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We investigate the dynamic performance of traffic flow using a modified optimal velocity car-following model. In the car-
following scenarios, the following vehicle must continuously adjust the following distance to the preceding vehicle in real time. A
new optimal velocity function incorporating the desired safety distance instead of a preset constant is presented first to describe
the abovementioned car-following behavior dynamically. *e boundary conditions of the new optimal velocity function are
theoretically analyzed. Subsequently, we propose an improved car-following model by combining the heterogeneity of driver’s
sensitivity based on the new optimal velocity function and previous car-following model. *e stability criterion of the improved
model is obtained through the linear analysis method. Finally, numerical simulation is performed to explore the effect of the
desired safety distance and the heterogeneity of driver’s sensitivity on the traffic flow. Results show that the proposed model has
considerable effects on improving traffic stability and suppressing traffic congestion. Furthermore, the proposed model is
compatible with the heterogeneity of driver’s sensitivity and can enhance the average velocity of traffic flow compared with the
conventional model. In conclusion, the dynamic performance of traffic flow can be improved by considering the desired safety
distance and the heterogeneity of driver’s sensitivity in the car-following model.

1. Introduction

In recent years, many cities worldwide have experienced
traffic congestion and the accompanying traffic safety issues,
which have attracted considerable attention from numerous
scholars. Traffic models, such as car-following, cellular au-
tomation, gas kinetic, and hydrodynamic lattice models,
have been extensively studied to understand the complicated
constitution behind the traffic congestion in traffic flow
[1–4].

Car-following model is a favorable microscopic traffic
model to describe vehicles’ longitudinal interactions on the
road in studying traffic flow. In the early 1950s, Reuschel [5]
and Pipes [6] first developed the stimulus-response model,
which assumed that the driver attempted to adjust the
following vehicle’s velocity for consistency with that of the
preceding vehicle. Kometani and Sasaki [7] proposed a
safety distance car-followingmodel for a driver tomaintain a

reasonable safety distance for avoiding collisions when they
cannot fully predict the movement of the preceding vehicle.
Kikuchi and Chakroborty [8] used fuzzy logic inference
theory to establish an artificial intelligence car-following
model. Newell [9] introduced the velocity function into the
car-following model by assuming a corresponding rela-
tionship between the velocity and the space headway. Later,
Bando et al. [10] proposed a popular optimal velocity car-
following model (OVM), which has successfully described
the stop-and-go phenomenon, traffic instability, and traffic
congestion. In 2000, one popular model using desired
measures was the intelligent driver model proposed by
Treiber et al. [11]. More recently, arising high-fidelity traffic
data provide an opportunity to model car-following be-
havior directly from a large number of field data by using
machine learning techniques [12]. Among these models, the
OVM is generally used to explore the traffic flow properties
because it is straightforward and descriptive.
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Many scholars are devoted to investigating vehicles’
longitudinal interactions as inspired by the OVM for alle-
viating traffic congestion and improving traffic flow stability.
Helbing et al. [13] presented a generalized force model
(GFM) by considering the negative velocity difference based
on OVM. However, Treiber et al. [11] argued that the OVM
and GFM could not explain why the following vehicle will
not brake if the preceding vehicle is much faster even if its
space headway is smaller than the safe distance. Jiang et al.
[14] put forward a full velocity difference model (FVDM)
based on the GFM by considering the negative and positive
differences. Subsequently, many extended car-following
models have been presented by incorporating different
factors, such as the preceding vehicle’s velocity [15, 16],
multiple preceding vehicles’ velocities [17], the velocity
difference [18], the acceleration difference [19], and the
historical velocity difference [20].

Vehicle distance is a direct stimulus that can typically
trigger the driver’s response during car-following. Nagatani
et al. [21] believed that the following vehicle’s behavior is
affected by the space headway with the preceding vehicle and
the vehicle interaction before the next vehicle ahead. Lenz et al.
[22] established an optimal velocity function by calculating the
average space headway of multiple preceding vehicles and
found that the proposed model can improve the traffic flow
stability. Ge et al. [23] developed a similarly car-following
model by assigning different weights to multiple preceding
vehicles’ space headway. *e analysis results showed that the
traffic flow became stable. On this basis, Nakayama [24] ex-
plored the backward-looking optimal velocity model with
consideration of the immediately following vehicle’s space
headway. Later, Hasebe [25] investigated the stability of
uniform flow and the response to a disturbance in the linear
approximation using the information of an arbitrary number
of vehicles that precede or follow. In addition to space
headway, the safety distance is an important indicator. No-
tably, Xin et al. [26] explored the performance of traffic flow by
considering the variable time headway policies to modify the
safety distance in the optimal velocity function.*ey identified
that variable gap policies with proper parameters directly
contribute to improving the traffic flow’s stability. Cheng et al.
[27] put forward that the optimal velocity function’s safety
distance should be a variable. *us, they modified it into a
random statistic to extend the model. *e safety distance also
plays an essential role in the car-following model. However,
less research has focused on this issue.

