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Lane detection plays an essential part in advanced driver-assistance systems and autonomous driving systems. However, lane
detection is affected by many factors such as some challenging traffic situations. Multilane detection is also very important. To
solve these problems, we proposed a lane detection method based on instance segmentation, named RS-Lane. 'is method is
based on LaneNet and uses Split Attention proposed by ResNeSt to improve the feature representation on slender and sparse
annotations like lane markings. We also use Self-Attention Distillation to enhance the feature representation capabilities of the
network without adding inference time. RS-Lane can detect lanes without number limits. 'e tests on TuSimple and CULane
datasets show that RS-Lane has achieved comparable results with SOTA and has improved in challenging traffic situations such as
no line, dazzle light, and shadow. 'is research provides a reference for the application of lane detection in autonomous driving
and advanced driver-assistance systems.

1. Introduction

Lane detection plays a vital role in autonomous driving.
Reliable lane detection can help autonomous driving sys-
tems to make the right decisions. Lane detection algorithms
get to be a challenging task due to many factors such as the
wide variety of lane markings, the complex and changeable
road conditions, and the inherent slender features of lane
markings. In this paper, we proposed a lane detection
method based on LaneNet [1] using Split Attention pro-
posed by ResNeSt [2] and Self-Attention Distillation (SAD)
[3] to improve the feature representation on the slender and
sparse annotations like lane markings.

'e current lane detection methods can be roughly
divided into two kinds: one is based on traditional computer
vision and the other one is based on deep learning. Most of
the traditional detection methods rely on extracting a certain
feature to detect lanes such as color features [4–6], edge
features [7, 8], geometric features [9–11], and so on. Also,
they are possibly combined with Hough Transform [12] and

Random Sample Consensus (RANSAC) [13, 14]. 'ese
methods are simple and efficient, but they need to manually
adjust the parameters. Although they can perform well when
working in normal situations, they cannot adapt to situa-
tions with different conditions such as lighting and
occlusion.

Most deep learning methods are based on Convolutional
Neural Network (CNN) [1, 15, 16]. With the development of
CNN, more and more theories and structures have been
proposed. 'ese advanced theories are also used in lane
detection, such as attention mechanism [3], atrous convo-
lution [17], semantic segmentation [17–19], instance seg-
mentation [20, 21], and so on. Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) [22] are also
used to detect lanes in continuous frames.

Although these methods have good performance in most
normal situations, there are still some limitations. First of all,
most methods can only detect a fixed number of lanes.
Secondly, due to the slenderness of the lane, the number of
background pixels is far greater than the number of lane
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pixels. Learning such features could be very difficult. Also,
some situations have few visual clues or even no clue at all,
such as no line, shadow occlusion, and complex lighting
conditions. Under these situations, detecting the lanes from
the picture could be very tricky.

To solve the above problem, we use the framework
proposed by LaneNet [1], using pixel embedding [23], to
achieve instance segmentation so that our method can detect
lanes without number limits. We use the Self-Attention
Distillation (SAD) [3] mechanism and Split Attention
proposed by ResNeSt [2] to improve the feature represen-
tation on the slender and sparse annotations like lane
markings. Meanwhile, SAD would not increase the inference
time of the model. 'e results on TuSimple dataset and
CULane dataset show that our method is comparable with
existing methods in normal situations. Above all, our
method shows better improvement in situations with few
visual clues, such as no line, shadow, and dazzle light.

Our contributions are summarized as follows:

(i) We use Split Attention to improve the feature
representation of the network on the slender and
sparse annotations like lane markings.

(ii) We use the distillation and attention mechanism of
SAD to further improve the ability of the network
without needing more annotation information. At
the same time, it does not increase the inference
time during deployment.

(iii) By using pixel embedding to obtain lane instances,
our method can detect lanes without number limits,
which is the limitation of most lane detection
methods. Our method also shows great improve-
ment in challenging traffic situations, such as no
line, shadow, and dazzle light.

