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Identifying the influential factors in incident duration is important for traffic management agency to mitigate the impact of traffic
incidents on freeway operation. Previous studies have proposed a variety of approaches to determine the significant factors for
traffic incident clearance time. )ese methods commonly select a single “true” model among a majority of alternative models
based on somemodel selection criteria. However, the conventional methods generally neglect the uncertainty related to the choice
of models. )is paper proposes a Bayesian Model Averaging (BMA) model to account for model uncertainty by averaging all
plausible models using posterior probability as the weight. )e BMA model is used to analyze the 2,584 freeway incident records
obtained from I-5 corridor in Seattle, WA, USA. )e results show that the BMA approach has the capability of interpreting the
causal relationship between explanatory variables and clearance time. In addition, the BMA approach can provide better
prediction performance than the Cox proportional hazards model and the accelerated failure time models. Overall, the findings in
this study can be useful for traffic emergency management agency to apply an alternative methodology for predicting traffic
incident clearance time when model uncertainty is considered.

1. Introduction

Improving the efficiency of the traffic incident management
is a common measure to alleviate traffic congestion [1–3].
Although the definition and components of traffic incident
duration vary in different studies, clearance time is regarded
as the most uncontrollable component [4]. As a phase of
incident duration, it depends on the unique factors of each
individual incident [5]. )us, understanding the effects of
influential factors and accurate incident clearance time
prediction are essential to evaluate traffic incident man-
agement strategy [6].

A variety of approaches have been utilized to predict
incident clearance time and analyze the effects of influential
factors during the past several decades. In general, these
approaches can be classified into statistical methods [7] and
machine learning methods [8, 9]. Statistical methods

generally can explain the mechanism between independent
and dependent variables based on the rigorous mathematical
formula [10, 11]. From a methodological perspective, re-
gression analysis and hazard-based methods are the two
main statistical methods to analyze incident duration data.
Regression methods were widely used for incident duration
prediction in previous studies, such as linear regression
[12, 13]. To overcome the simple linear assumption between
incident clearance time and explanatory variables, re-
searchers proposed the hazard-based duration models
(HBDM) to predict the incident duration precisely and
explore the influence of significant factors on the incident
duration, such as the Cox Proportional Hazards (PH) model
and the Accelerated Failure Time (AFT) model [14]. Nam
and Mannering [5] applied different distributions in
HBDMs to analyze incident duration based on 681 incidents
from Washington State’s incident response team program.
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Lee and Fazio [15] used a proportional hazard-based Cox-
regression model to analyze the effect of explanatory vari-
ables on response time and clearance time, respectively. Li
and Shang [16] selected the best-fit model from 17 candidate
different AFTmodels with different distributions according
to the Bayesian Information Criterion (BIC) values, to in-
vestigate the effective factors of each incident and predict the
time of each incident phase. Ghosh et al. [17] pointed out
that the AFT model with a generalized F distribution out-
performed other five parametric hazard-based duration
models when analyzing the incident clearance time data
collected in Michigan. Haule et al. [18] investigated the
effects of significant factors on incident clearance time and
selected the best-fit model from three AFT models with
different distributions in terms of the Akaike information
criterion (AIC).

Recently, large quantities of alternative methods have
been introduced under the framework of the HBDMs in
recent years. For example, a 2-component log-logistic finite
mixture model was used by Zou et al. [19] to analyze the
incident clearance time data obtained from the Washington
Incident Tracking System (WITS), and the model could be
better in accounting for the heterogeneities compared to the
standard survival model. Different from conventional
conditional-mean HBDMs, the quantile regression (QR)
model can estimate the changing influence of explanatory
variables on incident clearance time as each quantile of the
incident duration distribution varied [20, 21]. And a copula-
based approach was proposed to accommodate the corre-
lation between incident clearance and other phases of in-
cident duration, and the results showed that the copula
models outperformed the log-normal AFT model in pre-
dicting the clearance time [22, 23].

