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As an interesting research topic in transportation field, tradable credit scheme (TCS) has been extensively explored in the latest
decade. Existing studies implicitly assumed that travelers are clear about the equilibrium credit price and make their trips
accordingly. However, this may not be the case in reality, since the credit price is endogenously determined by the credit-trading
behavior, especially in the early stages after the implementation of a TCS. Considering travelers’ uncertainty on the equilibrium
credit price, this paper aims to investigate the impacts of perception error on credit price and how to accommodate such errors by
an appropriate scheme design. Transferring the perception error on credit price to a given and fixed value released by central
authority, we first investigate the impacts of recommended credit price under a given TCS. -e numerical results imply that it is
necessary to simultaneously consider the choice of recommended credit price and charging scheme in TCS design. Regarding this,
we combine the goals of social welfare and public acceptance of the scheme and propose a bilevel biobjective programming
(BLBOP) model, by which the net economic benefit is maximized while the gap between the recommended and realized credit
prices is minimized. -rough two numerical examples, it is found that the rise in perception variance could intensify the
contradiction effect between the two objectives. Additionally, a nonnegligible price gap must be allowed to occur to maintain the
effectiveness of a TCS.

1. Introduction

Congestion, mainly attributed to the imbalance between
supply of the transportation system and traffic demand, is
becoming an increasingly disturbing problem worldwide. It
is generally recognized that road congestion threatens urban
prosperity due to its negative effect on the economy. In 2013,
the US Department of Transportation stated that “Con-
gestion in 498 metropolitan areas caused urban Americans
to travel 5.5 billion hours more and to purchase an extra 2.9
billion gallons of fuel for a congestion cost of $121 bil-
lion”[1]. -erefore, how to relieve road congestion has
become a highly attractive issue for policy-makers.

Among the variety of congestion-relief methods, a road
pricing scheme has been studied for several decades and

practiced around the world in various forms thanks to the
marginal theory introduced by Pigou [2]. In Pigou’s theory,
the optimal toll charge is defined as the difference between
the marginal social cost and the marginal private cost.
However, despite its appeal, the Pigouvian toll appears
politically and socially infeasible in terms of the equity
problem. Specifically, a pricing scheme would only benefit
those who value congestion relief more than the paid toll,
and it could make a considerable portion of the travelers
worse off if no compensation is provided [3]. Furthermore,
such a scheme benefits the rich more than the poor, leading
to political resistance of its implementation [4–6].

As an alternative to the pricing scheme, the cap-and-
trade scheme, which has been successfully implemented to
ensure internalization of environmental externalities [7–10],
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has been advocated by transportation scholars in the latest
decade [11–13]. As such a scheme typically involves issuing
mobility credits to travelers and allowing them to trade them
in a market, it is also known as tradable credit scheme (TCS)
[11].

In a TCS, the central authority initially issues credits to
all eligible travelers, and the latter needs to consume them
when using the road section with credit charge. Such a credit
scheme has three major advantages over the monetary toll
charge. First, it provides a framework for solving the con-
gestion problem without increasing travelers’ travel costs. In
other words, it does not generate revenue from the travelers
and could confront with less public controversy than con-
gestion pricing. Second, travelers are motivated to limit their
car use under such a scheme, because in this way they can sell
their unused credits to gain benefit. -ird, the burden of
gathering information falls on the travelers since the prices
of the tradable credits are endogenously determined by the
market; hence, the cost of the political implementation can
be greatly reduced.

Yang and Wang [11] first developed a mathematical
model of TCS in a general network equilibrium context.
Following this, a significant tranche of research has been
conducted to seek the applicability of TCS in traffic man-
agement. -e extensions include user heterogeneity [14–18],
day-to-day dynamic [19–21], network design [22, 23],
bottleneck management [12, 24–30], multimodal network
[31–33], environmental issue [34–37], equity issue [38, 39],
public-private partnership [40, 41], and autonomous vehicle
management [42, 43]. -is paper aims to investigate one
aspect that has hitherto received little attention, namely, the
optimal credit scheme design in the context of probit-based
stochastic user equilibrium (SUE).

Following but different from the classical SUE prin-
ciple in which travelers have a perception error on the
travel time, we assume that the perception error lies in the
equilibrium credit price recommended by the central
authority. Applying a gradient projection method with a
two-stage Monte Carlo simulation procedure embedded,
we solve a linearly constrained minimization model in the
context of probit-based SUE. -en, a bilevel biobjective
programming model is proposed to design an optimal
credit charging scheme with appropriate recommended
credit price.

-e main contributions of this paper are threefold. First,
to the best of the authors’ knowledge, it is the first time that
application of TCS is investigated in the framework of
probit-based SUE. We also combine the gradient projection
and the two-stage Monte Carlo simulation methods pro-
posed by Meng et al. [44] to solve the equilibrium problem.
Second, we relax the implicit assumption in existing studies
that travelers are clear about the equilibrium credit price.
Instead, a perception error on the credit price is assumed to
exist among travelers, which enhances realism in charac-
terizing travel behaviors under TCS. -ird, we propose a
bilevel biobjective programmingmodel for optimal design of
TCS, in which minimizing the gap between the recom-
mended price and the realized one is incorporated to en-
hancing the public acceptance of the proposed scheme. We

believe that this work can provide useful managerial insights
to the application of TCS.

-e organization of this paper is listed as follows. In
Section 2, we present the motivations and clarify the ob-
jective of this study. In Section 3, we list the assumptions
adopted in this paper and propose a linearly constrained
minimization model, based on which we demonstrate the
impacts of recommended credit price under a given TCS
through a small network. In Section 4, we propose a bilevel
biobjective model for optimal TCS design and discuss about
its solution procedure. In Section 5, two numerical examples
are presented to investigate the features of the optimal TCS
designed by the proposed model. In Section 6, two imple-
mentation issues are discussed to enhance the practicability
of the proposed scheme. Finally, major conclusions and
recommendations for future research are presented in
Section 7.

2. Problem Statement

As stated in Zhu et al. [18], the essential difference between a
congestion pricing scheme and a tradable credit scheme lies
in the unit credit price in the latter, which is endogenously
determined through market trading rather than a fixed value
prescribed by the central authority. In other words, the
equilibrium credit price is highly dependent on the network
flow pattern that reveals the buyers and sellers in the credit-
trading market. And intuitively, the credit price perceived by
travelers in turn affects the route choice and thus the
equilibrium flow pattern. Consequently, a user equilibrium
(UE) as well as a market equilibrium (ME) can be achieved
and the resultant flow pattern and credit price are obtained.

