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Understanding choice behavior regarding travel mode is essential in forecasting travel demand. Machine learning (ML) ap-
proaches have been proposed to model mode choice behavior, and their usefulness for predicting performance has been reported.
However, due to the black-box nature of ML, it is difficult to determine a suitable explanation for the relationship between the
input and output variables. +is paper proposes an interpretable ML approach to improve the interpretability (i.e., the degree of
understanding the cause of decisions) of ML concerning travel mode choice modeling. +is approach applied to national
household travel survey data in Seoul. First, extreme gradient boosting (XGB) was applied to travel mode choice modeling, and the
XGB outperformed the other ML models. Variable importance, variable interaction, and accumulated local effects (ALE) were
measured to interpret the prediction of the best-performing XGB. +e results of variable importance and interaction indicated
that the correlated trip- and tour-related variables significantly influence predicting travel mode choice by the main and cross
effects between them. Age and number of trips on tour were also shown to be an important variable in choosing travel mode. ALE
measured the main effect of variables that have a nonlinear relation to choice probability, which cannot be observed in the
conventional multinomial logit model. +is information can provide interesting behavioral insights on urban mobility.

1. Introduction

+e recent emergence of new travel modes such as ride-
sourcing, ride-hailing, and autonomous vehicles and the
evolution of new mobility services such as mobility as a
service and mobility on demand (known as MaaS and MoD,
respectively) is changing travel behavior significantly [1].
+ese emerging technologies present new sources of big data
for understanding travel behavior and system performance
[2]. New methods that leverage this big data are needed to
analyze travel behavior changes and predict travel mode
choices. +e multinomial logit (MNL) model has dominated
travel mode choice analysis due to its simplicity and read-
ability. +e simple MNL model and its variants have been
applied to consider various effects in the context of travel
mode choice based on the expert-designed model as-
sumptions. Linear relationships in parameters of the simple
MNL model can be intuitively interpreted as weights of the
variables. Even nonlinear relationships in parameters such as

willingness-to-pay for reduced travel time variability can be
captured by combining the conventional utility functional
form with a probability weighting function [3]. However,
this approach requires prior assumptions for the functional
form of the weighting function. +e MNL can capture the
interaction effects between correlated variables by adding
appropriate interaction parameters that are based on em-
pirical or experimental knowledge [4], but considering all of
the interactions becomes impossible as the number of
variables increases. Although the simple MNL model as-
sumes the independence of irrelevant alternatives (IIA)
causing misleading predictions, the correlations between
travel modes have been addressed by the advanced structure
of the MNL model such as the nested logit and mixed logit
model [5]. However, it is very difficult to design an ap-
propriate model structure of the MNL model that effectively
captures a high degree of complexity in a dataset [6]. In
summary, the existing MNL and its variants can take into
account the various effects in the mode choice situations;
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however, they rely on the model assumptions that should be
determined by the subjective judgment of the researcher,
and these assumptions affect the parameter estimates and
the prediction performance.

Machine learning (ML) approaches are promising al-
ternatives to the MNL-based model for modeling travel
mode choice. It can represent complex relationships be-
tween mode choices and input variables in a data-driven
manner rather than making strict assumptions about the
data [7]. Many previous studies have reported the use of an
ML approach to model travel mode choice [1, 6–11]. +ese
authors have generally reported improvements in the pre-
diction performance of ML approaches compared to MNL-
based models. Recently, Wang et al. established an empirical
benchmark by using 86ML models to predict travel mode
choice based on a 2017 U.S. national household travel survey
dataset [12]. +e authors found that ensemble models such
as boosting, bagging, and random forest models exhibit
performances superior to those of all other ML methods,
including deep neural networks. However, due to the black-
box nature of ML models, the authors could not explain the
prediction results, making it difficult to find a suitable ex-
planation for the relationship between the input variables
and travel mode choices.

Several studies have performed additional analyses of the
prediction results to complement the evaluation of perfor-
mance. Wang and Ross proposed an extreme gradient
boosting (XGB) model for predicting travel mode choice [1].
Using a relatively comprehensive dataset, the authors
measured the relative importance of variables in the training
process of the XGB and estimated the importance of cor-
related variables that cannot be explained using the MNL
model. Hagenauer and Helbich measured the permutation-
based importance of variables in predicting the choice of
each travel mode, and their result showed that the critical
variables varied with the predicted travel modes [7]. Lee et al.
developed a choice model for alternatives related to au-
tonomous vehicles using a gradient boosting machine
(GBM) [10]. +ey measured the partial dependence (PD),
which captures the marginal effects of attributes repre-
senting the relationship between the input variables and
predicted output. Although the above researchers who
conducted these three studies tried to explain the prediction
results of their ML models with several meaningful inter-
pretations, there is room for improvement by the application
of various interpretation methods to reveal details of the
characteristics of travel behavior.

