Hindawi

Journal of Advanced Transportation
Volume 2021, Article ID 6684795, 18 pages
https://doi.org/10.1155/2021/6684795

Research Article

WILEY

Hindawi

An Exact Solution Approach for the Bus Line Planning
Problem with Integrated Passenger Routing

Evert Vermeir ©,' Wouter Engelen,2 Johan Philips ,3 and Pieter Vansteenwegen

IKU Leuven, Leuven Mobility Research Centre-CIB, Celestijnenlaan 300, 3001 Leuven, Belgium
2UC Leuven-Limburg, Research & Expertise Digital Solutions, Geldenaaksebaan 335, 3001 Leuven, Belgium
3KU Leuven, Division RAM-Flanders Make, Celestijnenlaan 300, 3001 Leuven, Belgium

Correspondence should be addressed to Evert Vermeir; evert.vermeir@kuleuven.be

Received 16 November 2020; Revised 19 July 2021; Accepted 3 September 2021; Published 4 October 2021

Academic Editor: Gongalo Correia

Copyright © 2021 Evert Vermeir et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The bus line planning problem or transit network design problem with integrated passenger routing is a challenging combinatorial
problem. Although well-known benchmark instances for this problem have been available for decades, the state of the art lacks
optimal solutions for these instances. The branch and bound algorithm, presented in this paper, introduces three novel concepts to
determine these optimal solutions: (1) a new line pool generation method based on dominance, (2) the introduction of essential
links, i.e., links which can be determined beforehand and must be present in the optimal solution, and (3) a new network
representation based on adding only extra edges. Next to presenting the newly obtained optimal solutions, each of the
abovementioned concepts is examined in isolation in the experiments, and it is shown that they contribute significantly to the

success of the algorithm.

1. Introduction

The design of a public transport network is a multistep
process [1, 2]. It starts with the infrastructure network de-
sign. Decisions on the physical network, such as bus stops or
bus only lanes, are made in this step. The next step is the line
planning or the transit network design. In this step, the
public transport operator decides where its vehicles will
drive and which stops will be served in which order. Then,
the timetabling step produces a fixed time schedule for each
bus. The setting of frequencies is sometimes included in the
line planning step and sometimes in the timetabling step [3].
The next step is to plan the rolling stock and the crews. The
final component of the planning process is the dispatching
strategy. While all these subproblems influence each other,
they are mostly solved sequentially in practice [1]. This paper
focuses on the second step, namely, the line planning
problem, without considering frequencies. This is also called
the uncapacitated line planning problem.

The uncapacitated line planning problem is a difficult
combinatorial problem with an enormous search space.

There are two main conflicting goals present in nearly every
line planning problem. At the one hand, a public transit
company wants to spend as little money as possible, and at
the other hand, the passengers want to get to their desti-
nation as fast as possible. One of the common approaches is
to optimize the quality of the service for the passengers
(described by the average travel time and/or the number of
transfers) and to limit the costs by putting constraints on the
number of lines that can be used and the length of the lines
(e.g., [4-10]). In order to evaluate the average travel time, the
transit assignment, i.e., how the passengers will use the
different bus lines to travel through the network, needs to be
integrated in the decision process. If frequencies are not
considered, an “all-or-nothing” shortest path assignment is
typically used [4, 8, 9, 11-15]. MandI’s Swiss network [14], is
the only widely used benchmark network for the uncapa-
citated line planning problem [4, 7-10, 12, 13, 15-21].
MandI’s network with 15 nodes and 21 links is illustrated in
Figure 1. The length of each link is indicated with the
number next to the link. Benchmark instances are available
with two different maximum line lengths and with different

mailto:evert.vermeir@kuleuven.be
https://orcid.org/0000-0002-3784-7083
https://orcid.org/0000-0003-0937-7798
https://orcid.org/0000-0002-5646-669X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6684795

FiGure 1: Mandl’s Swiss network [14].

numbers of lines. Despite it being a small network with only
fifteen nodes, there are no known optimal solutions for
instances with more than three bus lines on this network
[22].

The main contribution of this paper is that, for the first
time, all these benchmark instances for the uncapacitated
line planning problem with integrated passenger routing are
solved to optimality. The amount of lines necessary to offer
each passenger a direct connection along his/her shortest
path between origin and destination is also determined for
the first time. Furthermore, a number of novel concepts are
introduced which are required to obtain these optimal so-
lutions, but which are also interesting for future research on
this complex planning problem.

First, a new method is developed to construct a line pool
of all feasible lines that can be present in an end solution.
Secondly, the concept of “essential links” is presented. These
are parts of lines, determined during the branch and bound
process, which must be part of the optimal solution. Thirdly,
the “Direct Link Network” representation (DLN) is intro-
duced. This is a novel network representation allowing a
faster evaluation of solutions, compared to the well-known
change-and-go network representation [23]. Finally, a new
branch and bound method limits the amount of required
evaluations before obtaining the optimal solution. The
method branches over all possible lines containing a certain
Origin-Destination (OD) pair. The experimental results il-
lustrate the importance of each of these concepts. We also
make clear that research on the line planning problem
should shift to larger and more realistic instances.

The paper is organized as follows. Section 2 contains an
overview of the line planning problem literature, focusing on
(meta) heuristics and exact approaches for the line planning
problem with integrated passenger routing. Section 3 de-
scribes in detail which variant of the line planning problem is

Journal of Advanced Transportation

tackled in this paper. Section 4 discusses the solution ap-
proach. It shows the branch and bound algorithm and ex-
plains all the details about the essential links and the Direct
Link Network representation. Section 5 contains the results
of the experiments on Mandl’s Swiss Network [14]. The
paper ends in Section 6 with the conclusions.

2. Literature Review

This section contains a short survey of the literature on the
line planning problem, with and without frequency setting.
Both (meta) heuristics and exact approaches will be covered.
A more extensive overview can be found in the following
papers and books: [1, 3, 22, 24-27]. It should be noted that,
depending on the community, this planning problem is
called the transit network design problem or the line
planning problem. In this paper, the term line planning will
be used.

2.1. Heuristics and Metaheuristics. Early research on dif-
ferent variants of the line planning problem focused on
heuristics. One of the earliest heuristics to solve the line
planning was by Patz [28]. In this work, lines are iteratively
removed from a large set of lines based on a penalty
structure. Mandl [29] combined both passenger demand and
shortest paths to create an initial solution. Then, this solution
is iteratively improved aiming to optimize the total travel
time. These early heuristics were unable to solve large in-
stances, but they provide the basis for the development of the
more modern metaheuristics [11].

The first metaheuristics for solving the line planning
problem were Genetic Algorithms (GA). Chakroborty and
Wivedi [30] and Pattnaik et al. [31] were some of the first to
solve the line planning problem with a GA. Because they
were one of the first ones to use metaheuristics during the
optimization process, the performance of their algorithms
was a lot better than the previously known methods. Since
then, many refinements have happened to these GA’s. Zhao
and Zeng [32] added a local search component to the GA,
resulting in a memetic algorithm. Nayeem et al. [8] intro-
duced elitism in their GA as well as a guided local search.
Islam et al. [7] used a stochastic beam search to tackle the
line planning problem. One of their other contributions is
the development of a new heuristic to get a very strong
starting solution. Their method combines edge lengths with
demand served into a single cost, while previous methods
just tried to serve a high demand along (quasi) shortest
paths. Chai and Liang’s [33] work is an example of a recent
paper using a GA, and they developed a modified version of
the well-known NSGA-II algorithm to solve the line plan-
ning problem. Fan and Mumford [12] used both hill
climbing and simulated annealing. Also swarm intelligence
techniques are being used in line planning such as Blum and
Mathew [5] who use Ant Colony Optimization or Nikoli¢
and Teodorovi¢ [9] who use Bee Colony Optimization.
Vermeir et al. [34] use an iterated local search combined
with a local evaluation method which only looks at a cut of
the network to quickly evaluate candidate solutions.

Journal of Advanced Transportation

Mauttone and Urquhart [35] were the first ones to model
the line planning problem as a multiobjective problem. They
used a greedy randomized adaptive search procedure to
generate a Pareto front with minimal values for operator and
passenger cost. Recently, Duran-Micco et al. [6] developed a
memetic algorithm to add emissions as an extra objective.
They showed that emissions can be greatly reduced while
only having a minimal impact on the travel time and op-
erator costs. Research focusing only on minimizing the
operator cost is not discussed here, but the interested reader
is referred to the above mentioned survey papers or e.g., [17].

2.2. Exact Approaches. A number of publications on exact
solution approaches start by defining a mathematical model
and then try to solve the problem or a relaxation of the
problem. As illustrated by the paper below, most of these line
planning models originate from train line planning. Since
trains typically have lower frequencies than urban bus
networks, the selected frequencies have a much larger im-
pact on the transfer times than for a high frequency network.
Capacity limitations at stops (stations) are more important
for rail systems and are typically checked through con-
straints based on frequencies [27]. Hence, most commonly,
the setting of frequencies is included in the line planning
process [36]. While frequencies should have a direct relation
to transfer times, including frequency-based transfer times
lead to non-linear optimization models [36]. Therefore, even
when including frequency setting, typically transfer times
are considered through a transfer penalty [23, 37-40]. These
line planning problems are typically formulated as a (mixed-
) integer program.

There exist many ways to calculate passenger routing in
line planning. Distributing all the passengers along their
shortest path is the most commonly used strategy in line
planning. While this is a simple method, it is already
computationally expensive to execute during an optimiza-
tion [40]. In cost-oriented models the operational cost is
minimized subject to certain constraints on the service level.
These constraints are typically very easy to check and avoid
the expensive calculations. Since costs are easy to calculate, it
is possible to use exact approaches even on real-world data.
Claessens et al. [41] use a branch and bound procedure to
obtain results for the Dutch railway system. Bussieck [42]
used this work as a basis to make a cut and branch algorithm
which was used to obtain results for both the German and
Dutch railway system. Goossens et al. [43] built further on
this work with a branch and cut approach which allowed to
loosen some constraints regarding the lines. Bussieck et al.
[44] created a fast procedure that obtains good solutions in a
small computation time. Canca et al. [45] managed to in-
tegrate several other planning steps in the optimization
process.