In the literature, existing studies implicitly assumed that
travelers are clear about the equilibrium credit price and
make their trips accordingly. -is can surely direct the
network flow towards the UE pattern solved by the math-
ematical programming model proposed by Yang and Wang
[11]. However, unlike the congestion pricing scheme where
the additional travel cost is clear and definite, we cannot
expect that every traveler knows the operating mechanism of
the market as well as the endogenously determined credit
price in advance, especially when the scheme is initially
implemented. Instead, what they know exactly before
making the trips is the credit charge on each link, but they
may have different attitudes toward the equilibrium credit
price. For example, travelers who enjoy higher income levels
or those who are satisfied with the mobility service provided
by the authority may tolerate a higher credit price. In
contrast, those who argue against the credit scheme tend to
expect a lower price. -erefore, a more reasonable as-
sumption is that perception error on the credit price exists.
Along this line, this paper focuses on the initial stages after
the implementation of a TCS and investigates how to ac-
commodate such errors by an appropriately designed TCS.

Under the assumption that travelers have perception
error on the credit price, however, the perception error itself
will affect the equilibrium credit price by changing the
network flow pattern, and such an intractable interaction
between the perceived price and the realized one will
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significantly reduce the robustness of the scheme as well as
the predictability of the flow distribution.

To overcome this difficulty, we can try to transfer such a
perception error to a given and fixed value to maintain a
controllable system. For central authorities, it is practically
feasible to release a recommended credit price that travelers
can refer to when making decisions. In this way, the per-
ception error on realized credit price can be transferred to
the recommended one. Since the recommended price is fixed
and given by the central authority, it can make the network
flow more controllable. Besides, the recommended price
combined with the credit charging scheme can be a
“guidance” for travelers, i.e., to coordinate their travel be-
haviors consistent with the control target.

With this in mind, it is then natural to wonder how to
design a TCS with recommended credit price to maximize
the network-level performance. Clearly, one of the most
fundamental procedures for finding such a scheme is to
capture user’s stochasticity in making route choice. In the
literature, it was frequently done by adding a random error
term to the travel cost and presuming a specific distribution
form for it. Typically, there are two kinds of problems, logit-
based or probit-based SUE problem, assuming that the
perception error follows multivariate Gumbel or normal
distribution. Since the former possesses an elegant explicit
expression [45], it has been extensively examined in the
literature, for either model formulations or solution algo-
rithms. However, despite its closed form, it is widely known
that the logit-based approach suffers from overlapping issues
and cannot accommodate the perception variance caused by
independence of irrelevant alternatives (IIA), see Chapter
11.1 in [46]. In this regard, probit-based SUE problem is a
better representative of SUE principle since it can avoid the

above problems. -erefore, we adopt the probit-based SUE
principle to characterize travelers’ behavior in route choice
in this paper.

In the next section, we shall formulate the equilibrium
problem as an equivalent optimization program and present
a solution algorithm for it.

3. Probit-Based Stochastic User
Equilibrium under a Tradable Credit Scheme

3.1. Notations andAssumptions. Consider a general network
G � (N, A), with a set N of nodes, and a set A of directed
links. Let W be the set of O-D pairs and Rw be the set of all
paths connecting O-D pair w. Let qw denote the given and
fixed travel demand within O-D pair w and fr,w the flow on
path r connecting O-D pair w. -e relationship between the
aggregate flow va and path flow can be expressed as

va � 􏽘
w∈W

􏽘
r∈Rw

fr,wδ
w
a,r, a ∈ A, (1)

where the link-path incidence δw
a,r � 1 if link a is on path r

and 0 otherwise. And the path flow satisfies

􏽘
r∈Rw

fr,w � qw, w ∈W. (2)

In this paper, the travel demand is assumed to be elastic.
Let qw denote the maximum travel demand over O-D pair
w ∈W and Dw(•) be the nonnegative, nonincreasing, and
continuously differentiable demand function. -en, the
feasible set of flow patterns (f , v, q), where f �

fr,w, r ∈ Rw, w ∈W􏽮 􏽯, v � va, a ∈ A􏼈 􏼉 and q � qw, w ∈W􏼈 􏼉

can be defined by

Ω � (f , v, q)| 􏽘
r∈Rw

fr,w � qw, va � 􏽘
w∈W

􏽘
r∈Rw

fr,wδ
w
a,r, qw ≤ qw, fr,w ≥ 0, ∀a ∈ A, r ∈ R

w
, w ∈W

⎧⎨

⎩

⎫⎬

⎭. (3)

Moreover, suppose that the link travel time function is
separable and monotonically increasing with respect to the
link flow, denoted by ta(va).

As presented in Yang and Wang [11], under a TCS, each
traveler gets k credits from the central authority initially.
Denote K as the total amount of distributed credits, which
satisfies K � 􏽐w∈Wk · qw. -e link-specific credit charging
scheme is denoted by κ � κa, a ∈ A􏼈 􏼉, where κa is the credit
charge for any traveler who uses link a. For the sake of
presentation, we use (K, κ) to characterize a credit charging
scheme κ under a total number of credits K issued in the
market. Since not all TCSs can ensure the existence of
feasible network flow patterns (f , v, q), the corresponding
feasible TCS set Ψ is defined as

Ψ � (K, κ)|∃(f , v, q) ∈ Ω, 􏽘
a∈A

κava ≤K
⎧⎨

⎩

⎫⎬

⎭, (4)

where Ω is defined by equation (3).
As stated in Yang and Wang [11], the credit market

equilibrium (ME) conditions are given by

􏽘
a∈A

κava � K, if p> 0, (5)

􏽘
a∈A

κava ≤K, if p � 0, (6)

where p denotes the credit price in time unit at ME. It
implies that the credit price will be zero or equivalently, and
the credit scheme will be nullified if there are remaining
credits in the system.

Under a given TCS, the generalized link travel cost ca on
the link a ∈ A is the sum of link travel time and credit cost
measured in equivalent time unit. Equivalently,
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ca � ta + pκa, a ∈ A. (7)

In this paper, we assume that the traveler’s behavior in
route choice follows the probit-based SUE principle. -at is,
each traveler has a perception error on the generalized travel
cost and the perceived link travel cost Ca is equal to the
actual generalized link travel cost ca plus a normally dis-
tributed random variable ξa, i.e.,

Ca � ca + ξa, a ∈ A. (8)

-en, the perceived path travel cost Cr,w can be
expressed by

Cr,w � cr,w + ξr,w � 􏽘
a∈A

caδ
w
a,r + ξr,w, r ∈ R

w
, w ∈W,

(9)

where ξr,w is also a normal distributed random error term.

3.2. Perception Error on the Recommended Credit Price.
In the published works related to probit-based SUE mod-
eling, it is widely adopted that travelers have a perception
error on the travel time. Specifically, it is usually assumed
that the error term ξa regarding trip cost on link a ∈ A has a
zero mean and a variance linearly proportional to the free-
flow travel time on that link, i.e., ξa ∼ N(0, βt0a), where β is
the variance parameter and t0a is the free-flow travel time on
link a. However, this may not be the case nowadays. On one
hand, technological developments of prediction on network
traffic flow has made the estimation on travel time in
navigation services increasingly accurate and convincing in
recent years. On the other hand, the advent and popular use
of smartphones renders increasing drivers available to
navigation services and naturally, more and more of them
resort to navigation applications such as Google Map when
making their route choices. As a result, travelers’ perception
error on travel time is in fact reduced significantly compared
with a decade ago. By comparison, the perception error on
credit price due to the uncertainty about the market op-
erating mechanism under a TCS deserves more attention.

