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Following the bike-sharing system, the shared e-bike becomes increasingly popular due to the advantage in speed, trip
distance, and so forth. However, limited research has investigated the impact of the introduction of shared e-bikes on the
existing bike-sharing systems.)is paper aims to study the effect of shared e-bikes on the traditional bike-sharing system and
determine the optimal fleet deployment strategy under a bimodal transportation system. A stochastic multiperiod opti-
misation model is formulated to capture the demand uncertainty of travelers. )e branch-and-bound algorithm is applied to
solve problem. A 15-station numerical example is applied to examine the validity of the model and the effectiveness of the
solution algorithm. )e performance of integrated e-bike and bike-sharing system has been compared with the traditional
bike-sharing system. )e impacts of the charging efficiency, fleet size, and pricing strategy of e-bike-sharing system on the
traditional bike-sharing system have been examined.

1. Introduction

In recent years, bike-sharing systems (BSSs) have significantly
grown in prevalence and popularity in the urban environment,
providing a healthy, low-cost, and environmentally friendly
mode of transportation. With years of development, opera-
tional challenges have been overcome by BSS operators to
offer fully automated, secure, and cost-effective bike-sharing
service due to the technological advances such as the im-
provement in mobile technology, electronic payment, and
GPS-based devices [1].

Following BSS, the shared electric bicycle or shared
e-bike is another type of vehicle catalysed by the era of
shared operations [2]. Traditional bicycles have been
replaced with e-bikes in many cities due to traditional bi-
cycle’s disadvantage in speed, trip distance, and vulnerability
under adverse weather condition, uneven terrain, and so
forth [3, 4]. However, e-bikes are more expensive than the
traditional bicycles in terms of both capital cost and oper-
ational cost. Infrastructure such as charging stations is also
required to be constructed to support the operation of
e-bike-sharing system (EBSS). Pilot EBSSs have been

deployed all over the world, such as North America [5, 6],
Europe [7–10], and Asia [11, 12].

Despite recognising the potential costs and benefits of
shared e-bikes, limited attention has been paid to analysing
the impact of the introduction of shared e-bikes on the
existing BSSs. )is paper aims to analyse the effect of shared
e-bikes on the traditional BSSs under a bimodal trans-
portation system, with four main contributions as follows: (1)
)e optimal fleet deployment strategy of EBSS is determined
for an integrated system with both e-bikes and traditional
bikes. A bimodal user network equilibrium is formulated to
address the impact of the introduction of shared e-bikes on
bicyclists’ mode choice behaviour. (2) Stochastic travel de-
mand is considered to address the demand uncertainty of
commuters. (3) )e performances of integrated e-bike and
bike-sharing system and the traditional BSS are compared.
)e impact of the characteristics of EBSS, including the fleet
size, charging efficiency, and pricing strategy has been in-
vestigated. )e evaluation of EBSS’s impact on the existing
BSSs is fundamental to determine the feasibility of EBSS,
which can assist service provider and city planners design and
manage the operation of EBSS effectively and efficiently. (4)
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)e branch-and-bound algorithm is applied to solve the
problem and a numerical example is utilised to test the
validity of the model and the effectiveness of the solution
algorithm.

2. Related Work

2.1. E-Bike. As e-bikes are one of the fast-growing modes of
transportation in the market, many studies have been
dedicated to e-bikes. Fishman and Cherry [13] provided a
comprehensive review on e-bike-related literature, whose
focus is transport instead of recreational e-bike research.
E-bikes were shown to reduce the fatigue level [14–17] and
increase the cyclist’s mode satisfaction level [18]. It was also
found that e-bikes can increase the ridership or travel dis-
tance in comparison with traditional bikes [4, 15, 19, 20].
Moreover, there were also papers which addressed the health
impacts [21, 22], environmental impacts [22–24], and the
safety issues of e-bikes [23, 25–29].

2.2. E-Bike-Sharing System. As e-bikes are more expensive
than traditional bikes, e-bike sharing is a potential solution
to the price barrier. Cherry et al. [30] outlined the basic
system requirements and operational concepts of EBSS.
Manzoni et al. [31] presented a BSS architecture with the
integration of e-bikes. Langford et al. [5] presented an
overview of the first EBSS in North America, which offered a
sustainable mode of transportation for the students.
Campbell et al. [32] employed stated preference survey to
identify the factors influencing the choice of shared bikes
and shared e-bikes. He et al. [6] utilised the historical trip
data to identify the factors that affect EBSS ridership. Ji et al.
[33] simulated the user demand and system availability of
EBSS based on a pilot e-bike-sharing project. Li et al. [34]
proposed a method for sharing e-bikes trajectory data
cleansing. To optimise the EBSS design systematically,
several studies have formulated optimisation models. Zhong
et al. [2] investigated the optimal deployment strategy of
static charging piles for EBSS. Chen et al. [3], Hu et al. [35],
and Martinez et al. [36] determined the optimal allocation
strategy of e-bike-sharing stations. However, the influence of
shared e-bikes on the existing BSSs has not been analysed
systematically with mathematic models in previous research.