More recently, the driver’s characteristics have been
found to have a significant influence on car-following be-
havior. Liu et al. [28] demonstrated that considering the
driver’s short-term memory’s predictive action could im-
prove traffic flow stability in the car-following behavior.
Furthermore, Zhai et al. [29] presented an extended con-
tinuum model by considering the optimal velocity changes
with memory. *e analysis results showed that traffic effi-
ciency was improved and energy consumption was mini-
mized. Zhai et al. [30] incorporated the driver’s self-
anticipation characteristics into the OVM and analyzed the
effect of the driver’s predictive behavior on traffic flow.
Other modified models have introduced drivers’

characteristics, such as aggressiveness, cautious features [31],
and time delay [32]. *ese studies have attempted to explore
their advances in describing human driving behavior during
car-following. However, different drivers have different
driving styles and reactions [33, 34]. Ossen et al. [35] used a
large sample of trajectory observations to explore the driving
behaviors’ heterogeneity. Schultz et al. [36] identified that
log-normal and normal distribution alternatives were very
effective in representing the full distribution of driver’s
sensitivity. Makridis et al. [37] showed that the heterogeneity
of the vehicle-driver system could affect traffic dynamics and
reproduce traffic oscillations. *ese existing studies can
provide a useful reference and help for subsequent research.
However, research on modeling the car-following behavior
based on the heterogeneity of driver’s sensitivity is limited to
our knowledge.

According to the research mentioned above, the dy-
namic safety distance and the heterogeneity of driver’s
sensitivity have rarely been considered in previous car-
following models. *e optimal velocity function’s safety
distance is always assumed to be constant and independent
of velocity. In reality, the safety distance changes dynami-
cally depending on the real-time velocity of the vehicle,
which is based on the driver’s estimation of the realistic
traffic situation. *e driver must adjust the safety distance to
the preceding vehicle in real time to avoid a potential col-
lision. *is process involves two critical features: one is that
the safety distance varies in real time, and the other is that
the individual driver’s sensitivity has unobserved hetero-
geneity. In most studies, the driver’s sensitivity is assumed to
be a constant for convenience. *is assumption is not
practical for the driver’s characteristics. In reality, it cannot
be identical for all drivers. *is study aims to explore the
effect of desired safety distance and the heterogeneity of
driver’s sensitivity on the car-following behavior to reveal a
more realistic and reasonable traffic flow performance.
*erefore, an improved car-following model considering the
desired safety distance and the heterogeneity of driver’s
sensitivity is proposed based on OVM. *e dynamic per-
formance of the proposed car-following model on the sta-
bility of traffic flow is explored.

*e rest of the paper is organized as follows. In Section 2,
a new optimal velocity function is first given. *en, an
improved car-following model that combines the hetero-
geneity of driver’s sensitivity is proposed based on the OVM.
*e linear analysis of the stability condition of the improved
model is presented in Section 3. *e numerical simulations
are conducted to explore the performance of the improved
model in Section 4. Conclusions are provided in Section 5.

2. Modeling

2.1. Previous Car-Following Models. In 1961, Newell [9]
assumed that the vehicle’s velocity at time t is some function
of the space headway at time t − Δt, and a particular velocity-
space headway relation is shown in equation (1).

vn(t) � Gn xn−1(t − Δt) − xn(t − Δt)( , (1)
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where vn(t) is the velocity of the nth vehicle at time t,
xn−1(t − Δt) − xn(t − Δt) is the space headway, andGn is an
exponential function. *e model establishes a function of
velocity and space headway. However, the acceleration tends
toward infinity when the vehicle starts accelerating.