Compared with the statistical methods, machine
learning approaches can be employed to overcome complex
nonlinear relationships between incident clearance time and
explanatory variables without prior assumptions about input
data [24, 25]. In the previous studies, K-Nearest Neighbor
algorithm (KNN) and Bayesian networks were used to
predict the incident clearance time [26–28]. Besides, deci-
sion trees (DT)models can specify the relative importance of
different explanatory variables associated with response
variables and are widely used to analyze the traffic incident
duration [29]. Nevertheless, the structure of the decision tree
highly depends on the data, resulting in instability. To
overcome the imbalanced traffic incident duration data
problem of the single-tree-based method, Ma et al. [30]
found that the gradient boosting decision tree model has a
superior performance in model interpretation and predic-
tion accuracy to conventional DTmodels [31]. Also based on
traditional DT models, the extreme gradient boosting ma-
chine algorithm was applied to analyze and predict the
clearance time data [32, 33]. However, the machine learning
models are usually not capable of interpreting the mecha-
nism between estimator and explanatory variables.

Overall, the hazard-based models and the tree-based
models are two commonly used statistical and machine
learning models in traffic accident duration analysis.
However, these aforementioned approaches generally failed

to take account of the model uncertainty (e.g., the AFT
models with Gamma,Weibull, or log-logistic model) [34]. In
other words, traditional methods typically assumed that the
model to be estimated is the “true” model and then made
tests among a majority of alternative “true” model according
to some criteria like BIC [35]. Consequently, it is important
to consider the uncertainty between candidate models, es-
pecially when these model are considered reasonable in spite
of difference in predictions [36]. Otherwise, the resulting
model estimates may be biased and lead to erroneous in-
ference in the analysis of incident clearance time. )e
Bayesian Model Averaging (BMA) proposed by Draper [37]
provided a statistical theoretical basis for solving the model
uncertainty problem in econometric modeling. )is ap-
proach combines and averages all plausible models con-
sidered (models with various combinations of influential
variables) through setting different prior probability dis-
tributions [38] and has been widely used in various fields,
such as water main failures prediction [39], firm default
prediction [40], and chemical engineering [41].

)e objective of this research is to apply the BMA
method to account for both model and parameter uncer-
tainty when modeling the incident clearance time. To ex-
amine the proposed approach, 2,584 freeway incident
records obtained from I-5 corridor in Seattle are analyzed.
Estimation and prediction results from the proposed BMA
model and conventional HBDMs are then compared and
analyzed.

2. Methodology

)is section describes the general features of the BMA, two
conventional HBDMs and Occam’s Window Method. )e
last method is one of the sampling techniques used in the
model space.

2.1. Bayesian Model Averaging. BMA uses posterior prob-
ability as the weight to average all plausible models con-
sidered. )us, let M � M1, . . . , MK  denote the set of all
models and let y denote the future observed value of the
incident clearance time using new input data. )en, in
accordance with the law of total probability, the probability
density function (PDF) of y under the observed dataset D is

p(y|D) � 
K

k�1
p y|Mk, D( p Mk|D( , (1)

where p(y|Mk, D) is the mean of the posterior distribution
of y based on candidate model Mk, which is the output of
BMA approach. And p(Mk|D) is the probability of the
correct prediction model Mk, which is also referred to as the
posterior model probability (PMP). And in model space M,


K
k�1 p(Mk|D) � 1. )e PMP is given by Bayes’ rule:

p Mk|D(  �
p Mk( p D|Mk( 


K
l�1 p Ml( p D|Ml( 

, (2)

where
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p D|Mk(  �  p D|θk, Mk( p θk|Mk( dθk, (3)

is the marginal model likelihood for the given model Mk and
θk is the vector of parameters of the model Mk. Additionally,
p(θk|Mk) and p(D|θk, Mk) are the prior density of θk and
the likelihood given the model Mk, respectively. p(Mk)

refers to the prior probability that Mk is considered as the
“true” model. )e posterior mean and variance of y are
presented as follows:

E[y|D] � 
K

k�1
E y|D, Mk( p Mk|D( ,

Var[y|D] � 
K

k�1
Var y|D, Mk  + E y|D, Mk 

2
 p Mk|D(  − E[y|D]

2
.