2.3. FleetDeploymentStrategy. Although the fleet deployment
strategy for EBSS has drawn less attention, the determination of
the optimal inventory level of traditional bikes at each bike
station or fleet deployment strategy has been widely investi-
gated. Sayarshad et al. [37] formulated a multiperiod opti-
misation model to determine the minimum bike fleet size for
maximising the total benefit to the bike-sharing service pro-
vider. Lin et al. [38] formulated a hub location inventorymodel
and a heuristic solution method to address the BSS design
problem with bicycle stock considerations. Lu [39] determined
the optimal number of bicycles deployed at each bicycle station
for multiple time periods in a short-term planning horizon,
which aims to minimise the total system costs. Yan et al. [40]
and Zhu [41] optimised the number of bikes allocated to each

bike station under stochastic demand. Caggiani et al. [42]
determined the allocation strategy of racks and bicycles to
maximise the level of service such that users are not forced to
use other stations or turn to other modes of transportation.

3. Methodology

3.1. Notations and Assumptions. Notations of sets, indices,
and variables used in the integrated bike and e-bike-sharing
system fleet deployment model are summarised in Table 1,
respectively. Moreover, assumptions aremade for simplicity:

(1) )is study focuses on trips in BSS/EBSS, wherein two
modes of transportation, traditional bike and e-bike,
are considered. Each station is able to accommodate
both bikes and e-bikes. In other words, each station
can be considered as both shared bike station and
shared e-bike station.

(2) Commuters can only use one mode of transportation
between each pair of bike/e-bike stations.

(3) )e travel time by bike and e-bike is not affected by
the traffic volume. In other words, the travel speed of
bicyclist and e-bicyclist on each route is fixed.

(4) )e repositioning process of bikes is only carried out
at the end of the planning horizon; that is, static
rebalancing strategy is applied.

(5) A set of discrete scenarios with given probability
distribution are applied to represent the uncertain
demand distribution at various bike/e-bike stations,
which are assumed to be known a priori. )e
probability distribution of demand can be estimated
and sampled from bike/e-bike-sharing operators’
historical trip data.

(6) )e duration of each trip is less than the length of
planning period.

(7) )e charging time is linear with regard to the amount
of electricity to be charged, as the charging speed is
assumed to be constant.

3.2. Generalised Travel Cost

3.2.1. Traditional Bike. )e generalised trip cost of tradi-
tional bike is comprised of three parts, namely, the cycling
time, the rental fee, and the comfort cost:

t
g
ij � t

c
ij + t

r
ij + t

f
ij, ∀i, j. (1)

)e cycling time tc
ij of traditional bike between station i

and station j is calculated as

t
c
ij �

dij

s
, ∀i, j, (2)

where dij denotes the distance between stations i and j and s

denotes the average speed of traditional bike.
)e rental fee component of generalised trip cost tr

ij (in
hours) of traditional bike between stations i and j is cal-
culated as
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t
r
ij �

t
c
ij · rij

η
, ∀i, j, (3)

where η is the value of time of commuters. )e parameter η
denotes the amount of money that a traveler would like to
pay in order to save one unit of time. )e value of η depends
on traveler’s preferences, which should be adjusted with trip
survey data for real-world application. rij denotes the
monetary unit rental fee per utilised bike sent from station i

to station j, which is assumed to be constant with unit in
$/hour.

)e comfort cost of riding traditional bike t
f
ij between

station i and station j is calculated based on the riding
fatigue function in Li et al.’s work [43] to reflect the degree of
muscle pain and physical fatigue of bicyclists due to the
bicycle ride, where the fatigue level of bicyclist is related to
the riding time.

t
f

ij �
α1 · t

c
ij + α2 · t

c2
ij

ηf
, (4)

where α1 and α2 are positive parameters, which can be
calibrated with survey data; ηf is the value of fatigue of

Table 1: Notations.