In 1995, Bando et al. [10] proposed an optimal velocity
model to overcome Newell’s excessive acceleration problem.
*e authors concentrated on the dynamic evolution of
congestion, which is formulated as follows:

an � κ V Δxn(t)(  − vn , (2)

where an and vn are the acceleration and velocity of vehicle n,
respectively; Δxn(t) is the space headway of vehicle n; κ is a
constant representing the driver’s sensitivity. *e optimal
velocity V(Δxn(t)) is a function that depends on the fol-
lowing distance of the preceding vehicle. V(Δxn(t)) can be
expressed as equation (3).

V Δxn(t)(  �
vmax

2
tanh (Δ)xn(t) − hc(  + tanh hc , (3)

where vmax is the maximum velocity and hc is the safety
distance, which is a constant in the model. However, the
safety distance should be updated dynamically in real car-
following scenarios. *e drivers need to adjust the following
vehicle’s velocity according to the desired safety distance,
which is estimated by their driving experience and the
preceding vehicle’s motion. A significant variation could be
triggered by the heterogeneity of the diver’s sensitivity. *is
performance cannot be well displayed in equations (2) and
(3).*erefore, exploring an improved car-followingmodel is
necessary.

2.2. NewOptimal Velocity Function. In general, drivers want
to maintain the desired safety distance hv in real time to
avoid accelerating and decelerating frequently. A driver’s
decision to accelerate or decelerate is determined by the
difference between the space headway and the desired safety
distance, which can be expressed as Δxn(t) − hv in coinci-
dence with a part of equation (3). When Δxn(t)> hv, the
following vehicle accelerates and keeps up with the vehicle in
front. When Δxn(t)< hv, the following vehicle decelerates to
avoid a collision. When Δxn(t) � hv, the following vehicle
maintains a constant velocity. *us, the desired safety dis-
tance’s accuracy directly determines the acceleration output,
which is the core of the car-following model.

Calculating the desired safety distance is crucial. Velocity
is the most direct and essential factor that affects the safety
distance between vehicles. Instead of a preset constant, the
desired safety distance should depend on the vehicles’ ve-
locity in real time during car-following. *e following ve-
hicle’s driver should keep the desired safety distance for
avoiding traffic collisions during the preceding vehicle
emergency braking [38]. *e desired safety distance can be
shown in Figure 1.

*e desired safety distance can be calculated as equation
(4):

hv � xn−1 − xn � d1 + d2 + h0 − d3. (4)

Equation (4) can be further expressed as follows:

hv � vnt0 +
v
2
n

2amax
−

v
2
n−1

2amax
+ h0, (5)

where xn−1 and xn denote the positions of the preceding and
following vehicles, respectively; hv denotes the desired safety
distance; d1 denotes the distance of vehicle n within the
response time t0, which is generally in the order of 1s [39].
*is threshold is higher than the 99% quantile of the ex-
pected response time during the car-following; thus, it can
meet the driver’s safety requirements; d2 denotes the braking
distance of vehicle n; d3 denotes the braking distance of
vehicle n − 1; h0 denotes the parking safety distance; vn−1 and
vn are the velocities of the preceding and following vehicles,
respectively; and amax is the maximum braking deceleration.
As shown in Figure 1, it is more realistic to car-following
behavior as the desired safety distance updates depending on
the vehicle’s velocity. *erefore, we attempt to replace the
constant hc in the optimal velocity function equation (3)
with hv in equation (5). In this way, the new optimal velocity
function depends on the space headway, and the desired
safety distance can be expressed as follows:

V Δxn(t), hv(  �
vmax

2
tanh Δxn(t) − hv(  + tanh hv(  .

(6)

*en, the property of the optimal velocity equation (6)
should be discussed. *e partial derivative is obtained
concerning Δx, which can be obtained as follows:

zV Δxn(t), hv( 

zΔ xn(t)
�

vmax

2
1 − tanh2 Δxn(t) − hv(  . (7)

Similarly, the partial derivative with respect to hv is
obtained as follows:

zV Δxn(t), hv( 

zhv

�
vmax

2
2 + tanh2 Δxn(t) − hv(  − tanh2 hv(  .

(8)

From equations (7) and (8), we can obtain equations (9)
and (10):

zV Δxn(t), hv( 

zΔ xn(t)
≥ 0, (9)

zV Δxn(t), hv( 

zhv

≥ 0. (10)

From equations (9) and (10), the following properties
can be inferred:

(i) V(Δxn(t), hv) is a monotonically increasing
function.

(ii) *e change rate of the optimal velocity is related to
the space headway and the desired safety distance.