(4)

Based on the previous work, the size of model space
makes the summation of (1) impractical. In order to solve
this problem, Occam’s window method is used to select an
appropriate collection of candidate models from the model
space and will be introduced in the following section.

2.2. Occam’s Window Method. Occam’s window approach
was proposed by Madigan and Raftery [42] to reduce the
number of models with low posterior probability in the
model space M. Two basic principles were conducted to
eliminate models that predict far less well than their
competitors.

First, if the PMP for the model Mk in the model space M

is calculated far lower than the model that provides the
highest PMP, model Mk is discarded from the model space
M. )ose models failing to satisfying the formula

A′ � Mk:
maxl p Ml|D(  

p Mk|D( 
≤C  (5)

should be excluded from equation (1). )e maxl p(Ml|D) 

refers to the model with the highest PMP, and the value of C
equals 20 since it is determined by the data analyst.

Second, if the PMPs of complex models are lower than
their simpler submodels using Occam’s razor method, these
models should be discarded from model space M belonging
to

B � Mk: ∃Ml ∈M, Ml ⊂Mk,
p Ml|D( 

p Mk|D( 
> 1 . (6)

)erefore, formula (1) can be expressed as

p(y|D) � 
Mk∈A

p y|Mk, D( p Mk|D( ,
(7)

where A � A′\B ∈M.
Additionally, the leaps and bounds algorithm is applied

to implement the above principles as the search strategy.
Interested readers can see the companion paper for more
details about this algorithm [43].

2.3. Cox Proportional Hazards (PH) Model. )e Cox pro-
portional hazard (PH) model is one of the most commonly
used semiparametric survival analysis models. )is model is
used for investigating the relationship between survival time
of respondents and predictor variables [44] and is given as
follows:

h(t, X) � h0(t)exp 

p

i�1
βiXi

⎛⎝ ⎞⎠, (8)

where t is the survival time,X � (X1, X2, . . . , XP) represents
a vector of explanatory variables, β are the coefficients to be
estimated, which measure the impact of the p-covariates,
h(t, X) is the hazard function, h0(t) is an unknown baseline
hazard, that is, the value of the hazard if all the Xi are equal
to zero, and equation (8) can also be written as

log
h(t, X)

h0(t)
  � 

p

i�1
βiXi, (9)

where (h(t, X)/h0(t)) is defined as hazard ratios (HR), in
which any two individuals are constant over time according
to the assumption of the Cox PH model.

2.4. Accelerated Failure Time (AFT) Model. Based on the
hazard function, the AFTmodel assumes that the log of the
survival times is affected linearly by the covariates of X and
can be clearly written as

ln(t) � ξiXi + ε, (10)

where ξ are the coefficients to be estimated, and ε is an error
term. )ere are kinds of different parametric distributions
(e.g., Weibull, log-normal, and log-logistic models), which
can be used for the AFT model.

For comparison purposes, the incident data were also
analyzed using the Cox PH model and the log-logistic AFT
model. In the previous study, it is suggested that the log-
logistic AFTmodel outperformed the other two AFTmodels
(with Weibull or log-normal distribution) in terms of the
goodness-of-fit statistics and predictive performance.
)erefore, the two conventional HBDMs were finally se-
lected as the benchmark models in this study.

2.5. Data Description. In this study, the incident data ob-
tained from the I-5 corridor between Boeing Access Road
and the Seattle Central Business District were retrieved from
theWITS, which is used to manage the incident log data.)e
reason for choosing this site is the heavy traffic demand and
frequent incident-induced traffic congestion events. Addi-
tionally, in previous studies, Tang et al. [32] used the data
source to analyze the influence of explanatory variables and
examine the prediction performance of the proposed model.
And Hou et al. [45] analyzed the time-varying effects of
significant variables based on this dataset. A total of 2,584
valid incidents from 1 January to 31 December 2009 were
selected from the WITS dataset including 15 categorical
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candidate explanatory variables. Additionally, in this data-
set, the mean andmedian of the incident clearance time were
13.58 minutes and 9 minutes. )e minimum and maximum
values were 1 minutes and 382 minutes, respectively. And
the standard deviation was 17.35 minutes. )e key infor-
mation of candidate variables is presented in Table 1.