In this study, model-agnostic interpretation methods
were applied to explain the prediction results of ML models
concerning mode choice behavior. XGB, random forest
(RF), and artificial neural network (ANN) models were
employed to predict travel mode choices from national
household travel survey (NHTS) data in Seoul. Trip- and
tour-related attributes were extracted from the NHTS data to
construct the variable set. +e tour refers to interconnected
trips (i.e., trip chain) during a day. +is dataset is enriched
with traffic analysis zone (TAZ)-level spatial information.
+e performance of the models was evaluated regarding
their prediction of each travel mode. +en, the best-

performed XGB prediction results were analyzed to reveal
choice behavior for urban travel modes. In doing so, two
crucial issues were addressed, which are difficult to inves-
tigate using a conventional MNL model, i.e., (i) how each
variable interacted with other variables and (ii) how the
variable related to the probability of travel mode choice.

+e remainder of this paper is organized as follows. In
Section 2, the dataset and data-processing procedure applied
in this study are described.+en, the MLmodels and model-
agnostic interpretation methods are discussed in detail. In
Section 3, performance evaluation of the ML models and
interpretation of the XGB prediction results are presented.
Finally, concluding remarks and future research directions
are presented in Section 4.

2. Materials and Methods

2.1. Data Descriptions. +e primary source of data for this
study was a 2016 NHTS dataset in the Seoul, Korea [13].
+ese data included individual travel diaries that recorded
every daily trip taken, with multiple trips on a given day
expressed as a trip chain. +e chained trips were divided by
their trip purpose and established the major travel modes of
the trip’s purpose. For example, a person who uses the
subway to go to work must first access the subway station on
foot and then use the subway. In this case, the two chained
trips, walking and subway, are combined into one subway
trip as the primary travel mode. Walking is considered a
primary travel mode only if it is used as the sole travel mode,
but not as a means to access another travel mode. Seoul
operates a public transit unified fare system for buses and
subways, whereby charges are levied as if the person is using
a single travel mode when transferring between these two
forms of public transit. +erefore, this study makes no
distinction between a bus and a subway, whereby the
chained trips of a bus and subway with a transfer are
considered to be one trip by public transit.

Table 1 describes the variables included in the travel
mode choice model. Four categories of variables are used to
train and test the mode choice model. Trip-related, tour-
related, and individual attributes are extracted from the
NHTS data, and built environment attributes are obtained
from national spatial data [14] and population census [15] in
Korea. +e departure and arrival locations of NHTS data are
recorded in the TAZ unit, which is within a radius of about
1 km; thereby, the NHTS data are merged with built envi-
ronment attributes according to TAZ. +e dependent var-
iable is for primary travel modes: car, bike, transit, and
walking. A single mode, which is assumed, is used for an
entire tour because 89.9% of the respondents in the NHTS
data used the one primary travel mode rather than a
combination of modes. Trip-related attributes are extracted
from single or sequential individual trips. +e duration of an
activity is calculated by the difference between the arrival
time on the previous trip and the departure time on the next
trip. +e duration of activity on the last trip (i.e., the return
trip home) is calculated by the difference between the arrival
time of the last trip and the departure time of the first trip.
Travel time includes in-vehicle and out-of-vehicle time, such
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as waiting time and access time. Departure time is divided
into peak and nonpeak categories. Trip type is defined by the
characteristics of the origin and destination, such as home,
work, or other places. Tour-related attributes are extracted
from all the trips of individuals during a single day. +e sum
of activity durations of trips is calculated, excluding the last
trip, and the sum of travel time and the number of trips
includes all the trips made during a day. Tour types are
defined by the combination of trip types included in a tour.
+e Home-Other-Home (HOH) type includes the tour with
more than three trips (e.g., H-O-O-H). Individual attributes
include age, gender, car owner, driver’s license, and income,
and all of those attributes are directly collected in the NHTS
data. Built environment attributes describe the spatial
characteristics of a trip’s destination (D). +e variables for
land use are defined as the ratio of a residential or com-
mercial area to the total area. Population density, number of
workers, number of bus stops, and number of subway stops
are also used to characterize the destination in the TAZ unit.
Although travel cost is an important variable in the travel
mode choice, the NHTS data used in this study did not
include the respondents’ travel cost such as fuel cost, parking
cost, and transit fares.+erefore, the effect of travel cost does
not consider in the analysis like other studies using the

NHTS data [1, 7, 8]. After a data-cleaning process, in which
the trips were removed with very long activity duration and
travel time, a total of 172,889 trips taken by 76,190 indi-
viduals were used. 75% of the NHTS data was used for
training and 25% of those data for the test.