(iii) When Δxn(t)⟶∞, the optimal velocity
V(∞) � (vmax/2)[1 + tanh(hv)]. When hv≫ 0, the
optimal velocity tends to be maximized, indicating
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that the optimal velocity function has an upper
bound.

2.3. Heterogeneity of Driver’s Sensitivity. Heterogeneity of
driver’s sensitivity plays an essential role during car-fol-
lowing due to its enormous influence on traffic flow. Dif-
ferences between the longitudinal driving behaviors of
drivers determine the flow-dependent distribution of ve-
hicles over lanes to a large extent [35]. Although several
traffic simulation models have considered multiple driver
classes to accurately describe heterogeneous perception and
preferences, the most widely used car-following models still
assume the driver’s sensitivity as constant. Particularly,
study results regarding these parameter values are incon-
sistent. Some are listed in Table 1, such as those of Bando
et al. [10], Helbing et al. [13], Jiang et al. [14], and Ge et al.
[40].

Although the heterogeneity of driver’s sensitivity has a
significant effect on traffic instability and congestion, it is not
straightforward for modeling because of its stochastic na-
ture. *e sensitivity varies with the extent of external
stimulation. It should be a random parameter that depends
on the driver’s characteristics within a specific range. A
particular distribution might describe the parameter. Song
et al. [20] pointed out that the driver’s sensitivity corre-
sponds to the inverse of the response time. *is relationship
is also consistent with the classical differential equation of
the linear car-following model [6]. *erefore, we quantify
the driver’s sensitivity with the inverse of the response time.
*e driver’s sensitivity equals the inverse of the response
time; that is, κ � 1/τ, where τ is the response time
distribution.

*e response time is a critical controlling factor of the
driving performance of the vehicle.*e value of the response
time is also individually varying and bounded [41]. *e
information on response time is available in real traffic.
Research has shown that response times obey a log-normal
distribution [42]. According to the relationship that the
driver’s sensitivity corresponds to the inverse of the response
time, we conclude that the driver’s sensitivity is also subject

to the log-normal distribution to account for its individual-
specific heterogeneity. *is finding is consistent with the
results of Schultz et al. [36], which consider generating an
input parameter from a log-normal distribution of central
tendency and dispersion in traffic simulation models. *e
distribution of sensitivity parameters may better reflect real
traffic behavior than previous studies and have a practical
physical meaning. According to empirical analysis, the re-
sponse time obeys the log-normal distribution of equation
(11). η and ξ are the two parameters that define the shape of
the distribution. *e statistical experience values of μ and σ
are 1.31 and 0.61, respectively [42].

f(τ) �
1

���
2π

√
ξτ

exp
ln(τ) − η

ξ
 

2
⎡⎣ ⎤⎦,

ξ �

����������

ln 1 +
σ2

μ2
 




,

η � ln
μ

1 + δ2/μ2 
⎛⎝ ⎞⎠.

(11)

2.4. Improved Car-Following Model. According to the
aforementioned idea, an improved car-following model that
considers desired safety distance and the heterogeneity of
driver’s sensitivity is proposed and hereinafter referred to as
the dynamic safety distance model (DSDM). *erefore, the
DSDM is expressed as equations (5), (6), (11), and (12):

an � κ(f(τ)) V Δxn(t), hv(  − vn . (12)

For equation (12), the following notes are provided:

(i) *e improved model is governed by a new optimal
velocity function, which is a function of the pa-
rameters of the maximum velocity, desired safety
distance, and space headway.*e maximum velocity
is generally constant; thus, the optimal velocity
depends on the desired safety distance and the space

Car n

Distance of car n within 
response time t0 Braking distance of car n

Stop position of car n
Stop position

 of car n–1

Braking distance of car n–1

Desired safety distance

Parking safety 
distance

Car n

xn (t) xn–1 (t)

d1 d2

d3

hv

h0

Car n Car n–1

Car n–1
Start braking of car n–1

Figure 1: Schematic of the desired safety distance of the car-following scenarios during emergency braking.

4 Journal of Advanced Transportation



headway. Specifically, when the velocity increases,
the desired safety distance increases synchronously.
*e desired safety distance varies with the variation
in driving velocity. *e improved model can better
reveal the dynamic performance of car-following
behavior than the conventional model.

(ii) *e driver’s sensitivity has heterogeneity. *e sen-
sitivity parameter of the improved model is not
constant. *e log-normal distribution is considered
for analysis of the driver’s sensitivity during car-
following.