3. Results and Discussion

)is section describes the modeling results for the BMA
approach, Cox PHmodel, and the log-logistic AFTmodel. In
terms of the model averaging strategies, it is assumed that all
possible combinations of 15 candidate explanatory variables
are equally likely a priori. As previously mentioned, Occam’s
window method is implemented to exclude complex models
that perform far less well than their simpler competitors and
discard them from themodel space.)e results show that the
BMA approach and two benchmark models differ in
interpreting the explanatory variables based on the same
dataset, and the former can provide better prediction per-
formance. All statistical analyses were conducted using
statistical software R.

Table 2 lists the posterior means, standard deviations,
and posterior effect probabilities P(β≠ 0|D) for the coeffi-
cients related to different explanatory variables by using the
proposed method. )e posterior effect probability
P(β≠ 0|D) equals the sum of the posterior probabilities for
all the selected models containing that explanatory variable.
For example, the posterior effect probabilities associated
with the explanatory variable single lane blocked have 7.8%
of its mass at zero. Unlike other statistical models, it can be
observed that the variable “single lane blocked” is not in-
cluded in all the selected models, although it has a significant
impact on incident clearance time. 20 different models with
the highest PMP were finally selected by Occam’s window
approach, among which five optimal models (PMP> 0.05)
shown in Table 2 account for 59.69% of the total posterior
probability. Additionally, the estimated coefficients for some
variables (i.e., advised WSP, disabled vehicle, debris, heavy
truck, weekends, winter, weather, and incident on HOV
lane) are not listed in Table 2 because the p values are larger
than the significance level (0.05). It is found that model 1
with the largest PMP can account for 22.8% of the total
posterior probability, which means that there exists quite a
bit model uncertainty.

As shown, the model averaging results of the predictors
for incident clearance time generate interesting interpreta-
tions. )e posterior effect probabilities of seven explanatory
variables equal 100%. )is result demonstrates that, for
response time, traffic control, collision, multiple lane
blocked, total closure, injury involved, and summer, all the
selected models with the highest PMP contain these ex-
planatory variables, and thus they are the main factors af-
fecting the duration of traffic incident clearance.)e positive
coefficient in the results of the proposed model indicates that
the hazard is higher, and the clearance time decreases with
higher values of that variable.

It is clear that summer results in shorter clearance time,
which means that the incident clearance time varies with the
month of year and gets shorter in summer than other
seasons, and for the remaining variables, they all result in
longer clearance time.

As the BMA results in Table 2 indicate, we can see that
response time shows a weak effect on incident clearance
time, the coefficient of which implies that more time is
required to prepare for incident response in congested traffic
periods.)e estimated coefficient −0.527 of traffic control on
clearance time deserves attention to improve the measures
undertaken by traffic incident management like incident
response team (IRT) on directing upstream traffic around
the incident.

Among the considered incident types, collision is the
only one significant variable affecting the clearance time.
And the involvement of fire and injury shows positive effect
on incident clearance time. )ese results demonstrate that
both fire and collision involvement can result in longer
clearance time or smaller hazard rates and are generally the
main factors causing traffic congestion.

Four types of lane closure except all travel lanes blocked
all have a significant impact on incident clearance time. )is
is caused by the increasing operational complexity of the
recovery process around the incident. On closer inspection,
of all significant variables, total closure has the strongest
impact on incident clearance time, which indicates that
longer clearance time is generally associated with total closed
lanes. To further explain the BMA model, the estimated
survival probabilities are plotted in Figure 1.

Meanwhile, Tables 3 and 4 list parameter estimation
results of the Cox PH model and the log-logistic AFTmodel
for comparison purposes, respectively. )e estimated co-
efficients for some variables are not listed in Tables 3 and 4
because the p values are larger than the significance level
(0.05). It is noted that, in the Cox model, the sign of the
regression coefficient (coef) is opposite to that of the AFT
model. )e positive coefficient in the results of the Cox PH
model indicates that the hazard is higher, and thus the
clearance time decreases with higher values of that variable.
Note that, different from the results of the BMA, all types of
incident are significant in terms of p values in the Cox PH
model. Moreover, three lane closure types (single lane
blocked, multiple lane blocked, and total closure), response
time, traffic control, injury involved, fire involved, and work
zone involved all result in longer clearance time or smaller
hazard rates. Debris, abandoned vehicle, night, and summer
all result in shorter incident clearance time or larger hazard
rates. )ese findings are consistence with the previous study
using quantile regression.