'e rest of this paper is organized as follows. Section 2
reviews some related research of lane detection. Section 3
introduces the proposed lane detection method. Section 4
discusses our experimental results. Section 5 makes a con-
clusion of this paper.

2. Related Research

Vision-based lane detection methods can be divided into
traditional vision methods and deep learning methods.
However, both methods can be divided into three steps:
image preprocessing, feature detection, and lane model
fitting. Image preprocessing is to remove part of the noise.
Feature detection uses the features of lanes to extract areas
that are lanes. Lane model is fitted generally by using the
least-squares method, spline fit, etc.

Among them, feature detection is the most important
part of the lane detection algorithm and plays a decisive role
in performance. 'ere are many kinds of lane markings,
including yellow lines, white lines, solid lines, and dashed
lines. Moreover, the proportion of lane markings in the
pictures is very low. And there may be abrasion and oc-
clusion, which make detection more difficult.

Since AlexNet [24], Convolutional Neural Network
(CNN) has been widely used in the field of computer vision
with its outstanding feature extraction capabilities. More
and more excellent neural networks have been proposed,
such as ZFNet [25], GoogLeNet [26], VGGNet [27], and
ResNet [28]. Since ResNet was proposed, it has been widely
used as the backbone network due to its simple and modular
structure. In recent years, there were many variants pro-
posed based on ResNet, such as ResNeSt [2] and ResNeXt
[29]. 'ese networks are also widely used in the field of lane
detection.

Semantic segmentation methods [30–32] are used to
distinguish background and lane pixels. Instance segmen-
tation methods [23] are used to directly get lane location.
Object detection methods [33] are used to remove noise
caused by cars and pedestrians.

In [1], they cast the lane detection problem as an instance
segmentation problem. 'ey designed a two branched,
multitask network, for lane instance segmentation. In [3], a
novel knowledge distillation approach is proposed, Self-
Attention Distillation (SAD), which allows a model to learn
from itself without any additional supervision or labels. Pan
et al. [20] proposed a message passing mechanism between
adjacent pixels to use visual information more efficiently,
which significantly improves the performance of deep
segmentation methods. In [21], a formulation with struc-
tural loss is proposed to address the problem of speed and no
visual clue. 'e proposed formulation regards lane detection
as a problem of row-based selection using global features
and achieves remarkable speed and accuracy. In [22], a
hybrid network combining CNN and RNN is proposed for
robust lane detection in continuous driving scenes. In this
framework, features on each frame of the input were firstly
abstracted by a CNN encoder. 'en, the sequential encoded
features of all input frames were processed by a ConvLSTM.
In [34], YOLO [33] and CPN [35] are used to remove noises,
and then they proposed a lane marking model inference
method that can detect lanes when lane markings are
missing. But it can only detect two lanes. In fact,
[3, 20–22, 34] are all limited with the fixed number of lanes.

In this paper, we design a network, which simultaneously
performs semantic segmentation and instance segmentation
and has no limits with the number of lanes. Our method also
has better performance in challenging traffic situations.

3. Proposed Method

Our method can be divided into several modules as follows.
In the preprocessing module, the input images can be
appropriately processed to be easier to extract features in
the later stage. 'e driving picture and its annotation are
converted into a standard format that can be input into the
model. In the model training stage, the annotated data are
used to train the network so that it can achieve the seg-
mentation of the lanes. 'e postprocessing stage is to get
the final results from the output of the model through
denoising and fitting. Figure 1 shows the flowchart of our
method.
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3.1. Preprocessing. 'is module processes the input image to
make feature extraction easier in the later stage and im-
proves the speed and accuracy. In our method, the pre-
processing module is mainly to get the input image
downsampled.

'e original size of the images is 1280× 720 in TuSimple
dataset and 1960× 590 in CULane dataset. If it is directly
inputted into the network, the calculation is very large.
'erefore, the raw image needs to be downsampled. In this
paper, we use bilinear interpolation to downsample the
images to the size of 512× 288 (for TuSimple dataset) and
800× 288 (for CULane dataset).