3. Linear Stability Analysis

Linear stability theory is applied to analyze the traffic flow
model for obtaining the improved model’s stability condi-
tion. We consider a system of n vehicles on a unidirectional
single-lane ring road of length L, and the traffic system is
homogeneous. *e vehicles are uniformly distributed with a
constant space headway hs and velocity vs when the car-
following system approaches the steady state. *en, the
position of each vehicle in the steady-state traffic flow system
at time t is

x
0
n(t) � hsn + V hs( t. (13)

Assuming that the vehicle n is disturbed, the position
updates

xn(t) � x
0
n(t) + yn(t). (14)

Equation (14) can be written as follows:

yn(t) � xn(t) − x
0
n(t). (15)

*e first and second derivatives of equation (15) are as
follows:

_yn(t) � _xn(t) − _x
0
n(t),

€yn(t) � €xn(t).
(16)

*e steady-state flow can accord with the following
conditions:

Δ _xn � 0;

xn � 0;

Δxn � hs;

_xn � vs;

V Δxn, hv(  � V hs(  � vs.

(17)

*en, the generic expression of the steady-state velocity
is given by the following equation:

vs �
vmax

2
tanh hs − hv(  − tanh hv(  . (18)

Given that the steady-state value of Δ _xn is 0, an
equivalent optimal velocity function is defined and given by
equation (19) with hv0 � vst0 + h0 to facilitate the linear
stability analysis. hv0 is the safety distance in steady state.

v(Δx) �
vmax

2
tanh Δx − hv0(  − tanh hv0(  . (19)

Each vehicle has an identical velocity, and the braking
distances of the preceding and following vehicles are equal.
According to equation (5), the desired safety distance is
derived as follows:

hv � v hs( t0 + h0 + _ynt0 � hv0 + _ynt0. (20)

In terms of the method of Xin et al. [26], by substituting
equations (13), (14), and (20) into equation (6) and trans-
forming the result with equation (19), then the optimal
velocity can be derived as follows:

V Δxn, hv(  � V Δx0
n + Δyn  � V hs + Δyn( 

� v hs + Δyn − _ynt0(  − v − _ynt0( .
(21)

By expanding v(hs + Δyn − _ynt0) around hs and
v(− _ynt0) around 0, the following equation can be obtained:

V hs + Δyn(  � v hs(  + v′ hs(  Δyn − _ynt0(  + v′(0) _ynt0,

(22)

where v′(hs) denotes the derivative of the optimal velocity at
hs and the same is v′(0) which denotes the derivative of the
optimal velocity at h0.

By introducing equations (13)–(16), (21), and (22) into
equation (12), the linearized equation (12) can be expressed as

€yn � κ v′ hs(  Δyn − _ynt0(  + v′(0) _ynt0 − _yn , (23)

with Δyn(t) � yn−1(t) − yn(t) and Δ _yn(t) � _yn−1 − _yn(t).
Let v′(hs) � r1; v′(0) ≈ 0, and then, equation (23) can be
written as follows:

€yn � κ r1Δyn − r1t0 + 1(  _yn . (24)

By expanding yn(t) � ejαkn+zt, the following equations
are derived:

_yn(t) � ze
jαkn+zt

,

€yn(t) � z
2
e

jαkn+zt
,

Δyn(t) � z
2
e

jαkn+zt
e
ακj

− 1 .

(25)

Substituting equation (25) into equation (24) yields

z
2

+ z κ r1t0 + 1(   − κr1 e
ακj

− 1  � 0. (26)

By substituting z � λ + jω into equation (26), the fol-
lowing equation is derived:

Table 1: Driver’s sensitivity in different models.

Model Bando et al. (OVM) Helbing et al. (GFM) Jiang et al. (FVDM) Ge et al. (Ge’s model)
κ 1 0.85 0.41 2
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λ2 − ω2
+ 2λωj +(λ + ωj) × κ × r1t0 + 1(  − κr1 e

ακj
− 1  � 0.

(27)

Let λ � 0 to obtain the following:

−ω2
− κr1 e

ακj
− 1  + jωκ r1t0 + 1(  � 0. (28)

*e real and imaginary parts of equation (28) are both 0,
which is the condition of the solution. It can be solved as
follows:

κ � r1
1 + cos αk( 

r1t0 + 1( 
2 . (29)

Let αk⟶ 0 to obtain the critical stability condition of
the proposed car-following model:

κ> κs �
2r1

r1t0 + 1( 
2. (30)

*is stable condition is consistent with that in the study
by Peng et al. [43] when t0 � 0. In equation (30), the vertex
gradually decreases, and the stability domain gradually in-
creases with the increase in t0. *e critical stability curves for
the different model are shown in Figure 2. *e diagram
depicts that the stability region of the proposed model in-
creases compared with that of the OVM. Furthermore, the
instability decreases with the increment in t0 because the
desired safety distance increases synchronously. *at is,
larger t0 corresponds to longer desired safety distance and
more benefits of the following vehicle adjustment velocity.