In the log-logistic AFTmodel, night is found statistically
significant compared with the BMA model. And disabled
vehicle, debris, and abandoned vehicle all result in longer
clearance time in both survival models, while these variables
are not statistically significant in the BMAmodel.)e reason
is that when model uncertainty is considered, their posterior
effect probabilities from BMA are significantly lower than
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other variables. To further explain the Cox PH model, the
log-logistic AFT model, the estimated survival probabilities
are plotted in Figures 2 and 3.

)e estimated coefficients from the Cox PH, the log-
logistic AFT, and BMA models can give macroscopic and

valuable insights for incident duration time. For all travel
lanes blocked, the estimated coefficient −0.796 of the Cox PH
model and the coefficient 0.615 of the log-logistic AFTmodel
indicate a strong impact on clearance time, while the pos-
terior effect probability in the BMA model equals 8.2%,
which means that this variable is actually a less significant
determinant of incident clearance time. Furthermore, the
contributing factors resulting in longer clearance time can be
identified, and thus traffic emergency management agency
can improve their management planning and response
strategies. As shown in Tables 2–4, the variables “total
closure” and “fire involved” have a stronger positive impact
on incident clearance time. )us, when closing all lanes and
fire involved traffic incidents are considered, more attention
should be given to prevent further severe incidents.

More importantly, the posterior effect probability in the
BMAmodel can overcome the overstatement of the evidence
for an effect. )e p values for the coefficients indicate
whether these relationships are statistically significant. In
general, the p values for the predictors for the single model
are used as a measure of interpreting the effect on incident
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Figure 1: Estimated survival probability for the BMA model.

Table 1: )e key information for valid incidents affected by candidate explanatory variables.

Category Variable Value set

Incident

Incident type (Disabled vehicle, debris, abandoned vehicle, collision and othersa (�0))

Lane closure type (Single lane blocked, multiple lanes blocked, all travel lanes blocked and total
closure)

Injury involved (0, 1)
Fire involved (0, 1)

Work zone involved (0, 1)
Heavy truck involved (0, 1)

Temporal
Time of the day (Daytime (�0), night (22:00–6:00) (�1))
Day of the week (Weekday (�0), weekend (Sat, Sun) (�1))
Month of the year (Summer (Jun, Jul, Aug), winter (Dec, Jan, Feb) and other seasons (�0))

Geographic Incident on Hov laneb (0, 1)
Environmental Weather (Rainy, snowy and other type (�0))

Traffic Peak hours (6:00–9:00, 15:00–18:00) (0, 1)
Response time R+

Operational
Traffic control (0, 1)

Washington state patrol (WSP)
involved (0, 1)

aOthers refer to car fires, police activity, and medical emergency on the road, etc. bHov lane refers to the vehicle lane with high-occupancy.

Table 2: Selected models with the highest posterior probabilities using BMA.

Variable P(β≠ 0|D) EVa SDb Model1 Model2 Model3 Model4 Model5
Response time 100.0 −0.092 0.004 −0.091 −0.094 −0.091 −0.092 −0.092
Traffic control 100.0 −0.527 0.062 −0.536 −0.509 −0.533 −0.502 −0.533
Collision 100.0 −0.737 0.211 −0.866 −0.780 −0.877 −0.380 −0.868
Single lane blocked 92.2 −0.182 0.078 −0.173 −0.217 −0.176 −0.216 −0.182
Multiple lane blocked 100.0 −0.619 0.111 −0.608 −0.670 −0.586 −0.639 −0.623
Total closure 100.0 −1.491 0.357 −1.501 −1.531 −1.536 −1.444 −1.523
Injury involved 100.0 −0.485 0.123 −0.486 −0.484 −0.475 −0.500 −0.484
Fire involved 92.6 −1.061 0.455 −1.248 −1.177 −1.143 −8.969 −1.257
Summer 100.0 0.170 0.045 0.176 0.171 0.173 0.163 0.173
nVarc 11 12 10 12 12
BIC −1488 −1486 −1486 −1486 −1485
PMP 0.228 0.117 0.106 0.086 0.060
aEV is posterior means. bSD means the standard deviation. cnVar refers to the number of variables in the Mk model.
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clearance time. However, p values generally overstate the
evidence for an effect [46].