When looking at passenger-oriented models, explicit
passenger routing is very important and cannot be easily
avoided. In these models, an evolution of the objective
function can be observed, which directly influences the
speed at which the service level can be calculated. The earliest
work circumvents the expensive passenger routing by

maximizing the amount of direct travelers [46]. Here, the
integer program is solved with a branch and bound approach
which greedily chooses lines with maximal current direct
travelers. Bussieck et al. [47] and Bussieck [42] expanded this
work by taking the vehicle capacities into consideration
through introducing constraints on the edge frequencies.
The repeated passenger calculations can also be avoided
through a so-called “system split,” where links are catego-
rized by speed. Passengers are then assumed to switch to the
fast levels as soon as possible and leave it as late as possible.
With these assumptions, the passenger flows can be esti-
mated beforehand and do not have to be recalculated during
the optimization process. This method was promoted by
Bouma and Oltrogge [48], where it is used in a branch-and-
bound approach applied to the Dutch railway network.
Later, the objective function evolved to the minimization of
the travel time of the passengers [23, 37-40].

More recent research integrates passenger routing in
the line planning problem. In order to still model the line
planning problem as MIPs, assumptions about passenger
routing are made, such as passengers choosing minimal
in vehicle travel-time routes (and thus not considering
transfers) or routes with a minimal number of transfers
[40, 49, 50] or such as passenger routes that can be
assigned by the public transport operator [23, 37, 40]. To
avoid these limitations, a bilevel model (like in most
metaheuristics) can be used. In this bilevel model, net-
work decisions are made at an upper level and the pas-
senger routing decisions are made at the lower level
[36, 51, 52]. An early implementation of this is formu-
lated by Constantin and Florian [52]. Goerigk and
Schmidt [36] use this bilevel model to completely inte-
grate passenger routing and solve, to optimality, in-
stances with up to ten bus nodes and a line pool of 30 lines
randomly generated beforehand. For larger networks,
they use a genetic algorithm. However, none of these
methods have solved the instances on Mandl’s Swiss
Network [14] (fifteen nodes) with integrated passenger
routing to optimality.

2.3. Benchmark Instances. Despite being too small to be
representative of a city bus network, Mandl’s Swiss Network
is the most commonly used benchmark instance in bus line
planning [22]. Nevertheless, fair comparisons in line plan-
ning research remains an issue since different variants of the
problem are considered [4]. There are a lot of real-life in-
stances used in literature, but they each have very specific
objectives and constraints or the data is not publicly
available. These issues are also mentioned in Ceder [1],
Ibarra-Rojas et al. [25], Farahani et al. [24], Schébel [27],
Kepaptsoglou and Karlaftis [26], and Guihaire and Hao [3].
Fortunately, Mumford [15] recently made four larger
datasets publicly available. These networks are based on
actual bus route networks from Chinese and British cities
and are being used more and more [4, 6, 8, 18-20, 53]. One
of the datasets was already used earlier by Fan and Mumford
[12], and another one was already used by Nikoli¢ and
Teodorovi¢ [9] with different parameters.

3. Problem Description

The available infrastructure network is depicted by a directed
graph G = {V, E}, which contains vertices V = {v;,v,,...,v,}
representing the bus stops and edges E= {e;;, ey, - - -, e,.} which
are the connections available between these bus stops. The cost
or travel time on an edge e;; is indicated by .. The demand of the
passengers traveling through the public transport network is
represented by an Origin Destination (OD) matrix D. The
number of passengers per hour that want to travel from bus stop
i to bus stop j is then depicted by dj;. In the line planning
problem, the goal is to select the best possible set L of bus lines.
In the uncapacitated line planning problem with integrated
passenger routing, the objective function is to minimize the total
travel time (TTT) of all passengers. This means the sum of all
travel times of all passengers. This travel time also includes
transfer times. This time spent waiting on the next bus (and the
discomfort of transferring) is modelled with a transfer penalty
TP, which penalizes each transfer. It should be noted that a
timetable or frequencies are not available at this stage, and
therefore, a more accurate modelling is not feasible and waiting
times are not considered. In order to evaluate and minimize the
TTT, the routing each passenger will take has to be known. This
routing results in a set 77;; = {ej, ex . . ., €,5} of edges used and the
amount of necessary transfers 7;. The total travel time of all
passengers TTT is then represented by

TIT(L) =)) <dij< Yt +TPx T,.j>>. (1)

i€V jeV eem;;

To completely integrate the passenger routing in the
optimization, the line planning problem is formulated as a
bilevel problem as mentioned in the literature review. The
design of the lines is the upper problem, and the routing of
the passengers is the lower problem. For the lower problem,
the “transit assignment,” a shortest path allocation is used. It
is assumed that each passenger will travel along its shortest
path, considering both the in-vehicle travel time and the
transfer penalties. Although more complex and accurate
transit assignment methods are available [54-57], most line
planning problems are still solved making this assumption
[4, 7-13, 16, 29, 53]. When operator costs are used as an
objective and/or frequencies are considered, frequency-
based assignment models are regularly used (e.g., [58-61]).

The objective and constraints used in this paper are the
most commonly used in literature for the uncapacitated line
planning problem. This is required to allow a fair com-
parison with the state-of-the-art algorithms. First of all, as
mentioned above, a passenger-oriented objective function is
used. Therefore, the operator cost is limited by imposing
constraints. There is a maximum number of nodes that can
be present in each line, and there is a maximum number of
lines that can be selected in the line plan. The shape of the
bus lines is only limited by not allowing any stop to be visited
twice. This excludes all loops in a given line. This also means
that, in this paper, the set of feasible lines is not limited or
fixed beforehand, as is the case in some other papers (e.g.,
[36, 37, 51, 62]). When a line is selected, it is assumed to be
served in both directions and the bus capacity is assumed to

Journal of Advanced Transportation

be high enough to serve all passengers. The integration of the
passenger routing and the fact that no limited set of lines is
considered are two aspects significantly complicating the
uncapacitated line planning problem considered in this

paper.

4. Methodology

This section starts with a detailed discussion of a number of
essential concepts and components implemented in our
algorithm to optimally solve the uncapacitated line planning
problem with integrated passenger routing. First, it is
explained how the line pool is generated and how “essential
links” can be determined. Then, a new transit network
representation is constructed, and it is shown how it can be
used to efficiently calculate the passenger routing. Finally,
the actual branch and bound algorithm is explained in detail.
In Section 4.6, a summary of the method is given together
with the pseudocode and a flowchart, and two alternative
approaches are briefly introduced.

4.1. Line Pool Generation. To ensure that the entire search
space is explored, a pool of all possible lines is generated. To
construct this pool, an important property of the problem is
exploited. The total travel time of all passengers will never
increase when a line is extended by adding an extra stop at
one of the ends. Therefore, all lines that are a subline of
another feasible line are dominated by that line. When a
dominated line would be part of the optimal solution, it can
be substituted for its dominator. This means that only
considering nondominated lines will be sufficient to find the
optimal solution. This is illustrated in Figure 2, where line (a)
is dominated by line (b). All passengers that use line (a) in
their shortest path will still be able to use the same shortest
path if we transform line (a) to line (b). The situation can
only improve for the passengers. For example, passengers
that want to travel from node 5 to node 3 now have a direct
connection along the shortest path. Because the uncapaci-
tated line problem does not consider frequencies or costs,
line (b) is always at least as good as line (a). This means that
we can guarantee to obtain an optimal solution without
having to consider line (a). This is the power of domination,
and it significantly limits the size of the line pool. For ex-
ample, on Mandl’s network with infinite line lengths, this
results in 581 lines that could be present in the final solution,
while without the dominance rules, there would be 8180
candidate lines. Note that this dominance rule only holds for
the uncapacitated line planning problem. If frequencies are
included or when demand elasticity is considered the
method will have to be adjusted.

A pool of nondominated lines is now constructed re-
cursively. The algorithm starts by selecting any node in the
network and connecting one of its adjacent nodes to con-
struct a bus line. This bus line is extended by adding new
adjacent nodes until it is no longer possible without violating
any constraints (maximum line length or visiting a stop
twice). A line that cannot be extended is a possible candidate
for the optimal solution and is added to the line pool. After

Journal of Advanced Transportation

(a)

(b)

FIGURE 2: Example of domination. Line (a) is dominated by line (b).

undoing the last extension, a different adjacent node can be
chosen for extending the line. When there are no adjacent
nodes left, the previous extension is undone, and so on. This
process continues until only the starting node remains. If
this is repeated for all nodes in the network, a pool of all
possible lines is generated. Since all lines are considered
bidirectionally, symmetric lines can be eliminated.

4.2. Essential Links. An essential link is a link for which it
can be determined beforehand that it has to be present in the
optimal solution. All candidate solutions that do not contain
all essential links do not have to be evaluated. This results in
fewer candidate solutions that have to undergo a time-
consuming evaluation. It will be shown in the experimental
results (Section 5) that this makes the algorithm significantly
faster.

Essential links are determined by removing a link from
the infrastructure network and then solving the all pair
shortest path problem. This assumes every passenger will
have a direct connection along its shortest path, but the
removed link cannot be used. If the total travel time of all
passengers obtained this way is worse than the best-known
solution, then the removed link is an essential link. In other
words, a lower bound is calculated for the network where a
certain link is removed. If this lower bound is higher than an
upper bound that is already available at the start of the
algorithm (the best-known solution), then the removed link
is essential. Without this link, the optimal solution can never
be obtained. After repeating this process for all links in the
network, a list of all essential links is constructed.

This paper uses the optimal solution with one less line as the
best-known solution to determine the essential links. For ex-
ample, when starting to solve the problem for six lines, the
optimal solution for five lines is used as the best-known solution
to determine the essential links for six lines. Results known from
literature or (meta) heuristics could also be used as the best-
known solution. If a problem currently has no known solution,
any solution method can be used to get a first upper bound.
Obviously, the better the quality of this upper bound, the more
essential links can be identified. Note that the lower bound can
be obtained when not including a link is constant and can be
precalculated. This means that the list of essential links could be
updated on the go every time a new best solution is found.
However, in our algorithm, the list of essential links is con-
structed during a precalculation phase. The presence of each of
the essential links is also precalculated for each line in the
generated line pool. This makes checking these added con-
straints during optimization very fast.