Asmentioned in Section 1, to give a reference price of the
credit and coordinate their travel behaviors accordance with
the control target, a recommended credit price 􏽥p released by
the central authority is considered in this paper. Since 􏽥p is
merely a recommended price rather than a realized one,
travelers may have different attitudes toward the relationship
between 􏽥p and the equilibrium credit price p∗, i.e., a per-
ception error on the recommended credit price exists.
Furthermore, we assume that the perception error on credit
price is muchmore dominant than that on travel time so that
the latter is negligible throughout the analysis.

Based on above, we have ξa � κaξp in this paper and then
rewrite equation (8) as

Ca � ca + ξpκa � ta + p
∗κa + ξpκa, a ∈ A, (10)

where the perception error ξp in terms of credit price is defined
as a normally distributed random variable with a zero mean
and a variance linearly proportional to 􏽥p, i.e.,
ξp ∼ N(􏽥p − p∗, β􏽥p). -en, we naturally have
ξa ∼ N((􏽥p − p∗)κa, β􏽥pκ2a), and the perceived path travel cost
Cr,w satisfies equation (9) with the variance of ξr,w expressed as

Var ξr,w􏼐 􏼑 � β􏽥p 􏽘
a∈A

κa
2δw

a,r, r ∈ R
w

, w ∈W. (11)

And the covariance between ξr,w and ξl,w can be
expressed by

cov ξr,w, ξl,w􏼐 􏼑 � β􏽥p 􏽘
a∈A

κa
2δw

a,rδ
w
a,l, r, l ∈ R

w
, w ∈W.

(12)

Based on above, the following proposition can be readily
obtained.

Proposition 1. 3e perceived link travel cost Ca follows
statistically independent normal distributions
N(ta + 􏽥pκa, β􏽥pκa

2), a ∈ A, and the perceived path travel cost
Cr,w follows statistically normal distributions N(􏽐a∈A
(ta + 􏽥pκa)δw

a,r, β􏽥p􏽐a∈Aκa
2δw

a,r), r ∈ Rw, w ∈W.

Proposition 1 implies that with the given assumption, the
travelers indeed make their route choice based on the
recommended credit price rather than the equilibrium one.

As we can see from (11) and (12), there is amajor difference
between the proposed probit-based SUE model and the classic
one. -at is, the overall perception error on path travel cost in
the proposed model actually relies on the link-based credit
charge, which is a decision variable in designing the credit
scheme. In other words, the higher credit charge on a path is,
the higher the perception error on travel cost of that path
becomes. However, the perception error in the classic model
depends solely on the free-flow travel time, which is a fixed and
given network attribute rather than a variable to be solved.-is
nature of the proposed model renders the solution procedure
more complicated because it requires further effort to consider
the change in perception error when determining the optimal
credit charge scheme.

3.3. An Equivalent Minimization Model with Tradable Credit
Scheme. By Sheffi [46], a path flow pattern f is a SUE one if
and only if it satisfies the following SUE condition:

fr,w � qwPr,w cw(f)( 􏼁, r ∈ R
w

, w ∈W, (13)

where Pr,w(cw(f)) represents the path choice probability,
namely, the probability that path r ∈ Rw is perceived by
some drivers as the shortest one among all the feasible paths
connecting O-D pair w ∈W, given deterministic path travel
time pattern cw(f) � cr,w(f), r ∈ Rw, w ∈W􏽮 􏽯. -e path
choice probabilities can be expressed by
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Pr,w cw(f)( 􏼁 � Pr Cr,w(f)≤Cl,w(f),∀l ∈ R
w and l≠ r|cw(f)􏼐 􏼑, r ∈ R

w
, w ∈W. (14)

To formulate the conventional SUE as an equivalent
mathematical model, Daganzo [47] developed an uncon-
strained minimization model that can be applied to solve the
conventional SUE problem in a straightforward way.
However, as demonstrated by Meng et al. [48], when ad-
ditional constraints are considered (such as link capacity
constraints in their work or credit constraint in this paper),
simply adding the constraints into Daganzo’s model cannot

yield the desirable optimality conditions. To solve the
generalized SUE problem that contains link capacity con-
straints, they proposed a linearly constrained minimization
model based on the work by Maher et al. [49] and proved
that the model possesses desirable properties. In the same
spirit, Han and Cheng [15] successfully applied Meng’s
model in the context of TCS, which is given by

min z1(f) � 􏽘
w∈W

qwSw cw(f) + tdwn fw( 􏼁􏼐 􏼑

− 􏽘
w∈W

􏽘
r∈Rw

dr,w fw( 􏼁fr,w,
(15a)

s.t. 􏽘
a∈A

κava ≤K, (15b)

􏽘
r∈Rw

fr,w � qw, (15c)

where constraint (15b) indicates that the total credit charge
cannot exceed the total distribution. Sw(·) is the satisfaction
function [46] (page 269), which is defined as the expectation
of the minimum disutility from a set of route choices r ∈ Rw,
i.e.,

Sw cw(f)( 􏼁 � E min
r∈Rw

cr,w(f) + ξr,w􏽮 􏽯􏼔 􏼕, w ∈W. (16)

By definition, the partial derivative of the satisfaction
function in terms of path travel cost equals the choice
probability of that path, i.e.,

zSw cw(f)( 􏼁

zcr,w(f)
� Pr,w cw(f)( 􏼁, r ∈ R

w
, w ∈W. (17)

-e vector cw(f) is given by

cw(f) � cr,w(f), r ∈ R
w

, w ∈W􏽮 􏽯 � 􏽘
a∈A

ta va( 􏼁δw
a,r, r ∈ R

w
, w ∈W

⎧⎨

⎩

⎫⎬

⎭, (18)

where ta(va) is defined by

ta va( 􏼁 �

􏽒
va

0 ta(ω)dω
va

, va > 0,

t
0
a, va � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(19)

-e vector dw(fw) � dr,w(fw), r ∈ Rw, w ∈W􏽮 􏽯 is a path-
specific vector function satisfying the following condition [49]:

Pr,w cw(f) + dw fw( 􏼁􏼐 􏼑 �
fr,w

qw

r ∈ R
w

, w ∈W. (20)

-en, we extend Han’s model to an elastic-demand case.
By Cantarella [50], the probit-based SUE conditions with
respect to path flows considering demand elasticity can be
formulated as

fr,w � qwSw cw(f)( 􏼁, r ∈ R
w

, w ∈W,

qw � Dw Sw cw(f)( 􏼁( 􏼁, w ∈W.
(21)

Based on Han’s model, we can establish a minimization
model incorporating demand elasticity:
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min z2(f , q) � 􏽘
w∈W

qwSw cw(f) + tdwn fw( 􏼁􏼐 􏼑 − 􏽘
w∈W

􏽘
r∈Rw

dr,w fw( 􏼁fr,w − 􏽘
w∈W

􏽚
qw

0
D

− 1
w (ω)dω, (22a)

s.t. 􏽘
a∈A

κava ≤K. (22b)

-e equivalence between minimization model (22a) and
(22b) and the SUE conditions in the context of TCS is
emphasized in the following proposition.