N )e set of bike stations
N )e set of e-bike stations, N⊆N
i, j )e indices of nodes in N, i, j ∈ N

Ω )e support of the demand distribution
e Subscript associated with variables for certain demand realisation, e ∈ Ω
E )e set of demand scenarios, E � 1, 2, . . . , |E|{ }

pe Probability of demand scenario e

T )e set of periods in the planning horizon
t )e index of any given time period in the planning horizon
l(t) Length of planning time period t

t
g
ij )e generalised trip cost of traditional bike between stations i and j

tc
ij )e cycling time of traditional bike between stations i and j

tr
ij )e rental fee component of generalised trip cost of traditional bike between stations i and j

t
f
ij )e comfort cost of riding traditional bike between stations i and j

tij )e generalised trip cost of e-bikes between stations i and j
t

c

ij )e cycling time of e-bike between stations i and j
t

r

ij )e rental fee component of generalised trip cost of e-bike between stations i and j

dij Distance between station i and station j

s Average speed of traditional bike
s Average speed of e-bike
τ Average charging time of each e-bike arrived at e-bike station after rental, in order to reach sufficient state of charge (SOC)
es )e minimum sufficient SOC
eo )e initial average SOC
ωi )e charging speed at e-bike station i

η )e value of time of commuters
ηf )e value of fatigue of bicyclists
rij Monetary unit rental fee per utilised bike sent from station i to station j

rij Monetary unit rental fee per utilised e-bike sent from station i to station j

ch
i Holding cost per empty bike at station i

ch
i Holding cost per empty e-bike at station i

celec Unit electricity price
β Energy consumption rate of e-bike
mr

i Number of bike racks of station i, that is, capacity of station i for traditional bikes
mc

i Number of charging piles of station i, that is, capacity of station i for e-bikes
u Minimum required bike fleet utilisation rate (trips per bike per day)
u Minimum required e-bike fleet utilisation rate (trips per bike per day)
u Total bike/e-bike fleet utilisation rate (trips per bike per day)
B Fleet size of bikes to be deployed
B Fleet size of e-bikes to be deployed
Qe

ij(t) Total demand for shared bike/e-bike transportation service from station i to station j in time period t for demand realisation e

qe
ij(t) Demand for shared bike transportation service from station i to station j in time period t for demand realisation e

qe
ij(t) Demand for shared e-bike transportation service from station i to station j in time period t for demand realisation e

xe
ij(t) )e number of rented bikes dispatched from station i to station j in time period t in demand scenario e

ve
i (t) )e number of bikes presented at station i at the beginning of the period t in demand scenario e

xe
ij(t) )e number of rented e-bikes dispatched from station i to station j in time period t in demand scenario e

ve
i (t) )e number of e-bikes presented at station i at the beginning of the period t in demand scenario e

θ A positive parameter in modal split function
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bicyclists, representing the amount of disutility perception
in terms of the comfort cost that a traveler would like to pay
in order to save one unit of time. )e value of ηf also
depends on traveler’s preferences, which should be cali-
brated with trip survey data for real-world application. )e
comfort cost of e-bike is assumed to be negligible in this
paper, as the electric assistance can reduce the fatigue
barrier. Please note that, for real-world application, the
values of α1 and α2 should be calibrated with survey data, as
these parameters are related to bike lane performance and
bicyclists’ physical condition. )e fixed parameter values
used in this paper are only for numerical testing purpose.

3.2.2. E-Bike. )e generalised trip cost of e-bikes contains
the cycling time and the rental fee.

tij � t
c

ij + t
r

ij, ∀i, j. (5)

)e cycling time t
c

ij of e-bike between stations i and j is
calculated as

t
c

ij �
dij

s
, ∀i, j. (6)

where s denotes the average speed of e-bike.
)e rental fee component of generalised trip cost t

r

ij (in
hours) of e-bike between stations i and j is calculated as

t
r

ij �
t

c

ij · rij

η
, ∀i, j, (7)

where rij denotes the monetary unit rental fee per utilised
e-bike sent from station i to station j.

3.3. Bilevel Model. A bilevel model is formulated to deter-
mine the optimal fleet deployment strategy and address the
effect of shared e-bikes on the bike-sharing system. )e
upper level aims to determine the fleet deployment strategy
to optimise the earned profit of the overall system, which is
affected by the bike/e-bike flow variables. On the other hand,
the flow variables should be derived from the lower-level
model, which addresses the multimodal user equilibrium
condition. In other words, the lower-level model is em-
bedded or nested within the upper-level model. More de-
tailed explanations are provided in the following sections.