4.3. Direct Link Network Representation. To take transfers
into account when looking for the passenger routes, the
available infrastructure network needs to be extended to
obtain a proper representation. Typically, this is done by
adding a dummy node for every stop on every bus line. This
type of extended network is also called the Change and Go
Network (CNG) [23, 36] or the Train Service Network (TSN)
[63]. A disadvantage of this method is that the addition of
many extra nodes significantly impacts the time required to
calculate the passenger routes.

This paper does not use the TSN or CNG. Rather than
adding extra nodes, extra links are added to the network. For
any two nodes that are connected by a single bus line, a direct
link is added to the network. The total travel time of the bus
between these two nodes is then used as travel time for this
link. If multiple bus lines connect the same nodes, only the
link with the shortest travel time is kept in the final network,
which we call the “Direct Link Network (DLN).”

Figure 3 illustrates both the CNG and the DLN on a
small toy network. Figure 3(a) depicts a small toy network
with five stops and two bus lines: a full black line and a
dotted orange line. Figure 3(b) is the DLN representation of
the same toy network. Three extra links have been added to
the network. The links in the DLN are color coded to make it
clear from which line each link originates. Node one has a
direct connection to every other node in the network; hence,
it has alink to every other node in the network. But node one
can reach node two with a direct connection through each of
the two lines. Because the connection through the orange
line is shorter, this is the only link that is kept in the rep-
resentation. Node three and node five are not connected
through a direct connection. Thus, passengers traveling
between these nodes need to use a transfer. In the DLN, this
is represented by the absence of a link connecting the two
nodes. If a shortest path is calculated on the DLN, then each
link beyond the first that is part of the shortest path also
represents a transfer (and comes with a penalty). Figure 3(c)
is the CNG representation of the toy network. Seven nodes
and seven links have been added to the network.

There are two ways to consider transfers in this DLN. The
simplest way is to add the transfer penalty to the length of
every link in the network. Any method to solve the all pair
shortest path problem can then be used to calculate the
passenger routes. Since every link now contains a transfer
penalty, a single transfer penalty has to be subtracted from
each shortest path calculated this way. Because of the nature
of the DLN, every additional link used beyond the first
implies an actual transfer (for which the penalty is indeed
included). However, we decided to incorporate the transfer

(a)

(b)

Journal of Advanced Transportation

(©)

FIGURE 3: (a) Toy network with 2 bus lines; (b) Direct Link Network representation. (c) Change and Go representation.

penalties by slightly modifying Floyd—Warshall’s algorithm,
which is very simple for the DLN representation proposed in
this paper. Direct connections in the network are repre-
sented by a single link. Therefore, every combination of links
implies a transfer. Then, a transfer penalty can simply be
added to the main operator of the Floyd-Warshall algo-
rithm, which is illustrated in

Vk,i, j: dist(i, j) = min (dist[i]], dist[i] [k] + dist[K] [j] + TP).
(2)

Also, in Dijkstra’s algorithm, the transfer penalties can
be incorporated directly. Actually, Dijkstra’s algorithm is
most commonly used in line planning research. This paper,
however, uses Floyd-Warshall’s algorithm since it per-
formed better in the initial testing. Note that the method
used in this paper creates a much more dense network than
the traditional CNG network. Floyd-Warshall tends to
perform better on dense networks, while Dijkstra tends to do
better on sparse networks [64, 65].

It should be noted as well that this DLN representation
can also be used in line planning research using meta-
heuristics. It can be especially useful when a high number of
lines are considered. This network can also be adjusted easily
to work for line planning with frequencies. Whenever a
single OD pair is connected by multiple bus lines, this would
also result in multiple links, one for each bus line available
between these nodes, instead of only keeping the shortest
one as explained above.

4.4. Branch and Bound. At the start of the algorithm, the
lower bound corresponds to the ideal situation. This would
mean that every passenger is able to travel from its origin to
its destination along the shortest possible path in the in-
frastructure network without any transfers. Then, as illus-
trated in Figure 4, the branching process starts by selecting
the first OD pair (OD1) from the sorted list of OD pairs. The
way these OD pairs are sorted is explained in Section 4.5. In
the explanation below, we assume that OD1 has node A as
origin and node B as destination. From the pool of lines, all
lines that contain both node A and node B are selected (OD1
L1,0D1 L2, etc.). In this selection, only those lines for which

the detour (compared to the shortest possible path) between
A and B is less than a single transfer penalty are considered
as branches in the branch and bound tree. These lines are
then sorted according to their travel time between A and B.
Now, two different scenarios are possible. One of these lines
is chosen as part of the solution, each leading to a different
branch (OD1 L1 is part of the solution or OD1 L2 is part of
the solution), or none of these lines is chosen, leading to one
additional branch (>TP in Figure 4).

When a line is chosen as a part of the solution, this
implies that, in the end solution, all passengers traveling
from A to B will travel along this line. This is due to the fact
that shorter alternatives for traveling from A to B have been
considered in previous branches. For instance, if OD1 L2 is
selected as part of the solution, OD1 L1 was not selected and
the shortest path to travel from A to B in the solution will be
along OD1 L2. This path is then called the “optimal path”
between A and B in this branch. This has an important
implication. If the optimal path is longer than the “shortest
possible path” between A and B, then the lower bound for
this branch can be adjusted with the difference between the
“optimal path” and the “shortest possible path,” multiplied
with all the demand between A and B. Obviously, if this
makes the lower bound of this branch worse than the current
upper bound available, this branch can be pruned. There is
also an effect for all OD pairs lying on the part of the chosen
line between A and B. Since they contribute to the “optimal
path” between A and B, their own “optimal path” cannot
improve the connection between A and B. This is also taken
into account in the lower bound.

If none of these lines (OD1 L1, OD1 L2, etc.) is chosen,
the additional branch is followed and the “optimal path”
between A and B in that branch will be at least a single
transfer penalty longer than the “shortest possible path.” In
Figure 4, this is represented by the branches called “>TP.” In
the best-case scenario in this branch, traveling from A to B is
possible along the shortest possible path with a single
transfer. Therefore, in this branch, the lower bound can be
adjusted by adding a single transfer penalty multiplied with
the total demand between A and B. The new lower bound has
to be compared to the current upper bound to decide
whether to continue along this branch or not.

Journal of Advanced Transportation

Sorted OD List
OD1 mmmg Lines ODI1

e
CD CD es &3

D G0 N =

ODI1 L1
OD1 L2
OD1 L3

FIGURE 4: The branching process.

In the next branching step, the next OD pair from the
sorted list is chosen (OD2) and the process described above
is repeated for this OD pair. Again, all lines from the line
pool with an optimal path that deviates less than a single
transfer penalty from the minimum possible are selected to
branch upon, together with one branch were none of these
lines is selected. There is one difference however. All can-
didate lines with an optimal path for OD1 that is shorter
than the chosen one should not be considered again and thus
cannot be branched upon. Since the lines were sorted by
length (or travel time), all previously branched upon lines
are excluded from being further explored. In Figure 4, this
means that if one of the possible branches of OD2 is a line
already explored in an upper branch, it is immediately
pruned. If, for example, OD1 L2 is the current branch being
explored, then the lines OD1 L1 and OD1 L2 will not be
considered as lines for OD2. But OD1 L3 could be a valid
candidate since it has not been explored before.

This branching process continues either until the new
lower bound is worse than the current upper bound, after
which the branch gets pruned, or until the required number
of lines is chosen. After sufficient lines are chosen, the
presence of all nodes and essential links is checked. If they
are all present, the solution is evaluated and the upper bound
is adjusted if a new best solution is found.

4.5. Sorting of OD Pairs. The order in which OD pairs are
selected to be branched upon greatly impacts the calculation
time of the algorithm. There are two elements considered
when selecting the next OD pair. One is to have as little lines
as possible with a detour smaller than the transfer penalty.
The other is to have a large demand for an OD pair. The first
limits the number of branches that need to be constructed,
and the latter increases the lower bound faster, allowing to
prune more frequently. In this paper, experimental results
for three different sorting methods for OD pairs are dis-
cussed. The main sorting method combines both elements
mentioned earlier in this paragraph by first sorting the OD
pairs by decreasing the number of nodes in between and
then breaking any ties by putting the highest demand first.
This is the main sorting method used in the experiments. It
makes sure that the top levels have as little branches as
possible.

A first alternative sorting method, which will be called
“complex sort,” combines the number of branches and the
demand in a single variable. The number of branches is equal
to the amount of lines that contain the OD pair under
consideration and that do not make a detour of at least one

transfer penalty compared to the shortest path (plus one
extra branch for where the detour is assumed to be at least a
transfer penalty, and thus, no line is selected). The complex
sort calculates the total amount of branches and divides this
by the square root of the demand of the chosen OD pair to
branch upon. The square root is used to add more weight to
the number of branches compared to the size of the demand.
In this way, the algorithm tries to limit the number of top
branches, while also maximizing the impact of not selecting
a line. Finally, the second alternative sorting method is a
random sort. This is used to prove whether the sorting
actually has an effect on the performance of the algorithm.

4.6. Summary of the Exact Algorithm. Figure 5 shows an
overview of the entire algorithm in a flowchart, and Algo-
rithm 1 presents the pseudocode. The algorithm starts with
some precalculations. The most important precalculation is
the generation of the full set of bus lines that could end up in
an optimal solution (line 2 in Algorithm 1). All origin-
destination (OD) pairs are sorted by the number of nodes
along the shortest path and their demand (line 3 in Algo-
rithm 1). All the branches for each OD pair are also de-
termined in this step, so it is checked for each OD pair which
lines contain that OD pair and how long the detour is
compared to the shortest path (line 4 in Algorithm 1). Then,
the essential links are calculated (line 5 in Algorithm 1).
Finally, the initial lower bound corresponds to the (probably
unfeasible) solution where every passenger travels along the
shortest possible path in the infrastructure network without
any transfers. Based on all these precalculations, the branch
and bound algorithm can commence (line 6 in Algorithm 1).