Table 2 shows the descriptive statistics of the variables.
+e distribution of the travel mode is imbalanced in that
trips by walking, transit, car, and bike are 43.7%, 35.3%,
18.5%, and 2.5%, respectively. +e mean activity duration is
490.2 minutes, which is slightly longer than the standard
working time of eight hours, and the mean travel time of
each trip is 21.7 minutes. +e number of trips during a peak
time is comparable to the number of trips at a nonpeak time.
In terms of trip type, the percentage of HBW, HBO, NHBO,
and RH are 31.8%, 16.7%, 4.8%, and 46.7%, respectively,
indicating that more than 20% of noncommuting trips are
included in the data. +e sum of activity duration and the
sum of travel time have a mean value of 509.2 minutes and
51.6 minutes, respectively. While 70.9% of travelers make
two trips during a day, 29.1% make more than three trips.
+e people who made more than three trips may have tour
types of HOH or HOWH, which are 27.0% and 21.4% of
total tours, respectively. +e percentages of females, car
owners, driver’s licenses, and those with a high income are

Table 1: Description of the independent and dependent variables.

Variable name Explanation Data types
Travel mode Chosen travel mode for the trip (dependent variable): 1� car, 2� bike, 3� transit, and 4�walking Categorical
Trip-related attributes
Activity duration Duration of the activity Numeric
Travel time Travel time of the trip Numeric

Departure time 1� the trip occurs in the morning or evening peak hours (8 A.M.–10 A.M. or 5 P.M.–7 P.M.);
0� otherwise Dummy

Trip type Context of the trip: 1� home-based work (HBW); 2� home-based others (HBO); 3� non-home-
based others (NHBO); 4� return home (RH) Categorical

Tour-related attributes
Sum of activity duration Sum of activity duration during a day excluding the last trip Numeric
Sum of travel time Sum of travel time during a day Numeric
Number of trips Number of trips that occurred during a day Categorical

Tour type Context of the tour: 1� home-work-home (HWH); 2� home-other-home (HOH); 3� home-
work-other-home (HOWH) Categorical

Individual attributes
Age Age of the traveller in years Numeric
Gender 1� the traveller is male; 2� the traveller is female Dummy
Car owner 1� the household of traveller owns a car; 0� otherwise Dummy
Driver’s license 1� the traveller has a driver’s license; 0� otherwise Dummy
Income Monthly household income of the traveller (million KRW): low� income< 5; high� income≥ 5 Dummy

Built environment
attributes
Land use in D:
residential +e ratio of residential area to the total area at D in TAZ unit Numeric

Land use in D:
commercial +e ratio of commercial area to the total area at D in the TAZ unit. Numeric

Population density at D Density of the population (people/km2) at the destination in the TAZ unit Numeric
Number of workers at D Number of workers at the destination in the TAZ unit Numeric
Number of bus stops at
D Number of bus stops at the destination in the TAZ unit Numeric

Number of subway
stops at D Number of subway stops at the destination in the TAZ unit Numeric

Note. D� destination of a trip; 1,000KRW� 0.84USD.
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51.7%, 72.0%, 54.7%, and 33.0%, respectively. While the car
owner indicates whether the household owns a private car,
the driver’s license indicates whether the individual owns a
driver’s license. +e descriptive statistics of built environ-
ment attributes are also presented in Table 2.

2.2. Machine Learning Model for Predicting Travel Mode
Choice. +reeMLmodels, XGB, RF, and ANN, were applied
to predict travel mode choices. Given a set of values of the

input variable, the model predicts the probability that a
specific travel mode will be chosen. To account for class
imbalance, weight to the data instance is applied in inverse
proportion to the frequency distribution of each class, and
those class-specific weights are commonly used to train ML
models. A hyperparameter is a parameter that controls the
training process of the ML model. Since the hyperparameter
affects the speed and quality of the training process,
hyperparameter tuning is an essential task for evaluating an
ML model’s performance. +e major hyperparameters of

Table 2: Descriptive statistics of the variables.

Variable name Category % Mean Standard deviation

Travel mode

Car 18.5
Bike 2.5

Transit 35.3
Walking 43.7

Trip-related attributes
Activity duration (min) 490.2 251.1
Travel time (min) 21.7 15.9

Departure time Peak 50.6
Nonpeak 49.4

Trip type
HBW 31.8
HBO 16.7
NHBO 4.8
RH 46.7

Tour-related attributes
Sum of activity duration (min) 509.2 235.6
Sum of travel time (min) 51.6 33.4

Number of trips

2 70.9
3 10.5
4 16.4
5 1.4
6 0.8

Tour type HWH 51.6
HOH 27.0
HOWH 21.4

Individual attributes
Age 44.6 20.0

Gender Female 51.7
Male 48.3

Car owner Yes 72.0
No 28.0

Driver’s license Yes 54.7
No 45.3

Income High 33.0
Low 67.0

Built environment attribute
Land use in D: residential 0.49 0.20
Land use in D: commercial 0.29 0.20
Population density at D 42,862 11,771
Number of workers at D 32,787 75,271
Number of bus stops at D 125.2 85.5
Number of subway stops at D 1.0 1.2

Note. D� destination of a trip.
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each ML model were tuned using a grid search technique
based on 4-fold cross-validation. A comparable degree of a
set of hyperparameter combinations is considered for each
ML model.