Proposition 2. Any flow pattern solved by minimization
model (22a) and (22b) fulfils the following conditions:

fr,w � qwPr,w cw(f)( 􏼁, r ∈ R
w

, w ∈W, (23)

qw � Dw Sw cw(f)( 􏼁( 􏼁, w ∈W, (24)

p
∗

K − 􏽘
a∈A

κava
⎛⎝ ⎞⎠ � 0, (25)

p
∗ ≥ 0, (26)

where p∗ is the optimal Lagrangian multiplier with respect to
the credit amount constraint (22b).

Proof. -e corresponding Lagrangian function of the
minimization program can be obtained as follows:

L(f , q, μ, p) � z2(f , q) + p 􏽘
a∈A

κava − K⎛⎝ ⎞⎠. (27)

Using equations (17) and (19), the Karush–Kuhn–Tucker
(KKT) conditions equivalent to this model can be derived as
follows:

􏽘
a∈A

v
∗
a

dta v
∗
a( 􏼁

dv
∗
a

+ p
∗κa􏼠 􏼡δw

a,r − dr,w f∗w( 􏼁≥ 0, r ∈ R
w

, w ∈W, (28)

f
∗
r,w 􏽘

a∈A
v
∗
a

dta v
∗
a( 􏼁

dv
∗
a

+ p
∗κa􏼠 􏼡δw

a,r − dr,w f∗w( 􏼁⎛⎝ ⎞⎠ � 0, r ∈ R
w

, w ∈W, (29)

Sw cw f∗( 􏼁 + dw f∗w( 􏼁􏼐 􏼑 − D
− 1
w q
∗
w( 􏼁≥ 0, w ∈W, (30)

q
∗
w Sw cw f∗( 􏼁 + dw f∗w( 􏼁􏼐 􏼑 − D

− 1
w q
∗
w( 􏼁􏼐 􏼑 � 0, w ∈W, (31)

p
∗

􏽘
a∈A

κav
∗
a − K⎛⎝ ⎞⎠ � 0, (32)

p≥ 0, 􏽘
a∈A

κav
∗
a − K≤ 0. (33)

Since any feasible path flow under SUE conditions is
strictly positive, from condition (29) we have

dr,w f∗w( 􏼁 � 􏽘
a∈A

v
∗
a

dta v
∗
a( 􏼁

dv
∗
a

+ p
∗κa􏼠 􏼡δw

a,r. (34)

By the definition of ta(va), we can obtain

ta va( 􏼁 � t va( 􏼁 + va

dta va( 􏼁

dva

, a ∈ A. (35)

Using this relationship, it can be easily verified that

cr,w f∗( 􏼁 + dr,w f∗w( 􏼁 � cr,w f∗( 􏼁, r ∈ R
w

, w ∈W. (36)

-us, equation (19) can be rewritten as

Pr,w cw f∗( 􏼁( 􏼁 �
fr,w

qw

, r ∈ R
w

, w ∈W, (37)

which implies that stated condition (23) holds. -en, by
equations (31) and (36), we have

D
− 1
w q
∗
w( 􏼁 � Sw cw f∗( 􏼁( 􏼁, (38)

which is equivalent to condition (24). And the equivalence
between the KKT conditions (32) and (33) and the stated
conditions (25) and (26) is obvious. -is completes the
proof.

Based on Proposition 2, we can say that any flow pattern
solved by model (22a) and (22b) satisfies the SUE conditions
under a given TCS, and the optimal Lagrangian multiplier
associated with credit conservation constraint (22b) is the
equilibrium credit price.
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Different from Han’s work, in which the problem is
discussed under the logit-based SUE conditions, we solve the
model in the framework of probit-based SUE. In the next
section, we move on to look at the solution method for
minimization model (22a) and (22b). □

3.4. SolutionAlgorithm. In addition, the Lagrange multiplier
of credit constraint (22b) is exactly the credit price p.
-erefore, solving the equilibrium credit price of model
(22a) and (22b) is consistent with the procedure of finding
the optimal Lagrange multipliers of link capacity constraints
inMeng et al. [48].-us, along the same line withMeng et al.
[48], we turn to solve the Lagrangian dual problem of
minimization program (22a) and (22b) by a gradient pro-
jection method with a predetermined step size sequence.

-e Lagrangian dual formulation of (22a) and (22b) can
be presented as [51]

max
p≥0

φ(p), (39)

where the concave function φ(p) is defined as follows:

φ(p) � min
f ,q

z2(f , q) + p 􏽘
a∈A

κava − K⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (40)

Since for any given credit price p, the link travel cost
ca(va) is strictly monotone and continuously differentiable,
the uniqueness of the equilibrium link flow pattern can be
guaranteed [50]. -e gradient of φ(p) can be computed as

∇φ(p) � 􏽘
a∈A

κava − K. (41)

To estimate the travel demand and SUE link flow in the
solution procedure, a two-stage Monte Carlo simulation
method proposed by Meng et al. [44] is embedded as a
subroutine. -e overall solution algorithm is stated as
follows:

Step 0 (initialization): set an inaccuracy tolerance ε and
two predetermined sample sizes, i0 and j0. Initialize the
credit price with p(0) > 0. Choose a step size αn􏼈 􏼉

satisfying

0< αn < 1, 􏽘
∞

n�1
αn �∞, 􏽐

∞

n�1
αn

2 <∞. (42)

Set iteration counter n � 1.
Step 1 (SUE traffic assignment): generate an SUE de-
mand pattern q(n)

w , w ∈W􏼈 􏼉 and corresponding link
flow pattern v(n)

a , a ∈ A􏼈 􏼉 by performing a two-stage
Monte Carlo simulation procedure as follows:

(i) Initialization of Satisfaction. Set the initial satis-
faction function S

0
w � 0, w ∈W and the sample

counter i � 1.
(ii) Sampling. Sample the perception error ξ

i

p, a ∈ A

from N(􏽥p − p(n), β􏽥p) for each link, and then,
calculate the modified link travel cost by
Ci

a � ta(vi
a) + (p(n) + ξ

i

p)κa, a ∈ A.