The branch and bound algorithm branches on all pos-
sible lines from the line pool that connects a chosen OD pair
with a detour smaller than a transfer penalty (line 16 in
Algorithm 1). One additional branch is considered where
none of these lines are allowed (line 24 in Algorithm 1).
Here, the lower bound is increased with the transfer penalty
multiplied with the demand of the OD pair (line 25 in
Algorithm 1). The OD pair to branch on next is always
selected based on the precalculations. The branch and bound
algorithm keeps branching deeper and deeper until the set
amount of bus lines is selected (line 7 in Algorithm 1) or
until the lower bound of a branch exceeds the current best
solution (line 20 in Algorithm 1). Whenever the set amount
of lines is selected, the presence of all nodes and essential
links is checked (line 8 in Algorithm 1). If this is the case, the
Direct Link Network is constructed and the passenger routes
are determined wusing the adapted Floyd-Warshall

Generate dominant
line pool

Sort OD Pairs

List of lines per OD
pair

Determine Essential
Links

B Branch on OD-pair

Select Branch

Max #lines?

Update Bounds

Close Branch

Evaluate Solution

Update Bounds

Journal of Advanced Transportation

———— Pre-Calculations

>— Branch and Bound

.

FI1GURE 5: Flowchart of the algorithm.

algorithm. The solution is then evaluated and compared to
the current upper and lower bound. At the end, all relevant
parts of the search space will have been explored and the
optimal solution is determined.

4.7. Alternative Approaches. The most obvious approach to
find an optimal solution is a simple brute force solution. By
selecting all possible combinations of #n lines out of the
feasible line pool, all feasible solutions can be evaluated. The
computation time of this approach increases drastically for
each extra line that can be part of the solution. This approach
becomes intractable in even very small instances, such as
MandI’s network with five lines.

Preliminary experiments on the Mumford0 instance
with 30 nodes and 90 links show that it takes up too much
memory to calculate all possible lines beforehand. To address
this, the line pool can be generated on the go. After selecting
an OD pair to branch on, the pool of lines with a detour of
less than one transfer penalty can be calculated. Initial ex-
periments on larger networks and with a higher maximum
number of lines took too much time to even come close to

the results found by heuristics and are, hence, not included
in the results. To use the insights gained in this paper for
larger networks, extra adjustments have to be made. This will
be discussed further in Section 6.

5. Results

This section contains the results of the experiments on
Mand!l’s Swiss Network [14]. First Mandl’s Swiss Network is
introduced. The actual experiments start with determining,
for the first time, the optimal solutions for all available
instances on the network with the exact algorithm discussed
above. These solutions are also compared to the solutions
found by state-of-the-art (meta) heuristics. Then, the im-
portance of the newly introduced concepts is analyzed: the
sorting method used, the essential links, the Direct Link
Network, and finally using the entire branch and bound
method instead of brute forcing a solution.

The software algorithms were implemented in C++17
and compiled with g++ (GCC) 9.3.0, and Docker was used to
setup a standalone image to run the experiments. The
Docker containers were executed on a dedicated virtual

Journal of Advanced Transportation

(1) Precalculations:

(3) Sort OD Pairs (Section 4.5);

(15) Select OD pair

(26) end
(27) Return Optimal_Line_Plan

(2) Generate pool of dominant lines (Section 4.1);

(4) Construct list of lines per OD pair (Section 4.5);
(5) Determine Essential Links (Section 4.2);
(6) Recursive Branch and Bound (Section 4.4):
(7) If (size of Current_Line_Plan equals maximum)

(8) If (All essential links and nodes are present in Current_Line_Plan)
9) If (TTT < UpperBound)

(10) Optimal_Line_Plan «— Current_Line_Plan;

@1n) UpperBound «— TTT;

12) end

(13) end

(14) Else

(16) For (All lines serving the OD pair with a detour less than TP)

17) Next_Line_Plan «— Current_Line_Plan;

18) Add line to the Next_Line_Plan;

19) Next_LowerBound «— LowerBound + detour * Demand of OD pair;

(20) IF (Next_LowerBound < UpperBound)

(21) Go one step deeper in the branch and bound with Next_Line_Plan

(22) end

(23) end

(24) Go one step deeper in branch and bound without selecting a line (deviation > TP)

(25) LowerBound «— LowerBound + TP * Demand of OD pair;

ALGORITHM 1: Pseudocode of the algorithm.

machine, running CoreOS, to minimize context switching
and external interference. The virtual machine ran on
Intel(R) Xeon(R) CPU E5-2640 v4@2.40 GHz hardware and
was granted 4 dedicated CPU cores (8 HyperThreads) and
16 GB dedicated RAM. The C++ implementation exploits
the multicore setup by parallelizing the execution on several
worker threads. All the data of the experiments and the
instances is available at https://www.mech.kuleuven.be/en/
cib/lp/mainpage#section-12.

5.1. Mandl’s Swiss Network. Mandl’'s Swiss Network (Figure 1)
is a small network with 15 nodes and 21 links originally used in
Mandl [14]. In total, there are 15570 trips in the network and the
demand is symmetric. It is one of the only publicly available
datasets for the line planning problem and, therefore, the most
used benchmark instance. The most commonly used param-
eters for this network are used in this work. The most common
limiter of line length is by limiting the number of nodes per line
to eight. In this paper, both a maximum of eight nodes per line
and an unlimited number of nodes per line are used. These
“unlimited” lines will then be limited by the fact that nodes can
only be included once in a single line. For finding the optimal
solutions, the results are shown for all instances with a relevant
amount of lines. When the newly introduced concepts are
analyzed, only a subset of instances will be used to somewhat
limit the required calculation time. The transfer penalty is set to
five minutes, and this value is used in most publications
[4, 7, 8, 10].

5.2. Exact Solution Algorithm. The algorithm used here
works entirely as described in Section 4.6. Table 1 shows the
optimal solutions with respect to Total Travel Time for all
instances (Number of Lines) with at most eight nodes per
line. The third column shows the Total Travel Time (TTT)
and the fourth column the Average Travel Time (ATT) in
minutes, which is the TTT per trip. The fifth column shows
the CPU time of the algorithm, in seconds. This CPU time is
the time the algorithm spent in the branch and bound
procedure. The entire precalculations require close to 40
seconds (of which nearly all time is spent preparing the
branches), but does not have to be repeated for every in-
stance. The final column shows the number of solutions that
were evaluated, in millions. Table 2 shows the actual lines
that make up the optimal line plan for each instance. As a
visual example, Figure 6 represents the optimal solution for
the instance with four lines and at most eight stops per line.
Note that every line passes by node ten. This is expected since
this node alone is responsible for more or less one quarter of
all the demand in the network.

The CPU time keeps increasing until nine lines. Every
extra line increases the amount of possible solutions dras-
tically. Therefore, it is expected that more lines result in
longer CPU times and more solutions checked. But, at ten
lines, the search time decreases again. There are several
effects at play here. More lines make it easier for the al-
gorithm to get good upper bounds quickly because more
lines result in better solutions. These upper bounds will also
be closer to the absolute lower bound. Both of these things

https://www.mech.kuleuven.be/en/cib/lp/mainpage
https://www.mech.kuleuven.be/en/cib/lp/mainpage

10

Journal of Advanced Transportation

TaBLE 1: Optimal solutions for Mandl’s Swiss network with at most 8 nodes per line.