3.3.1. Upper-Level Model. )e problem formulation princi-
pally determines the optimal fleet deployment strategy to each
bike/e-bike station, with the objective to maximise the ex-
pectation of the earned profit for the bike/e-bike-sharing
operator.)e first line in the objective function (equation (8))
represents the total revenue from rented bikes/e-bikes. )e
second line represents the total holding cost of bikes/e-bikes
at stations. )e third line represents the charging cost of
e-bikes. )e focus of this paper is to investigate the effect of
e-bikes on existing BSS with traditional shared bikes only.

Z � E
e


i


j


t

rij · x
e
ij(t) + 

i


j


t

rij · x
e
ij(t)⎡⎢⎢⎣

− 
i


t

c
h
i · l(t) · v

e
i (t) − 

j

x
e
ij(t)⎛⎝ ⎞⎠⎛⎝ ⎞⎠ − 

i


t

c
h
i · l(t) · v

e
i (t) − 

j

x
e
ij(t)⎛⎝ ⎞⎠⎛⎝ ⎞⎠

− 
i


j


t

c
elec

· β · dij · x̂
e

ij(t)⎤⎥⎥⎦,

(8)

where ch and ch denote the unit holding costs for traditional
bike and e-bike, respectively. )e bikes/e-bikes that are not
rented can incur a holding cost, that is, the cost of holding
unused bikes/e-bikes at a station for a time interval such as 1
hour when the BSS/EBSS is in operation. )e unit holding
cost should be derived by dividing the weekly system
management cost by the product of station number, oper-
ating hours, and fleet size [39]. In this paper, similar to
Sayarshad et al. [37], the cost of holding a bike at each station
is calculated for each time period t (as shown in equation
(8)). If a bicycle is kept stagnant/idle at a particular station i

for all the time periods except for the last one, the holding

cost for that particular bicycle should be calculated for all the
past accumulative time periods, as the idle bicycle con-
tributes to ve

i (t) at station i but does not contribute to xe
ij(t),

except for the last time period t. celec denotes the unit
electricity price; β denotes the energy consumption rate of
e-bike; dij denotes the distance between stations i and j.
Note that, similar to Yan et al. [40], we do not consider
supply cost like bike purchasing and depreciation cost for
bikes/e-bikes as the fleet is assumed to be already given. e

denotes the subscript associated with variables for certain
demand realisation.

)e constraints of the model are listed as follows:
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e
i (t) � v

e
i (t − 1) + 

j

x
e
ji(t − 1) − 

j

x
e
ij(t − 1), ∀i, j, t, e, (9)

v
e
i (t) � v

e
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x
e
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j

x
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ij(t)⎡⎢⎢⎣ ⎤⎥⎥⎦≥ u · E

e


i
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e
i (1)⎡⎣ ⎤⎦, ∀i, t, (11)
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v
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2
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i (1), ∀i, (13)
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2
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e
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i , ∀i, t, e, (17)

v
e
i (t)≤m

c
i , ∀i, t, e, (18)


i

v
1
i (1) � 

i

v
2
i (1) � · · · � 

i

v
|E|
i (1) � B, ∀i, (19)


i

v
1
i (1) � 

i

v
2
i (1) � · · · � 

i

v
|E|
i (1) � B, ∀i, (20)

x
e
ij(t), v

e
i (t), x

e
ij(t), v

e
i (t) ∈ N0

, ∀i, j, t, e. (21)

Equations (9) and (10) represent flow conservation
constraints at each bike/e-bike station in each time period
for traditional bikes and e-bikes, respectively. For EBSS, the
occupied charging pile changes to unoccupied when the
e-bike is rented. On the other hand, the unoccupied charging
pile turns into occupied when the e-bike is returned [3]. τ
denotes the average charging time of each e-bike arriving at
e-bike station after rental, in order to reach sufficient state of
charge (SOC):

τ �
e

s
− e

o

ωi

, (22)

where es denotes the minimum sufficient SOC, eo denotes
the initial average SOC, and ωi denotes the charging speed at
e-bike station i. Following the common practice, the shared
e-bike battery should be charged-discharged between 20%
and 80% of the battery capacity.

Equations (11) and (12) represent that the bike and
e-bike fleet utilisation rate has to be greater than the min-
imum required values u and u to avoid oversupply in the

market. Equations (13) and (14) ensure that the same fleet
deployment plan is applied at the initial period of planning
horizon for different demand realisations. Constraints (15)
and (16) are balancing constraints for the number of bikes
and e-bikes at the beginning of each period t. Constraint (17)
ensures that the number of bikes at each station can never
exceed the capacity of bike station; constraint (18) ensures
that the number of e-bikes at each e-bike station cannot
exceed the total number of charging piles. Equations (19)
and (20) are fleet size constraints to ensure that the total fleet
size in each demand scenario is the same, and the fleet size
constraint can also serve as a budget constraint. Constraint
(21) defines the domain of design variables, which are
nonnegative integers.

