horizons have been summarized in this paper.
/e result shows three significant time horizons, trough
hours (23 pm−6 am), off-peak hours (10 am−16 pm), and
peak hours (6 am−10 am and 16 pm−22 pm), respectively.
Traffic management department could adopt different
control strategies at different time horizons. Our research
could not only provide a quantitative basis for related policy
development but also could help truck drivers choose op-
timal paths in real time. Moreover, it might provide

theoretical guidance for the location of logistics stations and
the planning of land use.
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