Number of lines Max nodes per line TTT (min) ATT (min) CPU time (s) Solutions checked (M)
3 169450 10.88 13 <1
4 163210 10.48 297 15
5 160450 10.31 3317 466
6 158500 10.18 18856 3785
7 157260 10.10 39753 6737
8 8 156750 10.07 161902 25704
9 156300 10.04 200872 24934
10 155940 10.02 29296 4032
11 155850 10.01 17054 1369
12 155820 10.01 16320 1044
13 155800 10.01 24883 1634
14 155790 10.01 1019 177
TaBLE 2: Optimal solutions for 3 to 14 lines with at most 8 nodes per line.
3 lines 4 lines 5 lines
Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 12 Line 1: 1, 2, 3, 6, 8, 10, 14, and 13
Line 2: 5, 4, 6, 15, 7, 10, 14, and 13 Line 2: 1, 2, 5, 4, 6, 8, 10, and 11 Line 2: 1, 2, 3, 6, 15, 7, 10, and 11
Line 3: 2, 4, 12, 11, 10, 8, 15, and 9 Line 3: 10, 7, 15, 6, 3, 2, 4, and 12 Line 3: 1, 2, 5, 4, 6, 8, 10, and 11
Line 4: 9, 15, 8, 10, 14, 13, 11, and 12 Line 4: 2, 4, 12, 11, 10, 7, 15, and 9
Line 5: 7, 15, 8, 6, 4, 12, 11, and 13
6 lines 7 lines 8 lines
Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13
Line 2: 1, 2, 3, 6, 15, 7, 10, and 14 Line 2: 1, 2, 3, 6, 15, 7, 10, and 14 Line 2: 1, 2, 3, 6, 15, 7, 10, and 14
Line 3: 1, 2, 5, 4, 6, 8, 10, and 14 Line 3: 1, 2, 5, 4, 6, 8, 10, and 14 Line 3: 1, 2, 5, 4, 6, 8, 10, and 14
Line 4: 3,2, 5, 4, 6, 8, 15, and 7 Line 4: 3, 2, 5, 4, 6, 8, 15, and 7 Line 4: 3, 2, 5, 4, 6, 15, 7, and 10
Line 5: 5, 4, 12, 11, 10, 7, 15, and 9 Line 5: 5, 4, 12, 11, 10, 7, 15, and 9 Line 5: 5, 4, 12, 11, 10, 7, 15, and 9
Line 6: 1, 2, 4, 12, 11, 13, 14, and 10 Line 6: 9, 15, 6, 3, 2, 4, 12, and 11 Line 6: 9, 15, 6, 3, 2, 4, 12, and 11
Line 7: 1, 2, 4, 12, 11, 13, 14, and 10 Line 7: 1, 2, 4, 12, 11, 13, 14, and 10
Line 8: 12, 4, 6, 8, 15, 7, 10, and 13
9 lines 10 lines 11 lines
Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13
Line 2: 1, 2, 3, 6, 15, 7, 10, and 13 Line 2: 1, 2, 3, 6, 15, 7, 10, and 8 Line 2: 1, 2, 3, 6, 15, 7, 10, and 8
Line 3: 1, 2, 3, 6, 15, and 9 Line 3: 1, 2, 3, 6, 15, and 9 Line 3: 1, 2, 3, 6, 15, and 9
Line 4: 12, 4, 2, 3, 6, 8, 10, and 14 Line 4: 12, 4, 2, 3, 6, 8, 10, and 14 Line 4: 12, 4, 2, 3, 6, 8, 10, and 14
Line 5: 1, 2, 5, 4, 6, 8, 10, and 11 Line 5: 5, 4, 6, 8, 10, 11, 13, and 14 Line 5: 5, 4, 6, 8, 10, 11, 13, and 14
Line 6: 3, 2, 5, 4, 6, 8, 15, and 7 Line 6: 1, 2, 5, 4, 6, 15, 7, and 10 Line 6: 1, 2, 5, 4, 6, 15, 7, and 10
Line 7: 5, 4, 12, 11, 10, 7, 15, and 9 Line 7: 5, 4, 12, 11, 10, 7, 15, and 9 Line 7: 5, 4, 12, 11, 10, 7, 15, and 9
Line 8: 9, 15, 8, 6, 4, 12, 11, and 10 Line 8: 3, 2, 5, 4, 6, 8, 15, and 9 Line 8: 3, 2, 5, 4, 6, 15, and 9
Line 9: 1, 2, 4, 12, 11, 13, 14, and 10 Line 9: 12, 4, 6, 8, 15, 7, 10, and 14 Line 9: 9, 15, 8, 6, 4, 12, 11, and 10
Line 10: 1, 2, 4, 12, 11, 13, 10, and 7 Line 10: 12, 4, 6, 8, 15, 7, 10, and 14
Line 11: 1, 2, 4, 12, 11, 13, 10, and 7
12 lines 13 lines 14 lines
Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13 Line 1: 1, 2, 3, 6, 8, 10, 11, and 13
Line 2: 1, 2, 3, 6, 15, 7, 10, and 8 Line 2: 1, 2, 3, 6, 15, 7, 10, and 8 Line 2: 1, 2, 3, 6, 15, 7, 10, and 8
Line 3: 1, 2, 3, 6, 15, and 9 Line 3: 1, 2, 3, 6, 15, and 9 Line 3: 1, 2, 3, 6, 15, and 9
Line 4: 1, 2, 3, 6, 8, 10, 14, and 13 Line 4: 1, 2, 3, 6, 8, 10, 14, and 13 Line 4: 1, 2, 3, 6, 8, 10, 14, and 13
Line 5: 2, 5, 4, 6, 8, 10, 11, and 13 Line 5: 1, 2, 5, 4, 6, 8, 10, and 11 Line 5: 1, 2, 5, 4, 6, 8, 10, and 11
Line 6: 1, 2, 5, 4, 6, 15, 7, and 10 Line 6: 1, 2, 5, 4, 6, 15, 7, and 10 Line 6: 1, 2, 5, 4, 6, 15, 7, and 10
Line 7: 5, 4, 12, 11, 10, 7, 15, and 9 Line 7: 5, 4, 12, 11, 10, 7, 15, and 9 Line 7: 5, 4, 12, 11, 10, 7, 15, and 9
Line 8: 3, 2, 5, 4, 6, 15, and 9 Line 8: 3, 2, 5, 4, 6, 15, and 9 Line 8: 3, 2, 5, 4, 6, 15, and 9
Line 9: 9, 15, 8, 6, 4, 12, 11, and 10 Line 9: 9, 15, 8, 6, 4, 12, 11, and 10 Line 9: 7, 10, 11, 12, 4, 6, 15, and 9
Line 10: 12, 4, 6, 15, 7, 10, 14, and 13 Line 10: 2, 5, 4, 6, 8, 10, 14, and 13 Line 10: 2, 5, 4, 6, 8, 10, 14, and 13
Line 11: 1, 2, 4, 12, 11, 13, 14, and 10 Line 11: 1, 2, 4, 12, 11, 13, 14, and 10 Line 11: 1, 2, 4, 12, 11, 13, 10, and 7

Line 12: 7, 15, 8, 6, 3, 2, 4, and 12

Line 12: 7, 15, 8, 6, 3, 2, 4, and 12
Line 13: 12, 4, 6, 15, 7, 10, 14, and 13

Line 12: 9, 15, 8, 6, 3, 2, 4, and 12
Line 13: 7, 15, 6, 4, 12, 11, 13, and 14
Line 14: 12, 4, 6, 8, 15, 7, 10, and 14

Journal of Advanced Transportation

FIGURE 6: Optimal solution on Mandl’s Swiss network with 4 lines
with at most 8 nodes each.

result in faster pruning in the branch and bound algorithm.
When lines get longer or when there are simply more lines,
lower and upper bounds will be updated more often. This
results in even more pruning and is an important con-
tributor to keeping the CPU times under control for the
higher amount of lines. Another added benefit of having
more lines is that the likelihood of not selecting any of the
lines at a branch decreases, which results in having to travel
less deep to get to a solution. For example, when the absolute
lower bound is achievable, this means that every passenger
can travel along its shortest path without transfers. There-
fore, no matter which OD pair gets chosen to branch upon,
there will always be a line selected from the pool. For the
instances with eight nodes per line, this happens at fourteen
lines. This is thus the minimum amount of lines necessary to
reach the lower bound with at most eight nodes per line.

Table 3 shows the optimal solutions for the instances
without any restriction on the number of nodes per line,
which results in a maximum of fourteen nodes per line in
this network. The analysis is the same as for the previous
results. Because of the longer lines, the quality of the
solution is obviously better than with shorter lines. With
thirteen lines, every passenger has a direct connection
along its shortest possible path. The actual details of the
optimal solutions can be found in Table 4. To the best of
our knowledge, only the result for three lines were
previously known and published in Fiss and Ritt [66].
Their Mixed Integer Programming implementation re-
quired 78992 seconds (on their system) to find the op-
timal solution with three lines, and they calculated it
would take them 77 days to find the optimal solution for
four lines. In comparison, our algorithm only needs 15
seconds (for three lines) and 168 seconds (for four lines)
to find the optimal solution.

11

Tables 5 and 6 contain the comparison with the results
from literature for a limit of eight and fourteen nodes per
line, respectively. In Table 5, the results from our exact
algorithm are compared with the results available from
[4,7, 14, 30]. To the best of our knowledge, these papers have
the best ATT for this same problem in literature. In Table 6,
the results obtained by [8, 10] are chosen since they solve
instances with a limit of fourteen nodes per line. These
papers report results for instances with four, six, seven, and
eight lines. Obviously, the CPU times for the metaheuristics
in Table 6 are much lower than for our exact algorithm.
Unfortunately, no CPU times are reported for the two
approaches reported in Table 6.

Only for four lines with a maximum of eight nodes per
line does one of the algorithms from literature find the
optimal solution (without knowing it is optimal), but in
general, they find a solution close to the optimal. However,
the question can be raised whether it is useful to keep
competing for finding better metaheuristic solutions on this
small network. On this small network, many complex and
computationally expensive methods (such as our exact al-
gorithm) can be used to find very good solutions. However,
this does not mean the proposed method would work on a
realistic network. Hence, researchers should be careful when
basing their conclusions only on results found for Mandl’s
Swiss Network.

5.3. Sorting. In this and following sections, the importance
of different parts of the algorithm is evaluated. In Section 4.5,
three different sorting methods are introduced. All previous
experiments were executed with the main sorting method. In
this section, it is analyzed what the impact is of sorting. The
main sorting method is compared with the complex sort and
the random sort. The sorting itself takes much less than a
second (sorting 120 OD pairs based on a criteria). Based on
the results from the previous section, only instances with
four, eight, and twelve lines are considered in order to
somewhat limit the required total CPU time. With this
subset, both a very small number of lines as well as a large
number of lines are being tested. Eight lines is also chosen
because it took a very long time to find the optimal solution
in the earlier experiments. The random sort is executed three
times, and the best results are reported here. The CPU time
per instance (and per execution) is limited to 24 hours. The
results are presented in Table 7.

A first obvious conclusion is that the main sort used in
the algorithm performs much better than random sort.
These results make it clear that sorting your OD pairs is very
important in our branch and bound algorithm. The complex
sort performs very good when considering a small amount of
lines. With four lines, it is significantly faster than the main
variant for both line lengths. For eight lines with at most
eight nodes, it is a lot faster than the main sort. While with
unlimited line lengths, the results are almost equal. For
twelve lines, the complex sort can never finish within a day.
Hence, it needs a lot more time than the main sort for high
line numbers. The main sort is chosen in our algorithm
because it can find the optimal solution for all instances.

12

Journal of Advanced Transportation

TaBLE 3: Optimal solutions for Mandl’s Swiss network with no limitations to route length.

Number of lines Max nodes per line TTT (min) ATT (min) CPU time (s) Solutions checked (M)
3 163430 10.50 15 2
4 159990 10.28 168 44
5 158220 10.16 1641 433
6 157040 10.09 5357 1429
7 156550 10.05 33898 8002
8 14 156090 10.03 20359 5013
9 155930 10.01 14376 1829
10 155840 10.01 8002 816
11 155820 10.01 17590 1025
12 155800 10.01 46067 4036
13 155790 10.01 849 206
TaBLE 4: Optimal solutions for 3 to 13 lines with at most 14 nodes per line.
3 lines 4 lines 5 lines

Line 0:1, 2, 3, 6, 8, 10, 14, 13, 11, 12, 4, and 5
Line 1: 1, 2, 5, 4, 6, 8, 10, 7, 15, and 9
Line 2: 5, 4, 2, 3, 6, 15, 7, 10, 11, and 12

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line 1: 1, 2, 4, 6, 8, 15, 7, 10, 11, and 12
Line2:13,11,12,4,5,2,3,6,15,7, 10, and 14
Line 3: 1, 2, 5, 4, 6, 8, 10, 7, 15, and 9

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line1:1,2,4,6,8,15,7,10, 14,13, 11,and 12
Line2:13,11,12,4,5,2,3,6, 15,7, 10,and 14

Line 3: 1, 2, 5, 4, 6, 8, 10, 7, 15, and 9

Line 4: 7, 10, 11, 12, 4, 2, 3, 6, 15, and 9

6 lines

7 lines

8 lines

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line1:1,2,3,6,15,7,10,14,13,11,12,4, and
5

Line 2: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14
Line 3:3,2,5,4,6,8,15,7,10, 14,13, 11, and
12