4. Numerical Simulation

In this section, the numerical simulation experiments for the
traffic flow evolution with a small initial disturbance are
discussed under open boundary conditions. *e simulation
conditions in the study of Bando et al. [10] are adopted to
facilitate comparative analysis. *e parameters are deter-
mined by taking vehicle number n � 100 and circuit length
L � 200 and vmax � 2. At the initial time, all vehicles are
uniformly distributed with the identical space headway on
the road. A small disturbance is exerted on the designated
vehicle. *e initial conditions are supposed as follows:

Δxn(0) � 2, for, n≠ 49, 50,

Δxn(0) � 2 − 0.5, for, n � 49,

Δxn(0) � 2 + 0.5, for, n � 50.

⎧⎪⎪⎨

⎪⎪⎩
(31)

In the simulation, the position and velocity of each
vehicle are updated using the following strategies:

vn(t + Δt) � vn(t) + anΔt,

xn(t + Δt) � xn(t) + vn(t)Δt +
1
2

anΔt
2
,

(32)

where the time step of the simulation is Δt � 0.1s.

4.1. Dynamic Performance of DSDM. In this section, the
effect of the DSDM on spatial-time evolution of velocity and

space headway is invested by numerical simulation. Equa-
tions (4) and (5) show that more extensive t0 indicates a
larger desired safety distance. According to the stability
condition equation (30), more extensive t0 means a larger
stability region. However, a considerable response time is
not beneficial to traffic efficiency. *erefore, we attempt to
discuss the performance of the DSDM for different values of
t0 � 0, 0.5, 0.7, and 1.0 when κ obeys a log-normal
distribution.

Figure 3 indicates that the temporal and spatial evolu-
tions of velocities gradually become stable, and the oscil-
lation range is reduced as t0 equals 0.5, 0.7, and 1.0.
Figure 3(d) plots that the amplitude of the velocity waves
dissipates after time t � 1500 when t0 equals 1.0. *erefore,
increasing the value of t0 could improve the stability of the
traffic flow and alleviate traffic congestion. In other words,
adequate desired safety distance can improve the stability of
the traffic flow.

However, the steady velocity tends to decrease as the
value of t0 increases. For instance, Figure 3 shows that the
stable velocities are approximately 1.9, 1.6, 1.5, and 1.3 when
t0 values are 0, 0.5, 0.7, and 1.0, respectively. *erefore, a
longer response time implies lower traffic efficiency. Driving
experience also shows that the longer the driver’s reaction
time is, the less favorable it is to keep driving at high velocity.
*erefore, the value of the response time t0 should be as large
as possible within relatively small bounds to enhance traffic
stability.

Figure 4 shows consistency with Figure 3. *e fluctua-
tion of the space headway is also reduced with the increase in
t0. When t0 � 1.0, the curve of the space headway becomes
stable. *e traffic flow with larger t0 is more stable.

*e abovementioned analyses reveal that the amplitude
of velocity and space headway profiles gradually stabilizes
with the increase in t0. *e parameter t0 equal to 1.0 is
approximate to the 99% quantile of the actual expected
response time 0.81 [42]. *erefore, DSDM adopts t0 � 1 to

k

Stable

Unstable

OVM
DSDM t0 = 0

DSDM t0 = 0.5

DSDM t0 = 0.7
DSDM t0 = 1.0

0.0

0.5

1.0

1.5

2.0

2 4 60
Space headway

Figure 2: Critical stability curves for the different models: the
parameter of the OVM is hc � 2; the parameters of the DSDM are
hv when t0 � 0, 0.5, 0.7, 1.0.
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ensure traffic stability and efficiency. In conclusion, DSDM
with proper parameter contributes to the improvement in
the traffic flow stability and the avoidance of the unstable
traffic phenomenon.