In our method, there are two branches in our network,
which means two outputs. So, we made two labels for one
input based on the annotations. One label is for binary
branch, denoting whether a pixel belongs to lanes or back-
ground. And another one is for embedding branch, denoting
which lane the pixel belongs to. Moreover, since the original
image was downsampled, the same operation should be
applied on the labels; the results are shown in Figure 2.

3.2. Model Training. Our network uses the structure pro-
posed by LaneNet [1] to simultaneously perform semantic
segmentation and instance segmentation, using the encoder-
decoder [36] framework. Semantic segmentation is to achieve
pixel-level processing of input pictures, getting the pixels that
belong to lanes.Meanwhile, based on semantic segmentation,
instance segmentation is performed using the pixel em-
bedding [23] method proposed by De Brabandere et al.

Differently, LaneNet uses one encoder and two decoders,
which means each branch has a decoder. To reduce the
parameters and complexity of the network, we only have one

decoder and use two different 1 × 1 convolution layers at the
end of the decoder to get two branches. 'e binary branch is
for semantic segmentation, and the embedding branch is for
instance segmentation. 'e structure of the network is
displayed in Figure 3.

3.2.1. -e Encoder. Our encoder uses ResNeSt as the
backbone. ResNeSt proposed a Split-Attention mechanism,
which can obtain the attention based on different groups and
different channels. As a variant of ResNet, ResNeSt retains
the complete ResNet structure and has a conv1 and 4 layers.
Each layer consists of several blocks. 'e structure of the
encoder block is shown in Figure 4. Firstly, the encoder
block divides the input into several groups (or cardinal)
along the channel dimension. 'en, each group is divided
into several splits (or subgroups). After putting splits
through different convolutions, the feature map of each
group is a weighted combination of its splits, while the
weights are selected based on contextual information. 'e
output of the block is concatenated by feature maps of
groups. 'is structure enables the network to utilize mul-
tidimensional information and enables cross-group and
cross-channel attention.

We add two SAD paths to further enhance the feature
extraction capabilities of the network. SAD enables a net-
work to learn from itself, without needing any extract in-
formation. 'rough making the attention map of the lower
layer to mimic the higher ones, the lower layers can learn the
higher feature representation. Since the feature represen-
tation ability of lower layers is enhanced, the higher ones and
the whole network also are enhanced.

'e steps of applying SAD can be summarized as follows:
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Figure 1: 'e flowchart of our method. Our network has one encoder, one decoder, and two branches. 'rough this network, images are
segmented at the pixel level and the instance of each lane is obtained. 'en, the cubic spline interpolation is used to fit each lane.
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Pre-processed image

(a)

ground truth for semantic segmentation 

(b)

ground truth for instance segmentation

(c)

Figure 2: Ground truth. (a) Preprocessed image. (b) Ground truth for semantic segmentation. (c) Ground truth for instance segmentation.
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Figure 3: Network structure. Conv is a convolutional layer (convolution kernel is 3× 3), deconv denotes the transposed convolution, BN
denotes batch normalization, and Relu is the activation layer. Conv 1× 1 is a convolutional layer with 1× 1 kernel. Encoder blocks are shown
in Figure 4. Blocks of the same color represent they have the same number of channels. 'ose gray ones mean they are from encoder.
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(i) Squeeze. 'e feature map is squeezed to a one-
channel map, generating the attention map.

(ii) Interpolation. Upsample the size of target maps to
mimic ones.

(iii) Softmax. Apply softmax operation on the same
dimension for maps.

(iv) Mimic Loss. Get the MSE loss between mimic maps
and target maps.