Line 4: 1, 2, 4, 12, 11, 10, 7, 15, and 9

Line 5: 8,10, 14,13,11,12,4,2,3,6,15,and 9

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line 1:1,2,3,6,15,7,10, 14,13,11, 12,4, and
5
Line 2: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14
Line 3:3,2,5,4,6,8,15,7, 10, 14,13, 11, and
12
Line 4: 1, 2, 4, 12, 11, 10, 7, 15, and 9
Line 5: 8,10, 14, 13,11, 12,4,2,3,6,15,and 9
Line 6: 7, 10, 11, 12, 4, 6, 8, 15, and 9

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Linel:1,2,3,6,15,7,10,14,13,11,12,4,and
5
Line 2: 1, 2, 3, 6, 15, and 9

Line 3: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14

Line 4:3,2,5,4,6,15,7,10,14,13,11, and 12
Line 5: 1, 2, 4, 12, 11, 10, 7, 15, and 9
Line 6: 7, 10, 11, 12, 4, 6, 8, 15, and 9

Line7:6,3,2,4,12,11, 13,14, 10,8, 15,and 7

9 lines 10 lines 11 lines

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14 Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14 Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line 1: 1, 2, 3, 6, 15, 7, 10, 11, 12, 4, and 5 Line 1: 1, 2, 3, 6, 15, 7, 10, 11, 12, 4, and 5 Line 1: 1, 2, 3, 6, 15, 7, 10, and 8
Line 2: 1, 2, 3, 6, 15, and 9 Line 2: 1, 2, 3, 6, 15, and 9 Line 2: 1, 2, 3, 6, 15, and 9

Line 3: 11, 12, 4, 2, 3, 6, 8, 10, 14, and 13
Line 4: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14
Line5:1,2,5,4,6,15,7,10,14,13,11,and 12
Line 6: 1, 2, 4, 12, 11, 10, 7, 15, and 9

Line 7: 3, 2, 5, 4, 6, 8, 15, and 9

Line 8: 7, 15, 8, 6, 4, 12, 11, 10, 13, and 14

3
3
» 3,
2
5

Line 3: 11, 12, 4, 2, 3, 6, 8, 10, 14, and 13
Line 4: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14
Line5:1,2,5,4,6,15,7,10,14,13,11,and 12
Line 6: 1, 2, 4, 12, 11, 10, 7, 15, and 9
Line 7: 3, 2, 5, 4, 6, 15, and 9
Line 8: 7, 10, 11, 12, 4, 6, 8, 15, and 9
Line 9: 7, 15, 8, 6, 4, 12, 11, 10, 13, and 14

2:

Line 3:1,2,3,6, 8,10, 14, 13,11, 12,4,and 5
Line 4: 1, 2, 5, 4, 6, 8, 10, 11, 13, and 14
Line 5: 1, 2, 5, 4, 6, 15, 7, 10, and 8
Line 6: 1, 2, 4, 12, 11, 10, 7, 15, and 9
Line 7: 3, 2, 5, 4, 6, 15, and 9
Line 8: 7, 10, 11, 12, 4, 6, 8, 15, and 9
Line 9: 11, 12, 4, 6, 15, 7, 10, 14, and 13
Line 10: 3, 2, 4, 12, 11, 10, 7, 15, 8, and 6

12 lines

13 lines

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14

Line 1: 1, 2, 3, 6, 15, 7, 10, and 8

Line 2: 1, 2, 3, 6, 15, and 9

Line 3:1, 2, 3, 6, 8, 10, 14, 13, 11, 12,4, and 5
Line 4: 1, 2, 5, 4, 6, 8, 10, 11, and 12

Line 5: 1, 2, 5, 4, 6, 15, 7, 10, and 8

Line 6: 1, 2, 4, 12, 11, 10, 7, 15, and 9

Line 7: 1, 2, 5, 4, 6, 15, and 9

Line 8: 7, 10, 11, 12, 4, 6, 8, 15, and 9

Line 9: 3, 2, 5, 4, 6, 8, 10, 14, 13, 11, and 12
Line 10: 3, 2, 4, 12, 11, 10, 7, 15, 8, and 6
Line 11: 11, 12, 4, 6, 15, 7, 10, 14, and 13

Line 0: 1, 2, 3, 6, 8, 10, 11, 13, and 14
Line 1: 1, 2, 3, 6, 15, 7, 10, and 8
Line 2: 1, 2, 3, 6, 15, and 9
Line 3:1,2, 3,6, 8,10, 14, 13,11, 12,4,and 5
Line 4: 1, 2, 5, 4, 6, 8, 10, 11, and 12
Line 5: 1, 2, 5, 4, 6, 15, 7, 10, and 8
Line 6: 1, 2, 4, 12, 11, 10, 7, 15, and 9
Line 7: 1, 2, 5, 4, 6, 15, and 9
Line 8: 7, 10, 11, 12, 4, 6, 15, and 9
Line 9: 3, 2, 5, 4, 6, 8, 10, 14, 13, 11, and 12
Line 10: 3, 2, 4, 12, 11, 10, 7, 15, 8, and 6
Line 11: 7, 15, 6, 4, 12, 11, 10, and 8
Line 12: 7, 10, 14, 13,11, 12,4, 6, 8, 15, and 9

Journal of Advanced Transportation

13

TaBLE 5: Comparison of the exact algorithm with literature for at most 8 nodes per line.

Number of lines Max nodes per line Paper ATT (min) CPU time (s)
Exact 10.48 297
Ahmed 10.48 450
4 Islam 10.51 7
Mandl 12.90 NA
Chakroborty 11.90 NA
Exact 10.18 18856
6 Ahmed 10.18 450
Islam 10.18 7
8 Chakroborty 10.48 NA
Exact 10.10 39753
” Ahmed 10.10 450
Islam 10.12 8
Chakroborty 10.42 NA
Exact 10.07 161902
8 Ahmed 10.08 450
Islam 10.07 8
Chakroborty 10.36 NA

TaBLE 6: Comparison of the exact algorithm with literature for unlimited line length.

Number of lines Max nodes per line Paper ATT (min) CPU time (s)
Exact 10.28 168
4 Nayeem 10.33 NA
Wu 10.35 NA
Exact 10.09 5357
6 Nayeem 10.10 NA
14 Wu 10.10 NA
Exact 10.05 33898
7 Nayeem 10.07 NA
Wu 10.07 NA
Exact 10.03 20359
8 Nayeem — NA
Wu 10.04 NA

It can be explained why the complex sort is a lot faster
for instances with fewer lines, but it is unable to find an
optimal solution for larger number of lines. The complex
sort selects OD pairs with a low number of branches but a
high demand. This results in slightly more branches than
with the main sort, but the average quality of each branch
is higher. The high demand means that when a detour
from the shortest path is selected, the lower bounds will
increase more. This results in more pruning. However, as
the amount of lines rises, the number of branches be-
comes more important for the total CPU time. Re-
member, from Section 5.2, that it is more likely a line will
be selected at each branching point when more lines can
be selected in the solution. So, for the early lines, more
branches will just result in exponentially more branches
in the lower depths. At the same time, more and more
(almost all) of the high OD streams will be covered by the
actual shortest path. This means there is almost no benefit
to selecting these lines first since there will be no extra

impact on the lower bound. Hence, it is logical that the
complex sort performs better for smaller number of lines.

5.4. Essential Links. In this experiment, the algorithm is also
executed without using the concept of essential links. Table 8
shows the results for instances with four, eight, and twelve
lines. It is immediately clear that essential links result in a lot
less solutions that need to be evaluated. It is expected that
this impact would be larger for fewer lines and fewer nodes
per line. When there are fewer lines (and/or nodes) in a line
plan, then there are fewer edges being served in that line
plan. Therefore, it is more likely that certain essential links
will not be present in solutions that are evaluated. For up to
eight nodes per line, the experiments confirm this trend. For
the unlimited line length, this trend is less pronounced. For
eight lines, there is only a minimal impact, while for twelve
lines, the effect is much larger. In all cases, the essential links
do provide a clear positive effect on the CPU time, and for

14

Journal of Advanced Transportation

TaBLE 7: Impact of different sorting methods on the exact algorithm.

Number of lines Max nodes per line

Sorting method

CPU time (s) Solutions checked (M)

Main 297 15
4 Complex 37 5
Random 1666 57
Main 161902 25704
8 8 Complex 6812 983
Random >86400 >9518
Main 16320 1044
12 Complex >86400 >524
Random >86400 >11685
Main 168 44
4 Complex 75 25
Random 3822 701
Main 20359 5013
8 14 Complex 21992 4164
Random >86400 >18
Main 46067 4036
12 Complex >86400 >10418
Random >86400 >4867

low line numbers, the CPU time is reduced by 35-45%. We
could not measure a significant difference between the
precalculation times with or without essential links.

5.5. Direct Link Network. In this section, the algorithm is run
with the Change and Go (CNG) network representation instead
of the proposed Direct Link Network (DLN) representation.
Both algorithms still use the Floyd-Warshall algorithm to
evaluate a solution. Table 9 shows the results for four, eight, and
twelve lines. All tests ran for up to 24 hours. The number of
solutions checked is of course identical. Both methods use the
exact same sorting, so the same solutions have to be evaluated.
The impact of the DLN is significant and appears to increase
when the number of lines or nodes per line increases. This
behavior is expected, even for four lines with eight nodes per
line, the CPU time increases with a factor four, and for fifteen
nodes per line, almost with a factor twenty. The CNG creates an
extra node for each stop on each bus line, so more bus lines
result in more nodes in the CNG, while the DLN adds new links
and only keeps the best links. Therefore, the impact of more and
larger lines is more limited. Note that, in literature, Dijkstra’s
algorithm is used more often than Floyd-Warshall, but we
choose to compare with our Floyd-Warshall algorithm to keep
the comparison as fair as possible. Nevertheless, some pre-
liminary tests comparing CNG with DLN using Dijkstra’s al-
gorithm gave the same type of results as shown here. Obviously,
this does not mean that DLN will always perform better than
CNG, but these results definitely warrant further research into
using the DLN in line planning. It can be concluded that the
DLN representation is a major contributor to the speed of our
algorithm.

TaBLE 8: The impact of essential links on the exact algorithm.