4.2. Comparative Analysis of DSDM and OVM

4.2.1. Influence of the Desired Safety Distance. In this sec-
tion, the influence of the desired safety distance on the

evolution of velocity and space headway is first discussed.
*e simulation conditions are the same as those in the study
of Bando et al. [10], and the parameters are listed in Table 2.
Notably, the parameter κ � 1 is set in different models in
order to analyze the influence of the desired safety distance.

Figures 5 and 6 illustrate the velocity and the space
headway profiles of different car-following models at time
step t� 100, 500, 1500, and 3000. Figure 5(a) indicates that
the vehicles stop and go and the velocities fluctuate in the
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Figure 3: Temporal and spatial velocities when t0 � 0, 0.5, 0.7, and 1.0. (a) t0 � 0. (b) t0 � 0.5. (c) t0 � 0.7. (d) t0 � 1.0.
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Journal of Advanced Transportation 7



range of [0, 2] after disturbance in the OVM. Figure 5(b)
shows that the propagation of disturbance gradually con-
verges over time in the DSDM. *e velocities fluctuate
within a small range from 1.21 to 1.25 and finally stabilize
around the average velocity of 1.23.

*e profile of Figure 6 is consistent with that of Figure 5.
Figure 6(a) indicates that the oscillation amplitude of space
headway gradually increases in the OVM, and it ranges from
0 to 4. However, Figure 6(b) suggests that the oscillation
amplitude of the space headway profile is relatively small
considering the desired safety distance. *e space headway
fluctuates from 1.95 to 2.10 and can quickly stabilize at the
approximate average value of 2.

*e profiles of Figures 5 and 6 show that considering the
desired safety distance can effectively suppress traffic

congestion and improve traffic flow stability. *e reason is
that the optimal velocity output is based on the function of
the space headway and the safety distance. *e safety dis-
tance in the OVM is a preset constant and deviates from the
actual value as the velocity changes. However, the desired
safe distance in the DSDM is updated according to velocity,
and this condition can result in a smaller deviation from the
real-time space headway than that of the OVM. *erefore,
the DSDM can output a more smooth optimal velocity to
improve the stability of the traffic flow.

4.2.2. Influence of the Driver’s Sensitivity. In this section, the
DSDM and the OVM are compared to analyze the effect of
the driver’s sensitivity on velocity and space headway

Table 2: Parameters of the numerical simulation experiment when κ is constant.

Model κ t0 Safety distance

OVM 1 — 2
DSDM 1 1 hv
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Figure 5: Profiles of velocities at time step t� 100, 500, 1500, and 3000 when κ is a constant. (a) OVM. (b) DSDM.
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Figure 6: Profiles of space headway at time step t� 100, 500, 1500, and 3000 when κ is a constant. (a) OVM. (b) DSDM.
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evolution on the basis of Section 4.2.1. *e simulation
conditions are the same as those in the study of Bando et al.
[10]. *e driver’s sensitivity κ obeys the log-normal distri-
bution. *e parameters are listed in Table 3.

Figure 7(a) displays the velocity profiles when the
driver’s sensitivity in the OVM obeys the log-normal dis-
tribution. Compared with Figure 7(b), the velocity oscilla-
tion frequency in Figure 7(a) is strengthened, the oscillation
range is [0, 2], the vehicles stop and go, and apparent traffic
congestion is observed. *is result can be explained that the
extent to which drivers react to their respective leaders is
actually changed by allowing sensitivity parameters to differ
between drivers. Figure 7(b) shows that the velocity of ve-
hicles changes smoothly after being disturbed. *e velocity
fluctuates in the interval of [1.15, 1.35] and finally stabilizes
in a small range around 1.23. *e average velocity of the
DSDM is 28% higher than that of the OVM.*is finding can
be explained as follows: the DSDM can keep a real-time
desired safe distance and prevent the propagation of dis-
turbance, which results in reducing the total frequency of
vehicle stop and go. *is condition is consistent with that of
the jam-absorption driving strategy of He et al. [44].
Meanwhile, the intensity of deceleration has decreased.
Furthermore, less possibility of being captured by traffic jam
has the potential of improving traffic efficiency.

Moreover, the heterogeneity of driver’s sensitivity will
aggravate the disturbance of OVM, but it can be suppressed
in the DSDM. *is result is reasonable given that not only
the extent to which drivers react to their respective leaders is
made driver-dependent but also the desired safety distance
drivers need to react. Real-time desired safety distance can

be less of a deviation from the space headway than constant
safety distance, which neutralizes the oscillation caused by
the heterogeneity of the driver’s sensitivity. In conclusion,
the heterogeneity of driver’s sensitivity can be compatible in
the DSDM but not in OVM.