3.3.2. Lower-Level Model. To derive the flow variables used
in the upper level of the problem, multimodal user equi-
librium (MUE) model is formulated in the lower level of the
model to address the traffic assignment between e-bikes and
traditional bikes. Under stochastic travel demand, it is not
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sensible to find the MUE flow pattern while expecting that
the travel cost remains the same. Instead, we aim to derive
the MUE traveler flow pattern for each demand realisation.
)e MUE condition include two aspects: first, all utilised
paths of the same travel mode have the same travel cost
between each OD pair and the travel costs of all unutilised
paths are not lower than the travel costs of any utilised paths
for the same travel mode; second, commuters’ mode choice
decisions are based on the multinomial logit model [44].

Based on assumption (3), for the first MUE condition,
the travel time between each pair of stations i and j is fixed,
which is equal to the travel time on the shortest path.
Constraints (23) and (24) represent that the actual number
of bicycles and e-bikes dispatched between two stations
cannot exceed the demand for bikes and e-bikes, respec-
tively. Constraint (25) ensures that the total travel demand
between each two stations is equal to the summation of
demand for shared bikes and e-bikes:

x
e
ij(t)≤ q

e
ij(t), ∀i, j, t, e, (23)

x
e
ij(t)≤ q

e
ij(t), ∀i, j, t, e, (24)

q
e
ij(t) + q

e
ij(t) � Q

e
ij(t), ∀i, j, t, e. (25)

For the second MUE condition, the modal split is based
on the logit function, which is formulated as follows:

q
e
ij(t) �

Q
e
ij(t)

1 + exp θ t
g
ij − t

g

ij  
, ∀i, j, t, e, (26)

where t
g
ij and t

g

ij denote the generalised travel cost between
stations i and j by traditional bike and e-bike, respectively,
and θ is a positive parameter. Parameter θ denotes the modal
split parameter, which affects the estimation of the pro-
portion of trip-makers who are likely to use each mode
(traditional bike/e-bike) to travel between each pair of
stations. )e value of θ should be calibrated with real-world
trip survey data. For numerical testing purpose, a constant
value of θ is assumed in this paper.

4. Solution Algorithm

)e decision variables for the shared bike/e-bike fleet
deployment optimisation model are all integers, repre-
senting the number of bikes/e-bikes. It is unfeasible to
enumerate all the candidate fleet deployment plans to
derive the optimal strategy due to the huge computational
effort. )e branch-and-bound algorithm (as shown in
Algorithm 1) is applied in this paper to solve the fleet
deployment optimisation problem with the discrete feature
of bike/e-bike flow. A sequence of subproblems are con-
structed by the algorithm, with the objective to converge to
an optimal solution to the integer linear programming
model. )e subproblems contain a set of upper bounds and
lower bounds where the initial upper bound is the solution
to the relaxed problem without integer constraints and the
initial lower bound is any feasible solution derived with
heuristics.

Branching from the root node, new subproblems are
constructed by choosing various variables to split based on
branching rules. )e branching rule for choosing fractional
variable is based on the reliability, for whichmore details can
be found in [46]. Generally, the branch-and-bound algo-
rithm creates subproblems for analysis and the ones that
cannot improve the lower bound of themodel are eliminated
from the searching region. )e searching process is termi-
nated when the difference between the lower bound and the
upper bound is within a tolerance value or when the number
of explored nodes has reached the preset limit.

5. Numerical Example

5.1. Input Data. In this section, most of the parameter values
are approximated according to related literature
[3, 33, 37, 40, 43].)e planning horizon is set to 12 hours, and
static rebalancing method is applied. )e bike and e-bike
rental fees rij and rij are set as 1 and 3 USD/hour, respec-
tively. )e holding costs per empty traditional bike ch