Number of Max nodes Essential CPU Solutions

lines per line links time (s) checked (M)

4 Yes 297 15
No 545 188

3 3 Yes 161902 25704
No 225915 50765

12 Yes 16320 1044
No 19067 2238

4 Yes 168 44
No 256 106

3 14 Yes 20359 5013
No 22975 6180

12 Yes 46067 4036
No 60121 7206

5.6. Brute Force. We also developed a brute force algorithm to
calculate the optimal solution. The brute force algorithm simply
tries all combinations of nondominated lines and keeps the best
combination. The algorithm started with three lines with eight
nodes per line and kept increasing its number of lines until it
needs more than 24 h to reach the optimal solution. The results
are shown in Table 10. For only three lines, the CPU time is
similar to that of our branch and bound algorithm. But, for four
lines, it already needs more than ten times as much time. Since
the brute force algorithms require exponentially more time
when adding an extra line, the algorithm was terminated after it
ran for 24 hours for five lines. Thus, finding the optimal solution
for five lines or more with this brute force algorithm is not
possible in a reasonable amount of time. We conclude that the
branch and bound is effective in limiting the amounts of so-
lutions that have to be evaluated.

Journal of Advanced Transportation

15

TaBLE 9: Impact of the Direct Link Network instead of the Change and Go network representation on the exact algorithm.

Number of lines Max nodes per line

Network model

CPU time (s) Solutions checked (M)

4 DLN 297 15
CNG 1377 15
3 8 DLN 161902 25704
CNG >86400 >125
12 DLN 16320 1044
CNG >86400 >69
4 DLN 168 44
CNG 3277 44
8 14 DLN 20359 5013
CNG >86400 >165
12 DLN 46067 4036
CNG >86400 >29

TaBLE 10: Comparison of the branch and bound with a brute force algorithm.

Number of lines Max nodes per line Method CPU time (s) Solutions checked (M)
3 Branch and bound 13 <1
Brute force 27 16
4 3 Branch and bound 297 15
Brute force 3213 1957
5 Branch and bound 3317 466

Brute force

>86400 >50605

6. Conclusion

In this paper, a novel branch and bound algorithm is de-
veloped to find optimal solutions for the uncapacitated line
planning problem with integrated passenger routing. The
objective is to minimize the total travel time of all pas-
sengers, and the available resources are constrained by the
number of lines that can be operated and the maximum
length of those lines. The algorithm is applied to Mandl’s
Swiss network [14]. This is by far the most used benchmark
instance in line planning research. However, until now, no
optimal solutions have been determined for instances with
more than three lines on this network. Our algorithm ob-
tains optimal solutions for all available instances on this
network, i.e., different number of lines and two different line
lengths: for infinite line length and for at most eight nodes
per line (5.2). Furthermore, the minimum number of lines
necessary to reach the lower bound, where every passenger
travels along his/her shortest path without transfers, is
determined.

The success of the algorithm is due to a number of new
concepts and the way the algorithm is constructed. This is
illustrated by the experimental results. By defining all ex-
tendable lines as dominated, the size of the pool of feasible
lines can already be greatly diminished (4.1). The branch and
bound algorithm itself chooses an OD pair to branch on.
Every feasible line connecting this OD pair directly with a
detour of less than one transfer penalty is considered as a
branch as well as not selecting a line. When a line is selected,
this line is assumed to provide the optimal routing for the
OD pair that was branched upon. This creates many bounds
for the OD pair and all possible pairs on the route. The order
in which the OD pairs are chosen is also very important

(5.3). Three different sorting principles are implemented and
tested, and the best way of sorting is implemented in our
algorithm. By choosing OD pairs with minimal branches but
with high demand first, the CPU time is significantly
decreased.

The newly-developed Direct Link Network representa-
tion also reduces the required CPU time. For our algorithm,
the gains were significant compared to the traditionally used
Change and Go Network (5.5). These results definitely
warrant to consider the use of the DLN in metaheuristics and
other networks as well as looking into adjusting the DLN to
deal with frequencies. Finally, in order to decide to actually
evaluate a solution or not, the concept of essential links is
used. A link is essential if it has to be present in the optimal
solution. Essential links can be determined beforehand (4.2).
This had a positive effect on the CPU time and was even
more pronounced for smaller line numbers and line lengths
(5.4).

Finally, by calculating all optimal solutions for the
uncapacitated line planning problem, we hope to show that
it is no longer useful to play the “up-the-wall” game [67] of
trying to beat the best algorithms on this small benchmark
network. Actually, it can be concluded that several state-of-
the-art solution approaches for the uncapacitated line
planning problem obtain near-optimal solutions for almost
all these instances. Therefore, aiming to further improve
these solutions for these instances is not very useful any-
more, but the focus should shift to making the approaches
much faster and, more importantly, to develop new concepts
for solving larger and more realistic instances.

According to us, our algorithm can be adapted to search
for optimal solutions for other variants of the line planning
problem, for example, by including frequencies as well. With

16

frequencies, the line pool generation method has to be
adjusted because the dominance criterion is no longer true.
Thus, there will be a larger line pool. The passenger route
choice will no longer be a shortest path problem, probably
resulting in having more links in the DLN. Both of these
things will increase the required CPU time. Another pos-
sibility is to apply the method to larger networks. Although
several problems occurred during preliminary testing with
an exact algorithm, it should be possible to integrate at least
parts of this algorithm in an efficient (meta) heuristic. If
instances are considered with a limited pool of lines gen-
erated beforehand, our algorithm should be able to address
larger instances as well. Furthermore, we are convinced that
both the essential links and the DLN representation can be
useful for developing exact and (meta) heuristic algorithms
for this or other line planning problems. For instance, the
DLN representation could be tested in a metaheuristic
setting. Or the essential links could also be updated “dy-
namically,” i.e., every time the lower bound is increased.

Data Availability

All the data of the experiments and the instances is available
at the following location: https://www.mech.kuleuven.be/
en/cib/lp/mainpage#section-12.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was funded by the Research Foundation
Flanders, Project G.0853.16N.

References

[1] A. Ceder, Public Transit Planning and Operation: Modeling,
Practice and Behavior, CRC Press, Boca Raton, FL, USA, 2nd
edition, 2016.

[2] R. M. Lusby, J. Larsen, and S. Bull, “A survey on robustness in
railway planning,” European Journal of Operational Research,
vol. 266, no. 1, pp. 1-15, 2018.

[3] V. Guihaire and J.-K. Hao, “Transit network design and
scheduling: a global review,” Transportation Research Part A:
Policy and Practice, vol. 42, no. 10, pp. 1251-1273, 2008.

[4] L. Ahmed, C. Mumford, and A. Kheiri, “Solving urban transit
route design problem using selection hyper-heuristics,” Eu-
ropean Journal of Operational Research, vol. 274, no. 2,
pp. 545-559, 2019.

[5] J.J. Blum and T. V. Mathew, “Intelligent agent optimization of
urban bus transit system design,” Journal of Computing in
Civil Engineering, vol. 25, no. 5, pp. 357-369, 2011.

[6] J. Duran-Micco, E. Vermeir, and P. Vansteenwegen, “Con-
sidering emissions in the transit network design and fre-
quency setting problem with a heterogeneous fleet,” European
Journal of Operational Research, vol. 282, no. 2, pp. 580-592,
2020.

[7] K. A. Islam, I. M. Moosa,]. Mobin, M. A. Nayeem, and
M. S. Rahman, “A heuristic aided stochastic beam search
algorithm for solving the transit network design problem,”

Journal of Advanced Transportation

Swarm and Evolutionary Computation, vol. 46, pp. 154-170,
2019.

[8] M. A. Nayeem, M. K. Rahman, and M. S. Rahman, “Transit
network design by genetic algorithm with elitism,” Trans-
portation Research Part C: Emerging Technologies, vol. 46,
pp. 30-45, 2014.

[9] M. Nikoli¢ and D. Teodorovi¢, “Transit network design by bee
colony optimization,” Expert Systems with Applications,
vol. 40, no. 15, pp. 5945-5955, 2013.

[10] R. Wu and S. Wang, “Discrete wolf pack search algorithm
based transit network design,” in Proceedings of the 2016 7th
IEEE International Conference on Software Engineering and
Service Science, pp. 509-512, Beijing, China, 2016.

[11] M. H. Baaj and H. S. Mahmassani, “An Al-based approach for
transit route system planning and design,” Journal of Ad-
vanced Transportation, vol. 25, no. 2, pp. 187-209, 1991.

[12] L. Fan and C. L. Mumford, “A metaheuristic approach to the
urban transit routing problem,” Journal of Heuristics, vol. 16,
no. 3, pp. 353-372, 2010.

[13] P. N. Kechagiopoulos and G. N. Beligiannis, “Solving the
urban transit routing problem using a particle swarm opti-
mization based algorithm,” Applied Soft Computing, vol. 21,
pp. 654-676, 2014.

[14] C. E. Mandl, Applied Network Optimization, Academic Press,
London, UK, 1979.

[15] C. Mumford, “Data and results 2013,” 2013, http://users.cs.cf.
ac.uk/C.L.Mumford/Research%20Topics/UTRP/
CEC2013Supp/.

[16] I. M. Cooper, M. P. John, R. Lewis, C. L. Mumford, and
A. Olden, “Optimising large scale public transport network
design problems using mixed-mode parallel multi-objective
evolutionary algorithms,” in Proceedings of the 2014 IEEE
Congress on Evolutionary Computation (CEC), pp. 2841-2848,
IEEE, Beijing, China, 2014.

[17] X. Feng, X. Zhu, X. Qian, Y. Jie, F. Ma, and X. Niu, “A new
transit network design study in consideration of transfer time
composition,” Transportation Research Part D: Transport and
Environment, vol. 66, pp. 85-94, 2019.

[18] M. P. John, C. L. Mumford, and R. Lewis, “An improved
multi-objective algorithm for the urban transit routing
problem,” in Evolutionary Computation in Combinatorial
Optimisation, C. Blum and G. Ochoa, Eds., Springer, Berlin,
Germany, pp. 49-60, 2014.

[19] F. Kilig and M. Gok, “A demand based route generation

algorithm for public transit network design,” Computers &

Operations Research, vol. 51, pp. 21-29, 2014.

J. Yang and Y. Jiang, “Application of modified NSGA-II to the

transit network design problem,” Journal of Advanced

Transportation, vol. 2020, Article ID 3753601, 24 pages, 2020.