2.2.1. Random Forest. +e decision tree is a popular ML
model due to its ability to capture complex structures in the
data, although it suffers from an overfitting problem. To
address this issue, ensemble models have been proposed.+e
RF [16] is a tree-based ensemble method related to the
bagging approach, which averages noisy but approximately
unbiased models to reduce the variance. An ensemble of
independent trees on a random subset of a training dataset
with randomly selected variables can achieve better gener-
alized performance [9, 17].+e RF has also shown promising
performance for predicting travel mode choice in previous
studies [7, 8]. +ere are four significant hyperparameters
used to tune the learning process of an RF model: the
number of trees, the number of variables to split in each
node, the maximum depth of each tree, which determines
the model complexity of each tree, and the data-sampling
rate used for training each tree. +e RF model is imple-
mented using the “ranger” package in R [18].

2.2.2. Extreme Gradient Boosting Model. +e GBM is an-
other tree-based ensemble method that has been successfully
used to predict travel mode choice [1, 10]. Unlike the RF, the
GBM builds a sequence of the low-depth decision tree,
where each tree is trained to put more weight on the in-
correct prediction of the previous trees [19].+e results of all
the estimated trees collectively determine the result of the
ensemble model. To implement GBM, an eXtreme Gradient
Boost (XGB) proposed by Chen et al. [20] is employed. XGB
is an efficient algorithm for constructing boosted trees using
regularization terms and parallel processing. +e five major
hyper parameters of XGB are tuned, including the learning
rate, maximum depth of each tree, number of variables
considered in each tree, number of samples considered in
each tree, and minimum value of the sum of instance weight
of a node. +e XGB model is implemented using the
“xgboost” package in R [20].

2.2.3. Artificial Neural Network. +e ANN is a widely used
ML model for the training classification model. +e
promising performance of ANN rather than MNL for
modeling travel mode choice has been reported in previous
studies [6, 7]. A multilayer perceptron (MLP) is a con-
ventional neural network including an input layer, one or
more hidden layers, and an output layer. Nonlinear rela-
tionships in the data can be naturally captured by the MLP
since it iteratively adjusts the weights and biases between
neurons’ interactions in multiple layers [21]. +is study
adopts an MLP with a single hidden layer, and a standard
backpropagation algorithm with a decay term was used to
train the MLP. +e number of neurons in the hidden layer
and a decay term are tuned.+e ANNmodel is implemented
using the “nnet” package in R [22].

2.3. Model-Agnostic Interpretation Methods.
Interpretability is defined as the degree of understanding the
cause of prediction [23]. Traditional interpretable models,
such as logistic regression and decision tree, sacrifice pre-
diction performance due to a simple model structure that
improves interpretability. Recently, model-agnostic inter-
pretation methods have been applied to make machine
learning interpretable. +ose interpretation methods com-
monly measure changes in prediction performance
according to changes in the value of input variables. By
doing so, the marginal effect of the variables is estimated to
deduce the importance and interaction of variables. Also, the
complex relationship between the input and outcome can be
estimated. +e target of the interpretation methods is di-
vided into two perspectives: the entire model behavior (i.e.,
global interpretability) and a single prediction (i.e., local
interpretability) [24]. +is study focuses on the former by
applying three model-agnostic interpretation methods.

2.3.1. Permutation-Based Variable Importance. When
values of a variable are permutated so that their relationship
with the predicted outcome is broken, the prediction error
will increase. By calculating the increases in the model’s
prediction error, the importance of the variable is obtained.
+is study measures the importance based on the algorithm
proposed by Fisher et al. [25]. +e permutation-based
variable importance can naturally consider all interactions
with other variables (i.e., the sum of main and cross effects)
by permutation. +erefore, highly correlated variables also
can be directly interpreted. For the input variable matrix X,
the original error (eorig) of the ML model (f) is estimated by
the defined loss function (L) between the predicted value
(f(X)) and the true value (y), as in equation (1). +en, the
input matrix, including the permutated variable j (Xpermj) is
used to compute the permutated error (epermj), and the
importance of variable j (VIMPj) is calculated by
(epermj /eorig), as shown in equation (2):

e
orig

� L(y, f(X)), (1)

VIMPj �
L y, f Xpermj(  

e
orig �

e
permj

e
orig . (2)

To measure the importance of the multiclass classifi-
cation, the balanced accuracy of each travel mode (see
equation (3)) is used as a L between the predicted value and
the true value:

Specificity �
TN

TN + FP
,

Sensitivity �
TP

TP + FN
,

Balanced accuracy �
Specificity + Sensitivity

2
,

(3)

where TN, FN, TP, and FP are the true negative, false
negative, true positive, and false positive, respectively.
Compared with the accuracy, the balanced accuracy can
serve as a better judge of performance for the imbalanced
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classification problem where the difference in the number of
negative and positive samples for each class is large [26]. +e
balanced accuracy in this study also measures the prediction
performance of the ML model.