i and
e-bike ch

i are set as 0.05 USD/hour and 0.07 USD/hour,
respectively. α1 and α2 are set as 0.2 $/hour and 0.1 $/hour2,
respectively. η and ηf are set as 10 $/hour and (2/3) $/hour,
respectively. θ is set as 10. )e unit electricity price celec is set
as 0.2 USD/kw·h; the energy consumption rate of e-bike β is
set as 2.1 kw·h/100 km. According to Cherry et al. [30], the
recharge time of e-bikes in EBSS normally ranges between 4
and 6 hours, and the time could be reduced to 30 minutes
with the help of more advanced battery and recharging
technology. )e average charging time τ is firstly set as
0.5 hours. Other charging times will also be tested out in the
following sections. 15 stations are considered, where each of
them is able to accommodate both bikes and e-bikes. )e
demand level is assumed to follow normal distribution, which
can be simulated with Monte Carlo sampling method: the
mean demand between each pair of stations for each 2-hour
interval is set as random values between 20 and 50 trips, the
standard deviation of demand in time interval is set as 5, and
the sample size is set as 5. )e average speeds of riding
traditional bike s and e-bike s are set as 11 km/h and 15 km/h,
respectively.)e distances between each pair of station are set
as some random number between 1 km and 4 km. )e
maximum capacity of each bike station mr

i and e-bike station
mc

i is set as 50 in both. )e minimum required bike fleet
utilisation rates u and u are both set as 5. )e total fleet sizes
of traditional bike B and e-bike B are both set as 500. For the
solution method, ϵ is set as 10− 5.

5.2. FleetDeploymentStrategy. )e optimal fleet deployment
strategy at each station at the beginning of the time period is
determined and demonstrated in this section. )ree systems
are considered:

(i) System 1: BSS and EBSS coexist in an integrated
system, where the capacities of both BSS and EBSS
are the same and total fleet size of bikes and e-bikes
are equal.

(ii) System 2: only BSS exists in the system.)e capacity
of each station is the sum of the capacities of BSS
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and EBSS in system 1. )e total fleet size of tra-
ditional bikes is equal to the sum of the fleet size of
bikes and e-bikes in system 1.

(iii) System 3: only BSS exists in the system.)e capacity
of each station is the same as the capacity of BSS
system 1. )e total fleet size of traditional bikes is
equal to the fleet size of bikes in system 1.

)e numerical example is tested on a personal
computer with Intel Core i5 CPU 2.3 GHz, 8 GB RAM,
and MacOS 10.14. )e running time for system 1 with full
set of constraints utilised is about 15 seconds, and the
running time is around 7 seconds for the other two
systems. For the three systems mentioned above, the
optimal bike/e-bike fleet deployment strategy at each
bike/e-bike station at the beginning of the planning
period is summarised in Table 2. Please note that there is
no e-bike in systems 2 and 3, such that the lower-level
model should be revised as equations (27)–(28) as below,
representing that cyclists are only allowed to rent tra-
ditional bikes:

x
e
ij(t)≤ q

e
ij(t), ∀i, j, t, e, (27)

q
e
ij(t) � Q

e
ij(t), ∀i, j, t, e. (28)

)efleet deployment strategies in Table 2 also show some
interesting observations: For example, for station 7, in
systems 1 and 2, the optimal number of bikes/e-bikes
deployed to station 7 at the beginning of the planning
horizon is exactly equal to the capacity. On the other hand,
for system 3, at the beginning of the planning horizon, the
number of bikes deployed to the station is not as full. )is is
because the optimal fleet deployment strategy is determined
based on a dynamic modelling process, which aims to op-
timise the earned profit of the entire rental system within the
whole planning horizon. )ereby, the three rental systems
with various types of bicycles and capacity constraints can
lead to different types of fleet deployment strategies (e.g., the
number of bikes deployed at station 7) at the beginning of
the planning horizon. It can also be observed that, except for
station 15, the number of bikes deployed in system 2 at the

Step 0: initialization and BSS/EBSS loading
(a) Set up the parameters;
(b) Load the integrated bike and e-bike sharing system;
(c) )e objective is to find the fleet deployment solution Y that maximises the earned profit Z(Y) in equation (8);
(d) Let k � 0 be the number of iteration.

Step 1: solve relaxed noninteger problem
)e relaxed problem is solved without integer constraints based on dual-simplex algorithm [45] for linear programming. )e
results Ylp correspond to the first upper bound: Z(Y)≤Z(Ylp)UB.
Step 2: Find feasible solutions with heuristics
Heuristics is applied to generate a feasible point Yk, such that the lower bound of the fleet deployment optimisation model can be
determined based on Yk: Z(Y)≥Z(Yk) � LBk.
Step 3: iteration
)e algorithm is terminated when meeting the stopping criteria as follows:

(a) )e difference between the lower bound and upper bound is less than the tolerance value, i.e. UB − LBk ≤ ϵ;
(b) )e number of nodes explored exceeds the maximum number of nodes.
Otherwise, repeat steps 4-5.