[21] B. Yao, P. Hu, X. Lu, J. Gao, and M. Zhang, “Transit network
design based on travel time reliability,” Transportation Re-
search Part C: Emerging Technologies, vol. 43, pp. 233-248,
2014.

[22] C. Hliopoulou, K. Kepaptsoglou, and E. Vlahogianni, “Meta-
heuristics for the transit route network design problem: a
review and comparative analysis,” Public Transport, vol. 11,
no. 3, pp. 487-521, 2019.

[23] A. Schobel and S. Scholl, “Line planning with minimal
traveling time,” in Proceedings of the 5th Workshop on Al-
gorithmic Methods and Models for Optimization of Railways,
Palma de Mallorca, Spain, 2006.

[24] R. Z. Farahani, E. Miandoabchi, W. Y. Szeto, and H. Rashidi,
“A review of urban transportation network design problems,”

[20

https://www.mech.kuleuven.be/en/cib/lp/mainpage#section-12
https://www.mech.kuleuven.be/en/cib/lp/mainpage#section-12
http://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp/
http://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp/
http://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/UTRP/CEC2013Supp/

Journal of Advanced Transportation

European Journal of Operational Research, vol. 229, no. 2,
pp. 281-302, 2013.

[25] O.]. Ibarra-Rojas, F. Delgado, R. Giesen, and J. C. Muifioz,
“Planning, operation, and control of bus transport systems: a
literature review,” Transportation Research Part B: Method-
ological, vol. 77, pp. 38-75, 2015.

[26] K. Kepaptsoglou and M. Karlaftis, “Transit route network
design problem: review,” Journal of Transportation Engi-
neering, vol. 135, no. 8, pp. 491-505, 2009.

[27] A. Schébel, “Line planning in public transportation: models
and methods,” OR Spectrum, vol. 34, no. 3, pp. 491-510, 2012.

[28] A. Patz, “Die richtige auswahl von verkehrslinien bei grossen
strassenbahnnetzen,” Verkehrstechnik, vol. 51, 1925.

[29] C. E. Mandl, “Evaluation and optimization of urban public
transportation networks,” European Journal of Operational
Research, vol. 5, no. 6, pp. 396-404, 1980.

[30] P. Chakroborty and T. Wivedi, “Optimal route network
design for transit systems using genetic algorithms,” Engi-
neering Optimization, vol. 34, no. 1, pp. 83-100, 2002.

[31] S.B. Pattnaik, S. Mohan, and V. M. Tom, “Urban bus transit
route network design using genetic algorithm,” Journal of
Transportation Engineering, vol. 124, no. 4, pp. 368-375, 1998.

[32] F. Zhao and X. Zeng, “Simulated annealing-genetic algorithm
for transit network optimization,” Journal of Computing in
Civil Engineering, vol. 20, no. 1, pp. 57-68, 2006.

[33] S. Chai and Q. Liang, “An improved NSGA-II algorithm for
transit network design and frequency setting problem,”
Journal of Advanced Transportation, vol. 2020, Article ID
2895320, 20 pages, 2020.

[34] E. Vermeir, J. Duran Micco, and P. Vansteenwegen, “The grid
based approach, a fast local evaluation technique for line
planning,” 4OR, 2021.

[35] A. Mauttone and M. E. Urquhart, “A multi-objective meta-
heuristic approach for the transit network design problem,”
Public Transport, vol. 1, no. 4, pp. 253-273, 2009.

[36] M. Goerigk and M. Schmidt, “Line planning with user-op-
timal route choice,” European Journal of Operational Re-
search, vol. 259, no. 2, pp. 424-436, 2017.

[37] R. Borndorfer, M. Grotschel, and M. E. Pfetsch, “A column-
generation approach to line planning in public transport,”
Transportation Science, vol. 41, no. 1, pp. 123-132, 2007.

[38] R. Borndorfer and M. Karbstein, “A direct connection ap-
proach to integrated line planning and passenger routing,”
OpenAccess Series in Informatics, vol. 25, pp. 47-57, 2012.

[39] K. Nachtigall and K. Jerosch, “Simultaneous network line
planning and traffic assignment,” OpenAccess Series in In-
formatics, vol. 9, 2008.

[40] M. E. Schmidt, “Integrating routing decisions in public
transportation problems,” Springer Optimization and Its
Applications, Springer, New York, NY, USA, 2014.

[41] M. T. Claessens, N. M. Van Dijk, and P.]. Zwaneveld, “Cost
optimal allocation of rail passenger lines,” European Journal of
Operational Research, vol. 110, no. 3, pp. 474-489, 1998.

[42] M. R. Bussieck, Optimal Lines in Public Transport, Technische
Universitit Braunschweig, Braunschweig, Germany, 1998.

[43] J.-W. Goossens, S. van Hoesel, and L. Kroon, “A branch-and-
cut approach for solving railway line-planning problems,”
Transportation Science, vol. 38, no. 3, pp. 379-393, 2004.

[44] M. R. Bussieck, T. Lindner, and M. E. Liibbecke, “A fast
algorithm for near cost optimal line plans,” Mathematical
Methods of Operations Research, vol. 59, no. 2, pp. 205-220,
2004.

[45] D. Canca, A. De-Los-Santos, G. Laporte, and J. A. Mesa,
“Integrated railway rapid transit network design and line

17

planning problem with maximum profit,” Transportation
Research Part E: Logistics and Transportation Review, vol. 127,
pp. 1-30, 2019.

[46] H. Dienst, Linienplanung im spurgefiihrten personenverkehr
mithilfe eines heuristischen verfahrens, Ph.D. thesis, Techni-
sche Universitit Braunschweig, Braunschweig, Germany,
1978.

[47] M. R. Bussieck, U. Zimmerman, and P. Kreuzer, “Optimal
lines for railway systems,” European Journal of Operational
Research, vol. 96, pp. 54-63, 1996.

[48] A. Bouma and C. Oltrogge, “Linienplanung und simulation
fiir offentliche verkehrswege in praxis und theorie,” Eisen-
bahntechnische Runschau, vol. 43, pp. 369-378, 1994.

[49] J. F. Guan, H. Yang, and S. C. Wirasinghe, “Simultaneous
optimization of transit line configuration and passenger line
assignment,” Transportation Research Part B: Methodological,
vol. 40, no. 10, pp. 885-902, 2006.

[50] M. Schmidt and A. Schobel, “The complexity of integrating
passenger routing decisions in public transportation models,”
Networks, vol. 65, no. 3, pp. 228-243, 2015.

[51] E.Cipriani, S. Gori, and M. Petrelli, “Transit network design: a
procedure and an application to a large urban area,” Trans-
portation Research Part C: Emerging Technologies, vol. 20,
no. 1, pp. 3-14, 2012.

[52] I. Constantin and M. Florian, “Optimizing frequencies in a
transit network: a nonlinear bi-level programming approach,”
International Transactions in Operational Research, vol. 2,
no. 2, pp. 149-164, 1995.

[53] C.L.Mumford, “New heuristic and evolutionary operators for
the multi-objective urban transit routing problem,” in Pro-
ceedings of the 2013 IEEE Congress on Evolutionary Compu-
tation, pp. 939-946, IEEE, Cancun, Mexico, 2013.

[54] B. Beltran, S. Carrese, E. Cipriani, and M. Petrelli, “Transit
network design with allocation of green vehicles: a genetic
algorithm approach,” Transportation Research Part C:
Emerging Technologies, vol. 17, no. 5, pp. 475-483, 2009.

[55] W. Fan and R. B. Machemehl, “Optimal transit route network
design problem with variable transit demand: genetic algo-
rithm approach,” Journal of Transportation Engineering,
vol. 132, no. 1, pp. 40-51, 2006.

[56] H. Shimamoto, N. Murayama, A. Fujiwara, and J. Zhang,
“Evaluation of an existing bus network using a transit network
optimisation model: a case study of the Hiroshima city bus
network,” Transportation, vol. 37, no. 5, pp. 801-823, 2010.

[57] H. Shimamoto, J.-D. Schmdcker, and F. Kurauchi, “Opti-
misation of a bus network configuration and frequency
considering the common lines problem,” Journal of Trans-
portation Technologies, vol. 2, no. 3, pp. 220-229, 2012.

[58] R. O. Arbex and C. B. da Cunha, “Efficient transit network
design and frequencies setting multi-objective optimization
by alternating objective genetic algorithm,” Transportation
Research Part B: Methodological, vol. 81, pp. 355-376, 2015.

[59] A. T. Buba and L. S. Lee, “A differential evolution for si-
multaneous transit network design and frequency setting
problem,” Expert Systems with Applications, vol. 106,
pp. 277-289, 2018.

[60] M. Nikoli¢ and D. Teodorovié, “A simultaneous transit net-
work design and frequency setting: computing with bees,”
Expert Systems with Applications, vol. 41, no. 16, pp. 7200-
7209, 2014.

[61] M. Owais, M. K. Osman, and G. Moussa, “Multi-objective
transit route network design as set covering problem,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17,
no. 3, pp. 670-679, 2016.

18

(62]

(63]

(64]

(65]

(66]

(67]

A. Ceder and N. H. M. Wilson, “Bus network design,”
Transportation Research Part B: Methodological, vol. 20, no. 4,
pp. 331-344, 1986.

H. Fu, L. Nie, L. Meng, B. R. Sperry, and Z. He, “A hierarchical
line planning approach for a large-scale high speed rail
network: the China case,” Transportation Research Part A:
Policy and Practice, vol. 75, pp. 61-83, 2015.

D. B. Johnson, “Efficient algorithms for shortest paths in
sparse networks,” Journal of the ACM, vol. 24, no. 1, pp. 1-13,
1977.

R. R. Williams, “Faster all-pairs shortest paths via circuit
complexity,” SIAM Journal on Computing, vol. 47, no. 5,
pp. 19651985, 2018.

B. C. Fiss and M. Ritt, “Exact and metaheuristic algorithms for
the urban transit routing problem,” in Proceedings of the
Congreso Latino-Iberoamericano de Investigacion Operativa,
Simposio Brasileiro de Pesquisa Operacional, pp. 3717-3728,
Rio de Janeiro, Brazil, 2012.

K. Sorensen, “Metaheuristics-the metaphor exposed,” Inter-
national Transactions in Operational Research, vol. 22, no. 1,
pp. 3-18, 2015.

Journal of Advanced Transportation