(iii) Satisfaction Estimation. Based on link cost pattern
Ci

a, a ∈ A􏼈 􏼉, find the shortest path between each
OD pair and denote the path travel time as Ci

w.
Calculate the estimated satisfaction function by

S
i

w �
(i − 1)S

i− 1
w + C

i
w

i
, w ∈W. (43)

(iv) Checking a Termination Criterion. If the number
of samples i≥ i0, go to step (v); otherwise, set i: �

i + 1 and go to step (ii).
(v) Travel Demand Estimation. Calculate the OD-

based travel demand by

qw � Dw S
i

w􏼒 􏼓, w ∈W. (44)

(vi) Initialization of Flow Pattern. Set the initial link
flow v0 � 0 and the sample counter j � 1.

(vii) Sampling. Sample the perception error ξ
j

p, a ∈ A

from N(􏽥p − p(n), β􏽥p) for each link, and then,
calculate the modified link travel cost also by
C

j
a � ta(v

j
a) + (p(n) + ξ

j

p)κa, a ∈ A.
(viii) All-or-Nothing Assignment. Based on link cost pat-

tern C
j
a, a ∈ A􏽮 􏽯, assign qw to the shortest path for

OD pair w ∈W. With an auxiliary link flow pattern
y

j
a, a ∈ A􏽮 􏽯 generated, calculate the link flow by

v
j
a �

(j − 1)v
j− 1
a + y

j
a

j
, a ∈ A. (45)

(ix) Checking a Termination Criterion. If the number
of samples j≥ j0, stop and obtain
q(n) � q, v(n) � vj; otherwise, set j: � j + 1 and
go to step (vii).

Step 2 (checking a termination criterion): if the fol-
lowing inequality holds, stop. Otherwise, go to Step 3:

p
(n)

− max 0, p
(n)

+ α(n)
􏽘
a∈A

κav
(n)
a − K⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ε.

(46)

Step 3 (updating the credit price): update the unit credit
price as follows:

p
(n+1)

� max 0, p
(n)

+ α(n)
􏽘
a∈A

κav
(n)
a − K⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.

(47)

Let n: � n + 1 and go to Step 1.

Remark 1. As the name of the algorithm suggests, the left-
hand-side in equation (46) is essentially the nonnegative
projection of the gradient of the Lagrangian dual function
with respect to p, P+[p(n) + α(n)(􏽐a∈Aκav(n)

a − K)]. By
Bertsekas [52], it can be readily obtained that p∗ is the
equilibrium credit price if and only if
p∗ � P+[p∗ + α∇φ(p∗)], which equivalently verifies the
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validity of the stopping criterion in equation (46) and the
iterative update scheme in equation (47).

Remark 2. Note that the perception error in Step 1 (ii) and
(vii) is sampled in a way such that travelers always choose
their routes based on the recommended credit price rather
than the equilibrium one. Toward this end, the mean of the
random variable in the Monte Carlo simulation procedure
changes correspondingly upon updating the credit price in
each outer iteration.

Remark 3. -e stop criterion in Step 2 (iv) and (ix) is based
on two predetermined sample sizes. With a given accuracy
level, the lower bounds for i0 and j0 can be determined by
the study of Meng and Liu [53].

3.5. A SmallNetwork Example. In this section, a toy network
is adopted to demonstrate the impact of recommended
credit price under a given TCS adopted in Bao et al. [14].

As shown in Figure 1, the example network consists of
four paths connecting twoO-D pairs: path 1 including link 1,
path 2 including links 2-5-6, path 3 including link 3, and
path 4 including links 4-5-7. -e variance parameter is
chosen as β � 0.5.-e Bureau of Public Road (BPR) function
is adopted to estimate the link travel time:

ta va( 􏼁 � t
0
a 1 + 0.15

va

Qa

􏼠 􏼡

4
⎛⎝ ⎞⎠, a ∈ A, (48)

where Qa is the capacity on link a. -e travel demand
function is given as

qw � qw exp − 0.01∗ Sw( 􏼁, w ∈W, (49)

with q1 � 60 for O-D pair 1 (node 1⟶ node 2) and q2 � 50
for O-D pair 2 (node 3⟶ node 4).

In the case of elastic demand, minimizing the system
total travel time only is obviously inappropriate as an ob-
viously unrealistic optimal solution would be the near zero
traffic flow achieved by imposing unacceptably high charges.
Instead, the SO problem in the elastic-demand case is de-
fined in terms of maximization of the net economic benefit
(EB) or social welfare (see Chapter 3.2.3 in [54]). By defi-
nition, the net economic benefit (EB) can be computed by
subtracting the system travel time from the total user
benefits, which is given by

EB � 􏽘
w∈W

􏽚
qw

0
D

− 1
w (ω)dω − 􏽘

a∈A
vata va( 􏼁. (50)

We assume that the central authority initially distributes
660 credits among travelers, and each traveler (including
those who make their trips as well as those who give up their
trips) gets 6 credits. -e specific information of the link free-
flow travel time, capacity, and credit charging scheme are
given in Table 1. Based on the network topology and the
given credit scheme, we know that travelers using paths 2
and 4 have remaining credits and those on paths 1 and 3
need to buy extra credits.

First, we examine the convergent trend and stability of
the gradient projection-based algorithm. -e convergence
results for the algorithm with different recommended credit
prices are presented in Figure 2. It can be seen that it takes
about 15 iterations to converge to the equilibrium credit
price in all cases, and the figure depicts that the algorithm is
insensitive to the initial credit price p(0). Taking p(0) � 5.0,
we further test the convergence performance and compu-
tational efficiency of the solution algorithm on three larger
networks, as shown in Table 2 (the relevant network data
were taken from the transportation network data sets
maintained by Stabler et al. [55] (https://github.com/
bstabler/TransportationNetworks)). From the table, it is
clear that the algorithm does not scale very well as the size of
the network becomes larger, since the computational time
for the Winnipeg network is nearly 59 times more than that
for Sioux Falls.-is implies that the computational efficiency
of the gradient method embedded with Monte Carlo sim-
ulation cannot be guaranteed for large-size problems.

Now, let us turn our attention back to the toy network,
and we investigate the impact of recommended credit price
on the actual one and system travel time. From Figure 3, it
can be observed that the choice of recommended credit price
affects both the resulting equilibrium credit price and
economic benefit. Specifically, the equilibrium credit price
declines as the recommended one increases. -is can be
explained by the change in demand and supply of credits.
When the recommended credit price gets higher, travelers
are expected to care more about the credit cost, and thus, less
travelers will choose the paths with relatively higher credit
charges. -en, the demand of credits in the trading market
shrinks and the supply rises correspondingly since the total

1 1

6

74

2

2

65 5

33 4

Origin Destination

Origin Destination

Figure 1: -e toy network.

Table 1: Input data of the small network.