'e first step is the generation of the attention map
which is equivalent to finding a mapping function:

Am ∈ R
Cm×Hm×Wm , (1)

G: R
Cm×Hm×Wm⟶ R

Hm×Wm , (2)

where Am denotes the output of the mth layer and Cm, Hm,
and Wm, respectively, denote the channel, height, and width.
And this mapping function can be constructed via com-
puting statistics of these values across the channel
dimension.

G
p
sum Am( 􏼁 � 􏽘

Cm

i�1
Ami

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p
. (3)

In our method, we set p � 2, following Hou et al. [3].
Additionally, Hou et al. [3] used the spatial softmax on the
attention map. However, we find that, after using the spatial
softmax, there are a large number of 0 existing in the map,
and only several values are nearly 1, which is not conducive
to the calculation value of the gradient. So, we apply softmax
on the same dimension for maps.

3.2.2. -e Decoder. 'e decoder performs deconvolution
operation to decode the feature maps’ output by the encoder
and realizes upsampling and classification. Our decoder has
5 layers, one-to-one correspondence with layers of the en-
coder. In order to make full use of the global context

information, we use skip-connect proposed by Unet [32] to
concatenate the output of the encoder and the decoder. 'e
structure of the decoder block is shown in Figure 1. In the
last layer of the decoder, we have two branches, namely,
binary branch and embedding branch. We use two con-
volutional layers with a 1× 1 kernel to generate the output of
binary branch and embedding branch. 'e binary branch
outputs the semantic segmentation. 'e embedding branch
outputs a three-channel embedding map, which means a 3D
embedding vector for each pixel.

3.2.3. Loss Function. Loss function plays a great role in the
optimization of the network. Our network has two outputs
at the end, and the appropriate loss function needs to be
selected.

Since the proportion of lane pixels in the image is very
small, there is a serious data-imbalance problem in lane
segmentation task. To solve this problem, we use dice loss as
our semantic segmentation task loss.

After training, the embedding branch outputs a 3D
embedding vector for each pixel. 'e distance between
pixel embeddings belonging to the same lane is small. And
the distance between pixel embeddings belonging to dif-
ferent lanes is maximized. De Brabandere et al. [23] in-
troduced three terms to realize the loss function, variance
loss (Lvar), distance loss (Ldist), and regularization loss
(Lreg). 'e variance loss (Lvar) pulls the embedding of
pixels to the mean embedding of a lane, that is, makes the
embedding distance between pixels belonging to the same
lane closer. 'e distance loss (Ldist) pushes the cluster
centers apart from each other, that is, increases the em-
bedding distance of pixels belonging to different lane lines.
'e function of the regularization loss (Lreg) is to attract all
clusters to the origin.

Neven [1] et al. made some modifications to the loss
function’s formula and omitted Lreg. We use the loss
function they modified, as shown in equations (4) and (5).
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Figure 4: 'e structure of encoder block.
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􏽘

C
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C
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+
, (5)

where δv and δd are hyperparameters, C denotes the number
of clusters, Nc is the number of pixels belonging to cluster C,
xi is the embedding vector of the ith pixel, μc is the mean
embedding of cluster C, and ‖·‖ means the L2 distance.

We add two SAD paths in our network, which are be-
tween layer2, layer3, and layer4. After extracting the at-
tention maps, since the target maps are smaller than origin
maps, we upsample the target maps to the same size of the
origin maps and perform softmax on eachmap. And then we
calculate the Mean Square Error (MSE) between the mimic
maps and the target maps. 'e SAD loss is formulated as
follows:

LSAD Am, Am+1( 􏼁 � LMSE Ψ Am( 􏼁,Ψ Am+1( 􏼁( , (6)

where Ψ denotes the extraction, interpolation, and softmax
operations.

'e total loss include these three terms, as follows:

Ltotal � αLbin + β Lvar + Ldist( 􏼁 + cLSAD, (7)

where Lbin is the loss of the semantic segmentation task
calculated with the dice loss function. 'e parameters α, β,
and c balance the influence of each loss. In our experiments,
we found the best performance when α � 1, β � 0.3, and
c � 0.1.