2.3.2. Variable Interaction. When variables are correlated,
the effect of one variable depends on the value of other
variables. +e change in the prediction error also can be
used to measure those correlations (i.e., variable interac-
tion). Friedman’s H-statistic is used to estimate the
strength of the variable interaction quantitatively. +is
measurement indicates how much the variation in the
prediction depends on the interaction of the variables [27].
+e marginal effect of a variable on the model’s prediction
is represented by the partial dependence (PD) function, as
in

PDj xj  �
1
n



n

i�1

f xj, x
(i)
−j ,

PDjk xj, xk  �
1
n



n

i�1

f xj, xk, x
(i)
−j−k ,

(4)

where PDj(xj) is the PD function of a single variable j,
PDjk(xj, xk) is the 2-way PD function of two variables j and
k, n is the total number of data points, i is a certain data point
used to estimate the marginal effect, xj and xk are the
variables used to calculate the marginal effects, and x−j and
x−j−k are the other variables used in the ML model (f).
Mathematically, the interaction between variables j and k
(i.e., two-way interaction) is estimated as in equation (5),
and the interaction between variable j and any other vari-
ables (i.e., total interaction) is estimated as in equation (6)
[28]:

H
2
jk �


n
i�1 PDjk x

(i)
j , x

(i)
k  − PDj x

(i)
j  − PDk x

(i)
k  

2


n
i�1 PD

2
jk x

(i)
j , x

(i)
k 

,

(5)

H
2
j �


n
i�1

f x
(i)

  − PDj x
(i)
j  − PD− j x

(i)
−j  

2


n
i�1

f
2

x
(i)

 
, (6)

where PD−j(x
(i)
−j ) is the PD function that depends on all

variables except the jth variable. While the two-way inter-
action in equation (5) indicates the amount of the variance
explained by the interaction between the two variables xj

and xk among the variance of the output of the PD, the total
interaction in equation (6) indicates the amount of the
variance explained by the interaction between variables xj

and any other variable x−j among the variance of the output
of the entire function [28]. +erefore, if the H-statistic is
zero, there is no interaction at all, and if all the effect of
variables is applied as an interaction, the statistic would be
one. When the H-statistic is larger than one, the interpre-
tation would be difficult. In the case of two-way interaction,
this can happen when the variance of two-way interaction is
larger than the variance of the two-dimensional PD In the

case of total interaction, this can happen when the variance
of interaction between one variable and other variables is
larger than the variance of the ML model.

2.3.3. Accumulated Local Effect. +e promising perfor-
mance of the ML model suggests that complex relationships
exist between the input variables and predicted outcome in
the real data, which may be nonlinear or polynomial. To
represent these relationships, the ALE value was used, which
shows the changes in the probability of a travel mode choice
by the specific value (or category) of a variable. Generally,
the marginal effect of the variables can be obtained using the
PD function [10, 17]. However, the PD function assumes
that the variables are not correlated with each other, which is
unrealistic in real data. When the variables are highly
correlated, the PD function includes unrealistic data when
averaging the prediction results, which can substantially bias
the estimated effect of the variable [28]. To address this issue,
the accumulated local effect (ALE) is used, which is the
unbiased alternative to PD [29]. +e value of ALE can be
interpreted as the main effect of the variable at a specific
value compared to the average prediction value of the data.
+e ALE plots can depict any relationship, whether linear,
monotonic, or more complex, between a variable and the
predicted outcome. +e ALE calculates the change in pre-
diction results by replacing the target variable with grid
values z. +e average change in prediction is the effect for a
specific interval, and its effect accumulates across all in-
tervals as [29]

fj,ALE xj  � 

kK
j

(x)

k�1

1
nj(k)



i: x
(i)

j
∈Nj(k)

f z
K
k,j, x

(i)
−j  − f z

K
k−1,j, x

(i)
−j  ,

(7)

where zK
k,j is the partition of the minimum and maximum of

xj into K interval and kK
j (x) � k if x ∈ (zK

k−1, zK
k,j], the av-

erage effects of all instances within an interval (Nj(k)) are
calculated by dividing the sum of the difference of the
prediction, i.e., 

i: x
(i)

j
∈Nj(k)

[f(zK
k,j, x

(i)
−j ) − f(zK

k−1,j, x
(i)
−j )], by

the number of instances in this interval (nj(k)). +e ALE is
centered on having a zero mean, as shown in

fj,ALE,cent xj  � fj,ALE xj  −
1
n



n

i�1

fj,ALE x
(i)
j . (8)