Step 4: branching
Noninteger variable w with value yw is chosen as the fractional variable to split;
k � k + 1;
Two subproblems are generated by adding constraints for the variable w as yw ≤ yw and yw ≥ yw respectively;
Based on step 1 and step 2, determine the lower bounds (LBk

1, LBk
2) of the two subproblems with the corresponding decision

variable vectors Yk
1 and Yk

2 respectively.
Step 5: update
LBk � max(LBk− 1, LBk

1, LBk
2);

if LBk � LBk− 1 then
)e corresponding region is eliminated from consideration as no branching is possible;
Yk � Yk− 1;

else if LBk � LBk
1 then

Additional constraint yw ≤ yw is added to the searching region;
Yk � Yk

1;
Proceed to step 3;

else
Additional constraint yw ≥ yw is added to the searching region;
Yk � Yk

2;
Proceed to step 3.

end

ALGORITHM 1: Branch-and-bound algorithm.
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beginning of planning horizon is bigger than or equal to that
in system 3. )is can be explained by the fact that the ca-
pacity of each station in system 3 is only half of that in system
2, such that the optimal fleet deployment strategy at the
beginning of the planning horizon is restricted by the ca-
pacity constraint.

)e earned profits of systems 1-3 are USD 12223, 6508,
and 3254, respectively, based on the current parameter
setting (as shown in Table 3), and the results demonstrate the
improvement in the earned profit of bike-sharing operators
by introducing the shared e-bikes in the system. )ere are
three components in the objective function (equation (8)) in
the upper-level model, which represent the total revenue, the
total holding cost, and the charging cost of e-bikes, re-
spectively. )e values of these revenue and cost components
are also shown in Table 3. )e results show that the bimodal
integrated bike-sharing and e-bike-sharing system (system
1) can improve the total earned profit, which can mainly be
explained by higher rental fee of e-bike compared to the
traditional bike. Although the holding cost of traditional
bike is lower than that of the e-bike and the charging cost can
be incurred for e-bikes, the overall earned profit of system 1
is shown to be the highest.

5.3. 5e Effect of Shared E-Bike Fleet Size. )e impact of the
shared e-bike fleet size on the BSS has also been analysed, as
shown in Figure 1. In the bike-sharing market, due to the
oversupply and indiscriminate parking problem, govern-
ments are trying to control the fleet size or fleet utilisation
rate in the market such that the balance between supply and
demand can be kept. In countries like Singapore, the average
utilisation rate for the entire shared bicycle is much lower
than that of other cities like New York City and Chicago,
where each bicycle is used three to six times a day [47]. )e
total fleet utilisation rate u (trips per bike per day) of the
integrated bike and e-bike-sharing system is calculated as

u �
E
e

ijt x
e
ij(t) + x

e
ij(t)  

E
e

i v
e
i (1) + v

e
i (1)(  

. (29)

Figure 1 depicts that the expected earned profit increases
when the number of shared e-bikes added to the BSS in-
creases, under the optimal fleet deployment plan. )e fleet
utilisation rate also increases when shared e-bikes are added
(less than 50 shared e-bikes), as the travel time of e-bicyclists
is shorter in comparison with traditional bicyclists for the
same distance. However, the fleet utilisation rate of the
whole system decreases by 0.04 trips/day as the number of
shared e-bikes in the system increases from 50 to 700, which

can be explained by the increment in e-bike supply under
fixed demand level.

5.4. 5e Effect of Charging Time. )e effect of charging time
on the fleet deployment strategy is summarised in Table 4. As
the charging time increases, both the earned profit and the
fleet utilisation rate of the integrated bike-sharing and
e-bike-sharing system decrease. )e charging time directly
impacts the number of e-bikes available at each e-bike
station, and the results demonstrate the importance of e-bike
charging efficiency to the performance of the whole system.
)e charging process of EBSS has also been addressed in the
literature; for example, )omas et al. [48] proposed a design
framework for EBSS with regard to system components and
user mobility patterns.

5.5.5e Effect of E-Bike Pricing. )e shared e-bike rental fee
has direct impact on the generalised travel cost of e-bike

Table 2: Fleet deployment strategy.

No. System Fleet deployment
Station ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 BSS + Bikes 48 0 33 40 42 37 50 29 21 40 42 44 27 21 26
EBSS E-bikes 39 45 0 24 34 23 50 27 50 50 50 40 30 0 38

2 BSS Bikes 100 0 47 79 92 100 100 61 26 76 100 100 60 26 33
3 BSS Bikes 44 0 34 37 48 37 33 7 13 45 43 44 42 26 47

Table 3: Revenue and cost.