Turning to the model results, Table 5 shows the posterior
effect probabilities and p values of several variables. For a
few variables (i.e., response time, traffic control, collision,
multiple lane blocked, total closure, injury involved, and
summer), the p values from Cox PHmodel and the posterior
effect probability P(β≠ 0|D) from the BMA model all in-
dicate that there is a highly significant effect (p< 0.05 and
P(β≠ 0|D) � 100%) on the clearance time. However, the
BMA model and Cox PH model show the different con-
clusions for the variables in Table 5. )e p values from the
Cox PH model overstate the evidence for the effects. For
night, debris, and work zone involved, they are considered
highly significant in terms of p values (p< 0.01), while the
posterior effect probabilities from the BMA model suggest
that the evidence for an effect is not strong. Additionally,
disabled vehicle, abandoned vehicle, and all travel lanes
blocked are less significant determinant of incident clearance

time for p values (p< 0.1), but the posterior effect proba-
bilities provide weak evidence for the effect on incident
clearance time. And for the last variable incident on HOV
lane, both approaches show extremely low certainty evi-
dence for an effect. )us, the Cox PH model overstates the
evidence for the effect on explanatory variables compared
with the posterior effect probabilities (P(β≠ 0|D)< 78%) for
the BMA model according to the results in Table 5.

Furthermore, when rejecting the null hypothesis of “no
effect,” p values used by the Cox PH model cannot dis-
tinguish between two scenarios, which are as follows: (a)
there are few data to detect the effect on explanatory vari-
ables, and (b) the data provide evidence for the null hy-
pothesis. However, the posterior effect probability in BMA
can overcome the overstatement of the evidence for an effect
resulting from the above issues. For instance, all travel lanes
blocked and incidents on HOV lane are found to be a less
significant determinant of incident clearance time for p

values and posterior effect probabilities. And for all travel
lanes blocked, P(β≠ 0|D) equals 8.2%, which is exactly
described in scenario (a), whereas the P(β≠ 0|D) � 1.2% of
incident on HOV lane indicates the evidence for the null
hypothesis of “no effect.” )e latter can be approximated as
the posterior probability with the effect small enough,
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Figure 2: Estimated survival probability for the Cox PH model.
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Figure 3: Estimated survival probability for the log-logistic AFT
model.

Table 3: )e estimated parameters for the Cox PH modela.

Variable
Cox PH model

Coefb SE z-statistic p value
Response time −0.098 0.004 −25.840 <2e− 16
Traffic control −0.531 0.056 −9.540 <2e− 16
Disabled vehicle −0.268 0.115 −2.340 0.019
Debris 0.465 0.132 3.520 0.000
Abandoned vehicle 0.272 0.128 2.130 0.034
Collision −0.636 0.125 −5.070 0.000
Single lane blocked −0.291 0.060 −4.890 0.000
Multiple lane blocked −0.736 0.103 −7.120 0.000
Total closure −1.631 0.357 −4.570 0.000
Injury involved −0.450 0.123 −3.670 0.000
Fire involved −1.118 0.342 −3.270 0.001
Work zone involved −0.459 0.184 −2.490 0.013
Night 0.447 0.123 3.640 0.000
Summer 0.171 0.048 3.540 0.000
aLikelihood ratio test (LR): 1767, and p< 2e − 16. bCoef means Coefficient.

Table 4: )e estimated parameters for the log-logistic AFTmodel.