While the intervals can be defined by the distribution of
the numeric variables, the intervals for the categorical
variables are determined by the similarity of categories since
the categorical variables do not have a natural order. +e
similarity of the two categories is calculated by the sum of
distances over the other variables. While the distance be-
tween the target category and other numeric variables is
calculated by Kolmogorov–Smirnov distance, the distance
between target category and other categorical variables is
calculated by the relative frequency tables. More details are
described in [28].
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3. Results and Discussion

3.1. Prediction Performance. Since the travel modes are
imbalanced, the prediction performance of the RF, XGB, and
ANN models are evaluated using three metrics: specificity,
sensitivity, and balanced accuracy, as shown in equation (3).
Table 3 compares the prediction performances of the three
models. Overall, the RF and XGB models exhibit better
performance than the ANN model. Although class-specific
weight was applied for training the ML models, all models
show poor performance for the prediction of bike choice that
is minority class (i.e., 2.5% of total). +e performance of the
XGB is comparable to that of RF and exhibited better
performance for some travel modes and metrics. Compared
with the RF, XGB shows slightly lower performance for
predicting the choices of car and bike but shows better
performance for predicting the choice of transit and walking.
For all travel modes, the XGB shows the best performance
for all metrics.

+e number of FN explains the low sensitivity of the
XGB for minor classes (i.e., car and bike). For example, in
the case of car, the number of FN is 2,635, including 1,489
transit, followed by 1,111 walking and 35 bike. +is result
indicates that consideration of trip- and tour-related attri-
butes cannot successfully identify the choice of car and
public transit. +is may be because the competitiveness of
public transit (i.e., relative travel time for given OD) in Seoul
is as high as that of cars [30]. +e FN caused by walking
indicates that car and walking share some travel charac-
teristics. +is result can be explained by travel patterns in
Seoul where short-distance driving (i.e., trips of 5 km or less)
represent 44% of all car driving [31]. +e short-distance
driving can indicate similar travel time to walking trip. In the
case of bike, the number of FN is 754, including 401 walking,
219 transit, and 134 car. It also indicates that the travel
characteristics of walking are similar to those of bike, such as
travel time and trip type. To develop an understanding of
mode choice behavior, the prediction results of the best-
performing XGB model were analyzed using three model-
agnostic interpretation methods in the following section.

3.2. Variable Importance. +e permutation-based variable
importance was measured based on the XGB model. Since
decision makers have different objectives and application
plans for each travel mode, the importance was measured for
each travel mode. Figure 1 shows box plots of the impor-
tance of the top ten variables for each travel mode, which was
calculated from 50 simulations to consider the randomness
introduced by the permutation. Since this importance
considers both the main and cross effects of a variable, it
cannot be interpreted as the main effect of variables like the
coefficient of MNL.

Although some variables are commonly important in
predicting all mode choice, the ranking of other variables is
somewhat different. Travel time and activity duration are
important for all travel modes, and their influence is more
significant on a tour level than on a trip level. +e result can
explain the recent success of the tour-based model in travel

demand forecasting, compared with the trip-based model
[32, 33]. While age, travel time, and activity duration
commonly rank highly in importance among all travel
modes, car owner, land use, and number of trips only in-
fluence a specific travel mode. +is implies that policy-
making needs to be carried out by focusing on different
factors for each travel mode, based on the mode-specific
analysis.

Regarding car, age is the most important variable in
determining choice, which may indicate the varying pref-
erence for comfort and value of time by age [34]. Car
ownership, of course, is the second important variable for
the choice of a car. Two tour-related attributes, the sum of
travel time and the sum of activity duration, are more critical
than two corresponding trip-related attributes, travel time
and activity duration.

Regarding bike, the small number of positive samples of
bike results in a higher variance of importance than other
travel modes. Low performance of the XGB may cause those
variances, and the proposed box plot is useful in the case of
those high variances. Similar to car, the age, sum of travel
time, and sum of activity duration rank highly in terms of
importance for bike, followed by gender. Unlike other travel
modes, two land-use variables show considerable impor-
tance, indicating that land use affecting accessibility and
mobility would influence the use of bikes [35].

Transit and walking present similar patterns of impor-
tance ranking. Both travel time for a trip and tour are
important variables for the choice of transit and walking,
followed by age and activity duration. As for walking, travel
time is a dominant factor since only a short distance can be
travelled, and, as for transit, travel time is a critical criterion
for determining competitiveness over car and bike [36]. Both
travel modes are significantly affected by the number of trips
on tour and how the number of trips affects the choice of
transit and walking is discussed in a later section using ALE.

3.3.Variable Interaction. Variable interaction was measured
for each travel mode using the H-statistic. As shown in
equations (5) and (6), the variable interaction can be divided
into two cases, i.e., total interaction and two-way interaction.
+e left side of Figure 2 shows the total interaction of the top
ten variables for the choice of each travel mode. Further
investigation of total interaction is conducted by two-way
interaction, as shown in the right side of Figure 2.