Link Free-flow travel time Capacity Credit charge
1 10 35 9
2 3 30 2
3 12 35 8
4 4 35 1
5 5 35 3
6 3 35 2
7 4 25 1
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travel demand and issued credits remains the same. As a
consequence, the equilibrium credit price will decrease. We
can see that there is a decreasing trend in economic benefit
with increasing recommended price. And it is interesting to
note that when the recommended price is larger than (or
equal to) 7.0, the actual credit price reduces to zero. -is

implies that the perceived credit price is too high to match
sufficient buyers with the sellers in the market, leading to a
nullified credit scheme. However, a nullified TCS does not
necessarily mean a sharp loss in social welfare.

Furthermore, to see the differences between the pro-
posed probit-based SUE condition (with perception error on
credit price) and the conventional one (with perception
error on free-flow travel time), we also solve model (22a) and
(22b) with ξa ∼ N(0, βt0a) in equation (8) and compare the
two resulting flow patterns in Figure 4. From the figure, we
can see that the two flow patterns exhibit evident diversity.
And it is observed that flows on path 1 and 3 (paths on which
travelers need to buy extra credits) drop down as 􏽥p increases,
while those on paths 2 and 4 (paths on which travelers have
remaining credits to sell) show an increasing trend. -is
verifies the facts that more travelers will choose paths 2 and 4
when the recommended credit price gets higher.

From above, we learn that the choice of recommended
credit price indeed affects the social welfare, and extremely
high recommended price may nullify the credit scheme.
Despite a socially optimal scheme, if the gap between the
recommended price and realized one is too large, travelers
will fail to have a reasonable expectation on their travel cost
(e.g., underestimate their travel cost or overestimate their
benefit from selling remaining credits) and thus lose their
trust to the announced credit prices by the central authority.
-is means that over time, travelers will care less about the
recommended credit price and the credit scheme will lose its
impact on the system. -us, to avoid this circumstance and
enhance the public acceptability of the implemented TCS, it
is critical and necessary for the central authority to minimize
the gap between the recommended and the realized prices.
-erefore, in addition to the network performance in terms
of social welfare, the difference between the two credit prices
also deserves particular attention.

4. Optimal Design of Credit Charging
SchemewithRecommendedUnitCreditPrice

In the last section, we demonstrate that both the social
welfare and the price gap should be considered in the design
of a scheme. Along this way, in this section, we formulate the
maximization of the economic benefit and the minimization
of price gap as a bilevel biobjective programming (BLBOP)
model, in which the credit charging scheme and recom-
mended price are decision variables. -en, a weighted sum
method is applied to transform the BLBOP model into a
single-objective one, within which the values of objective
functions are normalized to the interval [0, 1] to eliminate
their dimension and order of magnitude. Furthermore, a
genetic algorithm (GA) is applied to solve the problem.

4.1. A Bilevel Biobjective Programming Model. -e optimal
TCS design combines goals in terms of social welfare and
public acceptance by simultaneously maximizing the eco-
nomic benefit and minimizing the gap between the two
prices. -e biobjective programming model can be
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Figure 2: Convergence plots for equilibrium credit price with
different recommended credit prices.

Table 2: Iterations and CPU times needed for convergence of the
proposed algorithm.

Network # Iterations CPU time
Sioux Falls (SF) 24 31.36 s
Anaheim 46 263.24 s
Winnipeg 78 1876.31 s
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Figure 3: Change in equilibrium credit price and economic benefit
with different recommended credit prices.
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presented as follows (in this paper, it is assumed that the
initial issued credits K are given and fixed):

max
κ,􏽥p

F1(κ, 􏽥p, v) � 􏽘
w∈W

􏽚
qw

0
D

− 1
w (ω)dω − 􏽘

a∈A
vata va( 􏼁

min
κ,􏽥p

F2(κ, 􏽥p, v) � 􏽥p − p
∗
(κ, 􏽥p, v)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(51a)

s.t. 0≤ κ≤ κmax, (51b)

0< 􏽥p≤pmax, (28) − (33). (51c)

-e problem defined by (51a)–(51c) is essentially a
Stackelberg network game which has a bilevel structure. In
the upper level, the central authority takes into account the
reaction of the travelers and attempts to improve the net-
work performance as well as reducing the price gap between
the recommended and the realized.-e lower-level problem,
which is characterized by constraints (28) through (33), is to
find the equilibrium flow pattern v and credit price p∗ from
problem (22a) and (22b) with a given κ and 􏽥p. Moreover,
constraints (51b) and (51c) aim to manage the link-based
credit charge and announced credit price from being too
high.

Since the link flows are positive and cannot be larger
than the maximum potential travel demand, the travelers’
reaction map is bounded. Given the continuous objective
functions in (51a), in combination with the compact feasible
sets of κ and 􏽥p, there always exists a solution to problem
(51a)–(51c) as per Corollary 1 in Harker and Pang [56].

Although the existence of solution to problem
(51a)–(51c) is guaranteed, the uniqueness condition cannot
be established due to its nonconvexity incurred by con-
straints (28) through (33). In other words, there may be

multiple local optima and it is prohibitively difficult to
identify the global one in an analytical manner. In fact,
however, even a locally optimal solution is acceptable for the
central authority if it outperforms the alternative solutions,
and hence, we try to find such a locally optimal solution
using heuristic methods.

4.2. 3e Transformation of the BLBOP Problem. Among the
existing methods to solve multiobjective optimization
problems, the weighted summethod, by which a preferred or
compromised solution obtained through a tradeoff of the
multiple objectives, is widely used in research or engineering
optimization due to its simple implementation [57]. Hence,
we adopt the weighted summethod to solve BLBOP problem
(51a)–(51c).

When applying the weighted sum method, the main
technical difficulty lies in the different dimensions of the
multiple objectives. -at is, the weighting parameter fails to
reflect the real emphasis on each objective if there are re-
markable differences in their magnitudes. To eliminate such
a negative effect, we normalize the objectives within the
interval [0, 1]. Namely, problem (51a)–(51c) can be trans-
formed into the following form:

min
κ,􏽥p

F(κ, 􏽥p, v) � (1 − λ)
F1(κ, 􏽥p, v) − F

max
1

F
min
1 − F

max
1

+ λ
F2(κ, 􏽥p, v) − F

min
2

F
max
2 − F

min
2

,

(52)

where λ ∈ [0, 1] is the weighting parameter and Fmin
i and

Fmax
i are the minimum and maximum of Fi(κ, 􏽥p, v), i � 1, 2.

Remark 4. As we can see, the values of
(F1(κ, 􏽥p, v) − Fmax

1 )/(Fmin
1 − Fmax

1 ) and (F2(κ, 􏽥p, v)−

Fmax
2 )/(Fmax

2 − Fmin
2 ) attain 0 and 1 when F1(κ, 􏽥p, v) and

F2(κ, 􏽥p, v) reach their best and worst values, respectively.
Hence both the two terms are decrease monotonically within
the interval [0, 1] as the values of F1(κ, 􏽥p, v) and F2(κ, 􏽥p, v)

move closer toward the optimal values. By doing this, the
difficulty in quantitatively measuring the proportional im-
portance of different objectives can be circumvented.