Variable
Log-logistic AFT model

Coef SE z-statistic p value
(Intercept) 1.635 0.076 21.570 <2e− 16
Response time 0.072 0.002 39.970 <2e− 16
Traffic control 0.220 0.030 7.470 0.000
Disabled vehicle 0.131 0.066 1.990 0.046
Debris −0.282 0.073 −3.830 0.000
Abandoned vehicle −0.293 0.074 −3.970 0.000
Collision 0.417 0.071 5.850 0.000
Single lane blocked 0.239 0.033 7.310 0.000
Multiple lane blocked 0.467 0.059 7.930 0.000
All travel lanes blocked 0.615 0.232 2.650 0.008
Total closure 0.633 0.176 3.600 0.000
Injury involved 0.418 0.072 5.830 0.000
Fire involved 0.731 0.200 3.650 0.000
Night −0.310 0.071 −4.380 0.000
Summer −0.055 0.026 −2.080 0.038
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namely, P(|β|< ε), when ε is less than half of a standard error
[47].

3.1. Comparison of the Prediction Performance. As men-
tioned before, BMA can improve the prediction perfor-
mance than any other single candidate model due to the
overlook of model uncertainty for single selected models.
)e incident duration data were also applied to analyze the
importance of each explanatory variable contributing to
response variables by using two traditional survival analysis
models. It is noted that the predicted values of Cox PH
model are relative to the sample observations. )us, we
applied the nonparametric step-function (NPSF) approach
to predict expected durations [48]. To further demonstrate
the prediction performance of BMA, the Mean Absolute
Error (MAE), the Root Mean Square Error (RMSE), and the
mean absolute percentage error (MAPE) were used to
measure the discrepancy between BMA and Cox PH model
on assessing the accuracy. )ese performance indexes were
calculated as MAE � (1/n) 

n
i�1 |Oi − Pi|, RMSE � (1

/n)

������������


n
i�1 (Oi − Pi)

2


and MAPE � (1/n) 
n
i�1 |(Oi − Pi)/Oi|

×100%, where Oi and Pi are the observed value and the
predicted value of clearance time for incident i, respectively.
Smaller MAE, RMSE, and MAPE values indicate a better
prediction performance.

In this study, 2,584 incident records were randomly
divided into two subsets, one of which was used as training
subdataset for the application of BMA and benchmark
models, and the other is used as testing subdataset to
measure prediction performance. )e number of sections
used to build and test the model was 1500 and 1084, re-
spectively. To make the results more credible, training and
testing subdataset varied according to ten random seeds
selected.

Table 6 reports the mean of the prediction performance
indexes from the BMA and Cox PH model, as well as the
log-logistic AFTmodel. Bold values are the smallest MAE,
RMSE, and MAPE values among three models. As shown
in Table 6, multiple random experiments in this study
indicate that the proposed BMA model results in better
prediction performance in contrast with two traditional
survival models in terms of three performance indexes.
)us, it can be concluded that the BMA model can im-
prove the prediction performance for the conventional
survival model.

4. Conclusions

)is study has applied BayesianModel Averaging (BMA) for
incident clearance time analysis and prediction. )e BMA
approach was compared with the Cox Proportional Hazards
model and Accelerated Failure Time model (with the log-
logistic distribution) in analyzing the 2,584 freeway incident
records obtained from I-5 corridor in Seattle. )e main
conclusions are summarized as follows: (1) Response time,
traffic control, collision, multiple lane blocked, total closure,
injury involved, and summer are the main factors affecting
the duration of traffic incident clearance. (2) )e modeling
results from three considered models show discrepancy in
estimated coefficients, such as response time, traffic control,
and night. (3) Compared to the Cox PH and the log-logistic
AFT model, the posterior effect probabilities for BMA can
overcome the overstatement of the evidence for the effect on
explanatory variables in contrast with p values for a single
model. (4) )e prediction performance of BMA is better
than the two classical survival models when predicting the
traffic incident clearance time.

For future work, BMA can be applied to explain the
effect of explanatory variables on incident clearance time or
other phases of incident duration. Markov chain Monte
Carlo model composition should be conducted to make a
comparison with Occam’s window method. Additionally,
BMA can be extended to identify outliers in the clearance
time data in terms of posterior model probabilities.
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