Regarding car, age, sum of activity duration, activity
duration, sum of travel time, and travel time are found to
have high interaction with other variables. +e two-way
interactions also indicate that their high interactions are
caused mainly within them. +is result reveals that their
effects on prediction consist of main and significant cross
effects, which cause the high variable importance of those
variables (see Figure 1). For example, interaction strength
between the sum of travel time and travel time is 0.37, which
means 37% of the effect of those two variables on the
prediction comes through the interaction. On the contrary,
the car owner has a low interaction but high importance,
indicating that the effect of the car owner appears mainly as
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Figure 1: Permutation-based variable importance for each travel mode choice: (a) car, (b) bike, (c) transit, and (d) walking.

Table 3: Comparison of prediction performances of the ML models.

Travel modes
Specificity Sensitivity Balanced accuracy

ANN RF XGB ANN RF XGB ANN RF XGB
Car 0.806 0.881 0.920 0.752 0.713 0.670 0.779 0.797 0.795
Bike 0.985 0.990 0.993 0.116 0.338 0.291 0.550 0.664 0.642
Transit 0.879 0.887 0.883 0.515 0.639 0.744 0.697 0.763 0.813
Walking 0.819 0.834 0.850 0.739 0.826 0.856 0.779 0.830 0.853
All 0.882 0.909 0.923 0.647 0.727 0.768 0.764 0.818 0.845
Note. ANN� artificial neural network; RF� random forest; XGB� extreme gradient boosting.
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Figure 2: Continued.
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the main effect. Since the car owner indicates whether the
household owns a private car, it can have low interaction
with other individual attributes. Age shows the highest
interaction with driver’s license due to age restrictions on
driver’s license, although the car owner is more important
for the choice of car than the driver’s license. High inter-
action between age and gender indicates that gender, which
is not top ten important variables, affects prediction mainly
through interaction (i.e., cross effect).

Regarding bike, total interactions are higher than one,
indicating that the variance of total interaction is larger than
the variance of the ML model. +is result can be caused by
the low specificity (0.291) of the XGB model to bike choice,
of which the changes in the value of a variable cannot
thoroughly explain the changes in the class probability of
bike.+erefore, it is difficult to extract significant meaning to

the interpretation of the total interaction of the bike. Al-
though the two-way interactions for bike have interaction
strength smaller than one, significant interpretation is still
challenging due to the result of total interaction.

Transit and walking show similar patterns of variable
interaction, just like variable importance. Travel time, ac-
tivity duration, and age have high total interactions for both
travel modes. +e two-way interaction of travel time for
transit and walking choice indicate that, like car choice, the
effects of travel time that are of high importance are derived
from the significant cross effects among travel time, activity
duration, and age. +e number of trips is found to have high
interaction with travel time for both transit and walking
choice.+is reveals that the use of transit and walking can be
determined by a combination of travel time and the number
of trips on tour, which measure the travel fatigue. Unlike
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Figure 2: Variable interactions between one and other variables and between two variables, in predicting travel mode choice of (a) car,
(b) bike, (c) transit, and (d) walking.
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other variables presenting a similar pattern for transit and
walking, trip type has high total interaction for walking,
while low total interaction for transit. Further investigation
by two-way interactions shows that trip type is highly
correlated with departure time, number of workers at D,
activity duration, and land use, which are closely related to
trip purpose [37]. +e fact that walking includes both trip
type and tour type in ten important variables also supports
this result. +is may be because the choice of walking is
significantly linked to eating out and social/recreational trips
or going school trip of the student [38].

3.4. Relationship between Variable and Travel Mode Choice.
Although the variable importance and interaction tell us the
magnitude of the importance and interactions, they do not

present how they work. Based on variable importance and
interaction, the significant variables are selected for further
investigation by the ALE plots, as in Figure 3. While variable
importance measures the total effect, including the cross and
main effect, the value of ALE measures the main effect of a
variable at a specific value (or specific category) on the
prediction. +erefore, as shown in Figure 3, age that has a
relatively high interaction and importance, and the number
of trips that have relatively low interaction and importance
can have a similar magnitude of ALE.

Age represents notable patterns of ALE for each travel
mode. +e choice probability of car gradually increases as
age increases from the 20s to 60s, and decreases after the
mid-60s, which may suggest a relationship between physical
ability or social status and choice of car [38, 39]. +e choice
of bike gradually increases as age increases, but the
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Figure 3: +e ALE values of variables for predicting each travel mode: (a) car, (b) bike, (c) transit, and (d) walking.
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difference is tiny. +is result is caused by the lack of ex-
planatory power of the XGBmodel in predicting bike choice.
+e choice of transit rises steadily until the mid-20s when
people graduate from university and then decreases. Teen-
agers and older people in the study prefer walking as a travel
mode more than those of other ages. +e choice of walking,
after reaching a high in the teenage years, declines toward
the 30s and subsequently increases gradually. +e peak ALE
value of 0.15 among 14 year olds means the probability of
walking being chosen is 15% higher for people who are 14
years old than the average age. +e above nonlinear rela-
tionship between age and travel mode choice is valuable
information that cannot be observed from conventional
MNL assuming a linear relationship.