With the problem transformed, then an intriguing issue
is how to choose the values of Fmax

1 , Fmin
1 , Fmax

2 , and Fmin
2 .

Recall that F1 is the economic benefit and F2 is the positive
gap between 􏽥p and p∗. It is natural to obtain that

F
max
1 � EBSO, (53)

F
min
2 � 0, (54)

where EBSO is the economic benefit at socially optimal (SO)
status.

-en, let EBmin denote the system travel time after an all-
or-nothing assignment based on the free-flow travel time
and 􏽥pmax the maximum recommended credit price (this
term is also adopted in the initialization of the solution
algorithm as seen later). Given that 􏽥p≤ 􏽥pmax is always sat-
isfied, |􏽥p − p∗|> 􏽥pmax implies that p∗ > 􏽥p + 􏽥pmax holds true,
which means an unhealthy trading market with extremely
high credit price and rarely occurs in practice (as seen later,
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Figure 4: Comparison of equilibrium link flow patterns between
the proposed and conventional probit-based SUE models.
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the case with |􏽥p − p∗|> 􏽥pmax could only occur when the
minimization of price gap is completely ignored in optimal
TCS design). Since there are few feasible solutions satisfying
F1 <EBmin or F2 > 􏽥pmax, it is safe to say that the two ob-
jectives are normalized to the interval [0, 1] by defining Fmax

1
and Fmax

2 as

F
min
1 � EBmin, (55)

F
max
2 � 􏽥pmax. (56)

With equations (53) through (56), problem (52) can be
rewritten as

min
κ,􏽥p

F(κ, 􏽥p, v) � (1 − λ)
F1(κ, 􏽥p, v) − EBSO

EBmin − EBSO
+ λ

F2(κ, 􏽥p, v)

􏽥pmax
.

(57)

-en, we move on to the solution algorithm to the
proposed BLBOP model in the next section.

4.3. Genetic Algorithm to Solve the BLBOP Problem. Due to
the complicated relationship between the recommended
credit price and corresponding equilibrium credit price
under a TCS and the approximation by the Monte Carlo
simulation method, as well as the nonconvexity of the bilevel
problem, it is extremely hard to develop an exact solution
algorithm to solve the proposed problem analytically.
-erefore, a heuristic method is preferred in designing the
optimal credit charging scheme as well as determining the
best choice of recommended credit price. In this paper, a
genetic algorithm (GA) is applied due to its extensive
generality, global perspective, and strong robustness.

-e decision variables of the upper level, i.e., 􏽥p and κ �

κa, a ∈ A􏼈 􏼉 are coded as a single chromosome
x � xj|j � 1, 2, . . . , |A| + 1􏽮 􏽯 (see Figure 5). A group of
chromosomes is first generated randomly, in which 􏽥p and
κa, a ∈ A are continuous variables within (0, 􏽥pmax] and
[0, κmax], respectively. Following the evaluation, selection,
crossover, and mutation operations, a new population of
chromosomes is generated at each iteration. After a given
number of iterations, the genetic algorithm will terminate
and return the best-found solution. -e process is illustrated
in Figure 6, where Npop, Ngen, Pcr, and Pmu denote the
population size, the maximum number of generations,
crossover probability, and mutation probability,
respectively.

5. Numerical Analysis

In this section, two numerical examples are presented to
investigate the features of the optimal TCS with recom-
mended credit price determined bymodel (57) with different
values of the weight. -e genetic algorithm-based procedure
is performed with Npop � 30, Ngen � 100, Pcr � 0.6,
Pmu � 0.15, and κmax � 10.0. -e algorithm was coded by
Matlab 8.6, and the test was carried out on a laptop with an

Intel(R) Core(TM) i7-6820HK CPU, 2.70GHz× 8, RAM
16G.

5.1. A Small Network. -e first numerical analysis is con-
ducted based on the same network given in Section 3.5. We
solved the proposed BLBOP problem for the small network
with different values of λ and β. -e results are given in
Table 3.

From the table, we can see that with higher weight on the
price gap, lower price gaps and economic benefits are ob-
served.With β � 0.1, it can be seen that the economic benefit
is less sensitive to the changes in weight values (the eco-
nomic benefit reduces about 1.2% while the price gap re-
duces about 79.5% as weight on the price gap changes from
0.2 to 0.8). Note that the maximum social welfare EBSO is
9727.1, which is very close to the values in the second
column, while the social welfare at UE state is 9245.7, which
is far smaller than the results in the table. It implies that we
could minimize the price gap without too much sacrifice in
social welfare in this case. However, this is not the case for
larger networks, as shown later.

As β increases to higher values, the system travel time
rises further away from EBSO and it becomes more sensitive
to the changes in weight values. Similarly, the price gap
obtained from the optimal solution also gets larger.
Meanwhile, the economic benefits and the price gaps in the
first and last rows do not change too much in either the case
of β � 0.5 or β � 1.0. -ese demonstrate that the increase in
perception variance could intensify the contradiction effect
between the two objectives, making it harder to balance the
goals.

We also investigate the total trading amounts and
trading value in the credit-tradingmarket (since the network
is small and simple, it is not difficult to track down the path
flow pattern through the link flows. Hence, the trading
amounts of credits are ready to obtain). We find that em-
phasis on minimizing the price gap could evoke more trades
in the market regardless of the value of β. However, no
obvious tendency is observed in the variation of trading
values.

5.2. 3e Sioux Falls Network. -en, we adopt a larger net-
work, the Sioux Falls network (as shown in Figure 7) for the
proposed BLBOPmodel. -e Sioux Falls network consists of
24 nodes, 76 links, and 528 OD pairs. -e demand function
also adopts the form in equation (49). In regard to the credit
scheme, we assume that the total amount of initially dis-
tributed credits is 361,100, and each traveler gets 10 credits.
Due to larger size of network, we reduce the parameter κmax
to 5.0.

-e BLBOPmodel is solved by varying the weight from 0
to 1 by 0.1 with β � 0.1 and β � 1.0. -e Pareto frontiers are
demonstrated in Figure 8. -e two dashed lines refer to the
economic benefit at SO and deterministic UE statuses (i.e.,
TCS is not implemented and naturally no perception error
on the travel cost exists), respectively. -e main findings are
presented as follows.
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First, we focus our attention on the extreme cases. From the
figure, it can be seen that when λ equals to 1.0, i.e., the goal in
terms of social welfare is completely ignored in the TCS design,
the economic benefit is even less than the UE level in either
cases. Nevertheless, it can be remarkably reduced to around
EBUE once the social welfare is taken into consideration.
However, as a cost, we must allow a nonnegligible price gap to
occur, which is different from the toy-network case.