Figure 8(a) displays the space headway profiles when the
driver’s sensitivity in the OVM obeys the log-normal dis-
tribution. *e oscillation interval of the space headway is
[−2, 6], the oscillation amplitude is large, and the space
headway is less than zero at some points. *e phenomenon
has been caused by the heterogeneity of driver’s sensitivity,
which indicates that the OVM cannot adapt to the het-
erogeneity. However, the amplitude of space headway
fluctuation decreases to the interval of [1.8, 2.3], as shown in
Figure 8(b), and the curves become more stable after time
step 1500. *is finding illustrates that the DSDM has good
compatibility with the heterogeneity of driver’s sensitivity
because the DSDM allows the driver to maintain a more
reasonably safe distance in real time to avoid collisions, but
the OVM cannot. *e inability of the driver to precisely
predict the safety distance is addressed. Moreover, less
deviation from the space headway suppresses the distur-
bance caused by the heterogeneity of the driver’s sensitivity.
In summary, the DSDM can adapt to the heterogeneity of
driver’s sensitivity and suppress traffic congestion.

Similarly, Figures 7(b), 5(a), 8(b), and 6(a) are compared.
*e results show that the oscillation intervals of the velocity
and space headway of the DSDM at different time steps are
smaller than those of the conventional OVM. *e steady-
state velocity of Figure 7(b) is higher than that of Figure 5(a).
As observed, the performance of the DSDM is better than
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Figure 7: Profiles of velocities at time step t� 100, 500, 1500, and 3000 when κ obeys log-normal distribution. (a) OVM. (b) DSDM.

Table 3: Parameters of numerical simulation experiment when κ obeys log-normal distribution.

Model κ t0 Safety distance

OVM κ (f(τ)) — 2
DSDM κ (f(τ)) 1 hv
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that of OVM. DSDM can improve traffic stability, alleviate
traffic congestion, and be more compatible with the het-
erogeneity of driver’s sensitivity than the OVM.

5. Conclusions

*e driver needs to continually adjust the following distance
to the safety distance according to the driver’s driving ex-
perience during car-following. To quantify the above-
mentioned behavior dynamically, we modified the constant
safety distance in the optimal velocity function to a dynamic
desired safety distance. *en, we established a new optimal
velocity function. *e boundary conditions of the new
optimal velocity function were analyzed theoretically. *e
driver’s sensitivity was then set to obey the log-normal
distribution to describe the driver’s heterogeneity. *en, the
improved car-following model considering the desired
safety distance and the heterogeneity of driver’s sensitivity
was proposed.

*eoretic analytical and numerical simulation methods
were used to explore the performance of the improved
model. *e linear stability criterion of the improved model
was investigated. Numerical simulation was performed to
study the properties of the DSDM. *ese results are sum-
marized as follows:

(i) *e DSDM can suppress the propagation and
amplification of traffic congestion and improve
traffic flow stability.

(ii) *e temporal and spatial velocities and space
headway profiles of the DSDM are smoother than
those of the OVM. Less traffic stop-and-go phe-
nomenon could be found. *e average velocity of
traffic flow in DSDM is enhanced synchronously.

(iii) Meanwhile, the desired safety distance and the
heterogeneity of driver’s sensitivity are allowed in
DSDM. *is case is consistent with the realistic
scenarios where the driver of the following vehicle
continuously adjusts the safety distance to the
preceding vehicle by some criteria.*emaintenance

of the desired safety distance neutralizes the dis-
turbance caused by the heterogeneity of driver’s
sensitivity. Overall, theoretical analysis and nu-
merical simulation show that the DSDM can still
improve traffic stability while maintaining com-
patibility with the heterogeneity of driver’s
sensitivity.

*is research contributes to modeling realistic longi-
tudinal driving behaviors with traffic stability and individual
heterogeneity. However, quantifying the heterogeneity of
driver’s sensitivity with response time distribution cannot be
very satisfactory. *e driver’s sensitivity is also related to
other factors, such as space headway and speed.More precise
quantification of this parameter is essential. In addition, we
investigate the dynamic performance of the improved model
through numerical simulation. More field observation data
should be used to test the reliability of the improved model.
Particularly, calibrating and validating car-following models
containing the heterogeneity of driver’s sensitivity will be
challenging [45]. *is research area would contribute sub-
stantially to better understanding of the dynamic perfor-
mance of car-following systems.
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