+e ALE of the categorical variable is also calculated. As
the number of trips increases, the choice probability of car
and walking increases while the choice probability of transit
decreases. +is indicates that the number of trips would be a
barrier to transit use as it is generally more burdensome to
undertake multistop tours [40]. Meanwhile, a large number
of trips would include trips of a relatively short distance,
such as leisure and shipping trips, so the choice probability
of walking would have increased. For bike, near-zero ALE
appears, similar to age.

As the sum of travel time and the sum of activity duration
increase, the tendency to choose car increases, while the
tendency to choose transit decreases. Specifically, when the
sum of travel time is more than 50 minutes, the choice
probability of car and transit is symmetrical, and this pattern is
also observed in the ALE of the sum of activity duration. +is
result intuitively indicates that car and transit are alternative to
each other, depending on travel time and activity duration.
When the sum of travel time and activity duration increases,
the choice probability of car increases while those of transit
decreases. +e tendency to use walking as a travel mode
decreases as the sum of travel time increases and is maintained
after a slight rebound. +is rebound may be related to the
interaction between the number of trips and the travel time
since a large number of trips would include more short-dis-
tance trips. People who perform activities for more than 500
minutes a day tend to use a car and walk more than transit.
Considering that eight hours are regarded as the average
number of working hours, the sum of activity duration is also
an indicator for an additional trip activity after/before work,
which would be short-distance trip. +erefore, the choice
probability of walking continues to increase as the sum of
activity duration increases.

4. Conclusions

+is paper proposed interpretable ML approaches to pre-
dicting and analyzing travel mode choice. +e XGB model
performed best in the prediction of travel mode choice
relative to the RF and ANN models. Understanding the

decisions made by the XGB model is valuable both for
improving prediction performance and providing insight to
the practitioner. +e three model-agnostic interpretation
methods, i.e., permutation-based variable importance,
H-statistic-based variable interaction, and ALE, were applied
to investigate the influence of variables in predicting travel
mode choices. +ese methods uncovered the correlated and
nonlinear relationships between the behavioral attributes
and travel mode choice.

Some interesting findings were highlighted by the results
of three interpretation methods. +e results of variable im-
portance revealed that age, travel time, and activity duration
have high importance for all travel modes. +e interactions of
those variables explained that such high importance is caused
by large cross effects among those variables.+ese interrelated
aspects of the significant variables revealed why theMLmodel
considering the complex relationship of variables outper-
forms the traditional statistical models in predicting travel
mode choice, as reported in the previous studies [1, 6–8].
Also, the tour-related attributes showed high interaction and
importance for the choice of all travel modes, indicating that
the tour-based analysis is necessary for mode choice, as re-
ported in a modern travel demand forecasting model [41].
+ese findings regarding the complexity of mode choice
emphasized the need to shift from the existing MNLmodel to
a flexible ML model. +e varying importance of some vari-
ables such as the car owner, tour type, land use, and number
of trips according to travel mode indicated that mode-specific
analysis should be conducted for targeting each travel mode.
For example, to accurately predict the walking trips in the
location, trip purpose-related attributes such as land use and
activity duration should be collected. +e ALE successfully
represented the nonlinear relationship between the variables
and the change in the choice probability of each travel mode,
which is difficult to derive from a conventional MNL. +e
ALE intuitively showed the alternative patterns of travel mode
through the symmetric patterns between travel modes. +ese
results revealed the detailed modal shift patterns according to
the behavior attributes such as age and the sum of travel time,
which could be used to guide how to divide people into
subgroups for predicting travel demand of each mode.

In future research, a proposed interpretation method is
needed to extend a more in-depth and broader under-
standing of travel behavior. Bivariate ALE can be applied to
represent the cross effect between variables that separated
from the main effect, and it can enrich the explanation of
variable interaction. Comparing the interpretation results of
ML models with an advanced parametric model, such as a
mixed logit model, would also be valuable to validate the
model further. Deep learning models [11, 42] are reasonable
alternatives for the XGB and RF and the proposed model-
agnostic interpretation methods can still available for those
models. Local interpretation methods such as local inter-
pretable model-agnostic explanations (LIME) and Shapley
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additive explanations (SHAP) can contribute to better
representation of the heterogeneity of individuals and
groups [43, 44], which has also been a critical subject of
behavior analysis. Although this study only considers a
single primary mode due to the regional travel pattern, a
tour-based mode choice model considering the exact
combination of modes has been recently proposed to
consider the dynamics among trips within the tour [45, 46].
Applying the proposed ML and interpretation methods to
those complex modeling tasks would be meaningful future
research in the regions with a high rate of multimodal trips.
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