On the other hand, when the objective of minimizing the
price gap is ignored in the TCS design, the maximized
economic benefit is still lower than EBSO regardless of the
perception variance.-is highlights the fact that the negative
effect of perception error in terms of credit price cannot be
entirely accommodated, even though we focus merely on the
social welfare.

Second, when the weight on price gap changes from 0.1
to 0.9, we can see that price gaps in all the cases are sig-
nificantly larger than those observed in the small network. It
indicates that as the size of the network increases, it is much
harder to achieve a zero price gap.

Furthermore, it is observed that the resulting price gaps
with higher perception variance are always larger (i.e., for
each value of λ, the blue point is always on the right of the
green square). However, the relationship of the resulting
system travel times with β � 0.1 and β � 1.0 is indefinite (i.e.,
for each value of λ, the blue point can be located either on the

upper or on the lower of the green square, see the two sets of
points regarding λ � 0.5 and λ � 0.6). In other words, a
larger perception error always guarantees a larger resulting
price gap, but it is not necessarily equivalent to a higher
economic benefit.

6. Two Implementation Issues

-e primary goal of this paper is to provide an efficient and
engineering-oriented tradable credit scheme for mobility
management considering perception error on credit price.
Although the effect of the proposed credit scheme has been
verified through numerical examples, there are still imple-
mentation issues that need to be dealt with in practice. In this
section, we shall discuss about two implementation issues
regarding model calibration and the selection of λ.

First, to characterize travelers’ attitudes toward the
recommended credit price and calibrate the distribution
form of users’ perception error, a sample survey or a virtual
situational experiment can be conducted among potential
travelers before implementation. For example, a similar
methodology in Yu [58] can be adopted to portray the price
perception for credit price, and user heterogeneities such as
income level and resident area can be incorporated and
further considered in the modeling framework. Moreover, it
is worth noting that the framework proposed in this paper

Initialize Npop, Ngen, Pcr, Pmu

Generate initial population

g = 1
g: = g + 1

p: = p + 1
p = 1

p > Npop g > Ngen
Solve the lower-level problem and

calculate the fitness

No
No

Yes

Yes

Perform reproduction, crossover,
and mutation

Report robust solutions

Figure 5: Structure of a chromosome.

|A| number of κa

Decision variables

Chromosome x

p~ κ1

x1 x2 x3

κ2 κ|A|–1

x|A|+1

κ|A|

x|A|

Figure 6: Flowchart of the genetic algorithm.
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can be easily extended to other distribution forms of user’s
perception error by changing the sampling principle in the
two-stage Monte Carlo simulation method.

Also worth noting is that the selection of the weighting
parameter λ over time. Particularly, in the very initial stage
after the implementation of the credit scheme, it is more
necessary to gain public acceptance rather than achieving a
target in terms of network efficiency. -erefore, in reality,
more emphasis should be placed on reducing the price gap
than the system travel time then. As the price gap is

controlled within a reasonable range, travelers’ perception
error on the credit price may decrease over time, and the
emphasis on price gap could be gradually transferred to
travel time.

7. Concluding Remarks and Future Research

In this paper, we examine the practicability of tradable credit
scheme (TCS) with recommended credit price in the initial
stages after its implementation. Assuming that travelers have
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Figure 7: -e Sioux Falls network.

Table 3: Numerical results for the small network.

λ
β � 0.1 β � 0.5 β � 1.0

EB G TA TV EB G TA TV EB G TA TV
0.2 9704.9 1.17 159.3 100.2 9683.6 1.73 175.5 181.8 9672.7 2.61 132.1 166.3
0.4 9653.3 0.74 231.7 162.3 9613.8 1.52 191.1 289.1 9604.2 1.79 154.3 93.8
0.5 9620.6 0.66 252.5 152.1 9535.1 1.27 206.6 433.5 9519.9 1.32 176.5 339.8
0.6 9599.7 0.39 298.7 322.8 9502.5 0.85 207.2 373.6 9382.4 0.92 210.4 436.9
0.8 9584.0 0.24 345.2 251.8 9420.5 0.34 323.7 254.3 9242.3 0.51 227.8 417.8
∗EB� economic benefit; G� price gap; TA� trading amounts; TV� trading value (�TA∗unit credit price).
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a perception error on the recommended unit credit price
released by central authority, a bilevel biobjective pro-
gramming model is established and solved by a genetic
algorithm. By determining the optimal credit charging
scheme with an appropriate recommended credit price, the
social welfare is maximized and the gap between the rec-
ommended credit price is minimized. Based on the nu-
merical results, the main findings are given as follows:

(i) With a given TCS, the realized credit price drops
down as the recommended price increases due to
the change in demand and supply of credits. Par-
ticularly, when the recommended price is suffi-
ciently high, the scheme can be nullified with a zero
credit price.

(ii) -e rise in perception variance could intensify the
contradiction effect between the two objectives,
making it harder to balance the goals in terms of
social welfare and public acceptability. Moreover, a
larger perception error always guarantees a larger
resulting price gap, but it is not necessarily equiv-
alent to a higher economic benefit.

(iii) We could minimize the price gap without too much
sacrifice in social welfare on small networks.
However, to maintain the effectiveness of a TCS
with recommended credit price for relatively larger
networks, or networks with realistic size, we must
allow a nonnegligible price gap to occur.

(iv) Emphasis on minimizing the price gap could evoke
more trades in the market regardless of the per-
ception variance. However, no regular trend is
found in the variation of trading values.

-ese findings can provide managerial insights for the
initial stages after implementation of a TCS. Future research
studies can be carried out in the following three aspects.
First, considering that restriction on car use or flow

redistribution is only needed for a small area of an urban
metropolis, it is burdensome to implement a charging
scheme over the entire transportation network. However,
the main difficulty of such a scheme is that the removal of
credit charge in the uncongested area may compound the
spatial inequity among travelers. One way to alleviate such
equity concern is to adopt an O-D-specific initial distri-
bution of credits. In such a case, the initial distribution acts
as a benefit term in the travel cost and should be considered
in solving the network equilibrium.

Second, as stated in Section 6, travelers’ perception er-
rors toward the credit prices are essentially time-dependent
and region-specific. Specifically, a day-to-day evolution
model, where a declining perception error and a time-
varying weighting parameter are considered, can be applied
for the former. While for the latter, we can categorize the
origin nodes into various classes according to their eco-
nomic and demographic features and adopt different per-
ception errors for different O-D pairs. In this way, we can
incorporate the heterogeneity in terms of regions where the
trips occur.

-ird, the modeling framework presented in this paper
still leave out some real-world features, such as user het-
erogeneity and asymmetric link flow interactions. To con-
duct these extensions, the modeling framework adopted by
Meng and Liu [53], Meng et al. [44], and Liu et al. [59] in the
context of congestion pricing can afford useful insights.
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