No. System Earned
profit Revenue Holding

cost
Charging

cost
1 BSS + EBSS 12223 12846 606 17
2 BSS 6508 7040 532 0
3 BSS 3254 3520 266 0
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Figure 1: )e effect of e-bike fleet size.
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Table 4: )e effect of charging time.

Charging time Earned profit Fleet utilisation rate
Less than 2 hours 12223 6.04
2-4 hours 7038.6 4.35
4-6 hours 5840.6 3.95
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Figure 2: Total earned profit.
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users, thereby affecting the traffic assignment between BSS
and EBSS. )e effect of e-bike pricing on the integrated bike
and e-bike-sharing system is demonstrated in Figures 2 and
3. Figure 2 shows the effect of e-bike pricing on the total
earned profit. At the beginning, the earned profit of EBSS
increases linearly as the rental fee of shared e-bike increases,
which can be explained by the constant number of e-bike
trips completed in Figure 3. )e low rental fee of e-bikes
leads to relatively low generalised travel cost of e-bikes, such
that the demand for EBSS is relatively high due to the modal
split function (equation (26)). )e demand for shared
e-bikes exceeds the supply in this period, such that the
number of satisfied e-bike trips remains constant. )ereby,
the total earned profit increases as the price of shared e-bikes
increases.

As the price of shared e-bike continues to increase, the
demand for e-bike reduces under the multimodal user
equilibrium condition, such that the number of e-bike trips
also reduces correspondingly. In the end, the demand for
EBSS will be constant at zero as the shared e-bike price
grows, and the value of total earned profit is constant at the
earned profit of BSS only minus the holding cost of e-bikes.

Figures 2 and 3 also demonstrate the effect of the value of
time of travelers. In Figure 2, the critical point of e-bike price
moves to the right as the value of time η increases. Figure 3
also demonstrates that the number of satisfied e-bike trips is
more sensitive to the e-bike price, when the value of time is
lower.)is can be explained by the fact that the travelers take
the increment in monetary cost, that is, the shared e-bike
price, as less important, as the value of time increases. Note
that, for real-world application of themodel and analysis, the
value of time of various travelers should also be calibrated
with trip survey data.

6. Conclusions

Following BSS, the shared e-bikes are becoming increasingly
popular due to higher speed, reduced fatigue level, and so
forth. However, the impact of shared e-bikes on the existing
BSS has rarely been studied. )is paper investigated the
effect of shared e-bikes on bike-sharing system and deter-
mined the optimal fleet deployment strategy of both shared
traditional bikes and shared e-bikes at each station. A sto-
chastic multiperiod model is formulated to maximise the
total earned profit of the integrated shared bike/e-bike
system operator, and the branch-and-bound algorithm is
applied to solve the integer linear programming problem. A
numerical example is applied to test the validity of the model
and the effectiveness of solution algorithm.

Some policy implications are summarised as follows: (1)
when the fleet size is the same, shared e-bikes can provide
higher earned profit in comparison with shared bikes. (2) As
the fleet size of shared e-bikes added to the BSS increases, the
earned profit increases, while the total fleet utilisation does
not always increase. (3) As the charging time of shared e-bikes
increases, the earned profit of system operator and fleet
utilisation rate both decrease, demonstrating the significance
of charging efficiency. (4))e pricing strategy of EBSS should
be adjusted to achieve the optimal overall system

performance. It is also necessary to calibrate the value of time
of various travelers with trip survey data. However, there are
still several limitations in the paper: For the numerical ex-
ample, the demand between each pair of bike/e-bike stations
is assumed to be known a priori. However, when the EBSS is
newly introduced, different travel demand pattern could be
demonstrated in reality. Real-world survey data should be
collected and utilised to make the numerical example more
realistic in future research. In addition, the proposed solution
method has only been tested on a 15-station system whose
size is small. In the future research, to solve larger size
problems in real world, the proposed heuristic method could
be adjusted with regard to the branching method, the ter-
mination criteria, and so forth, in order to maintain rea-
sonable computation time. For future research, multimodal
transportation environment can also be considered to cater
for the traffic assignment among automobiles, buses, bicycles,
e-bikes, and so forth. To model the problem, real-world trip
data can also be applied if available. )e model can also be
improved by adding the determination of the optimal
charging station number and location. Dynamic pricing
system can also be investigated in future research to optimise
the operation of the integrated bike and e-bike sharing
system.
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