3.3. Postprocessing. As mentioned above, there are two
outputs of the network: one is the semantic segmentation
map outputted by binary branch and the other is the em-
bedding map outputted from the embedding branch.We use
the segmentation map as a mask and apply the mask on the
embedding map, so that we can get the embedding map only
of lane pixels.'en we performmean shift clustering on it to
get clusters of each lane and obtain the real result of instance
segmentation.

Most of the time, the beginning of lanes is very straight,
and they start to bend in the end of the sight. Least square
fitting cannot fit this kind of curve well. So, for each lane, we
take the center points every 10 rows and get the final output
through cubic spline interpolation.

4. Experiment Results

4.1. Development and Test Environment. We used Python as
the main development language. 'e training and testing of
the deep learning model are based on the PyTorch frame-
work. 'e image processing part uses the OpenCV frame-
work.'e scientific computing part uses numpy and sklearn.
'e overall environment configuration parameters are
shown in Table 1.

4.2. Dataset. We used two datasets to evaluate our method,
TuSimple dataset [37] and CULane dataset [38]. TuSimple
dataset collects road information at different times during
the day, including two lanes/three lanes/four lanes/or more
lanes, with different traffic conditions, including clear lane
lines and severe wear. Some samples of the data set are
shown in Figure 5.

CULane dataset is a much more challenging and larger
dataset, including normal and 8 challenging situations, such
as crowded, night, and no line. 'e proportion of different
situations is shown in Figure 6. Some of the examples are
shown in Figure 7.

Compared to CULane, TuSimple dataset is rather simple.
But CULane dataset focuses on the detection of four lane
markings, while TuSimple dataset includes four lanes or
more. And the basic information about these two datasets is
shown in Table 2.

4.3. Evaluation Metrics and Test Results. Usually, we regard
lane detection as a binary classification problem, so the
performance can be presented by confusion matrix. In
addition, in order to compare with other methods, we also
use the official evaluation metrics provided by datasets.

CULane dataset [38] uses precision, recall, and F1 to
evaluate the detection.'e expression of precision is given in
equation (8), and the expression of recall is given in equation
(9). TP (true positive) denotes the number of pixels that are
lane pixels, and the predicted results are positive; FP (false
positive) denotes the number of pixels that are not lane
pixels, but the predicted results are positive; FN (false
negative) denotes the number of pixels that are lane pixels,
but the predicted results are negative. To measure these two
values together, F1 is their harmonic mean, and the ex-
pression is shown in equation (10).

Precision �
TP

TP + FP
, (8)

recall �
TP

TP + FN
, (9)

F1 �
2

(1/precision) +(1/recall)
. (10)

TuSimple [37] uses accuracy, which is computed as
follows.

Accuracy �
Npred

Ngt
, (11)

Table 1: Environment configuration parameters.

Name Configuration
CPU Intel®Core™ i7-10700K CPU @3.80GHz
GPU NVIDA GeForce RTX 2070 SUPER
CUDA version 10.1
Python version 3.7.9
Pytorch version 1.7.1(GPU)
OpenCV version 4.4.0
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where Npred denotes the number of correctly predicted lane
points and Ngt is the number of ground-truth lane points.
Also, FN and FP are used as a reference.

'e comparison of our method with SCNN, LaneNet,
ENet-SAD, and EL-GAN on TuSimple dataset is given in
Table 3. 'e comparison on CULane dataset is given in
Table 4.

Table 3 shows our comparison results on TuSimple.
Considering the accuracy of different methods, all are al-
ready extremely high, and the gap between our method and
the best one is very small (which is 0.0027). It is fair to say
that we have comparable performance with the state of the
art on TuSimple. Table 4 shows that our method has better
performance on challenging situations, especially on no line,

Normal highway

(a)

Shadow

(b)

Figure 5: Some pictures in TuSimple dataset. (a) Normal highway. (b) Shadow.

23.4%

27.7%

9.0%
1.2%

1.4%

2.6%
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Figure 6: 'e proportion of different situations in CULane dataset [38].
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shadow, and dazzle light situations. Overall our method has
good performance in normal situations and also improved in
challenging traffic situations.

'e output of the trained network is shown in Figure 8.
From Figure 8, it can be seen that the trained network

has a good recognition effect for lanes under various in-
terferences, like the road shown in Figure 8(b) which is
occluded by a large vehicle.'e semantic segmentation stage
fails to identify the occluded lane line pixels, but the instance
segmentation stage can still classify the two lanes as the same
lane.

'e testing results on TuSimple dataset are shown in
Figure 9.

Figure 9 shows part of the detection results of the lane
line detection algorithm designed in this paper. It shows that
our method has good performance on normal highway
situations. And it can detect more than 4 lanes. When there

is a large area of shadow on the road, our method can still
work well.

'e testing results on CULane dataset are shown in
Figure 10. Since CULane contains more difficult situations,
Figure 10 shows the performance of our method on crowded
situations, hazzle light situations, and night and the per-
formance when there are no line markings on the road or
there are other markings.

From the above testing results, it can be seen that our
method has good robustness. It can deal with most of the
normal conditions in the daytime and perform great in
challenging conditions as well. 'e comparison also shows
that our method has achieved the state of the art.

In order to measure the real-time performance of our
method, we also test the running time of our method. 'e
average running time of each step in our algorithm is shown
in Table 5.

No-line and crowded

(a)

Dazzle light

(b)

Night 

(c)

Arrow

(d)

Figure 7: Some pictures in CULane dataset. (a) No line and crowded. (b) Dazzle light. (c) Night. (d) Arrow.

Table 2: Basic information about TuSimple dataset and CULane dataset.

Dataset ImageNum Size Multilane Time Road type
TuSimple 6408 1280 ∗ 720 No limits Daytime Highway
CULane 133,235 1640 ∗ 590 Less than 4 lanes Daytime and night City, rural, highway

Table 3: Comparison on TuSimple testing set.

Algorithm Accuracy FN FP
SCNN [20] 96.53% 0.0617 0.0180
LaneNet [1] 96.38% 0.0780 0.0244
FD50 [39] 95.20% 0.0760 0.0450
ENet-SAD [3] 96.64% 0.0602 0.0205
U-fast [21] 96.06% — —
EL-GAN [40] 96.39% 0.0412 0.0336
RS-Lane (ours) 96.37% 0.0532 0.0279
Accuracy is computed as equation (11). FN denotes the proportion of false negative points. FP denotes the proportion of false positive points.
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Table 4: Comparison on CULane testing set.

Category SCNN [20] FD50 [39] U-fast [21] ERFNet [41] SAD [3] Res101-SAD [3] RS-Lane (ours)
Normal 90.6 85.9 90.7 91.5 90.1 90.2 88.5
Crowded 69.7 63.6 70.2 71.6 68.8 70 72
Dazzle light 58.5 57 59.5 66 60.2 59.9 67.9
Shadow 66.9 59.9 69.3 71.3 65.9 67 75.7
No line 43.4 40.6 44.4 45.1 41.6 43.5 49.3
Arrow 84.1 79.4 85.7 87.2 84 84.4 84.6
Curve 64.4 65.2 69.5 66.3 65.7 65.7 64.3
Crossroad 1990 7013 2037 2199 1998 2052 1988
Night 66.1 57.8 66.7 67.1 66 66.3 68.3
Total 71.6 — 72.3 73.1 70.8 71.8 73.6
Number of best 0 0 3 2 0 0 7
F1 values are shown for different categories in this table. FP values are shown for crossroad; since there is no line at crossroad, any prediction point will be false
positive.

Shadow

(a)

Lane markings are severely worn and blocked by vehicles

(b)

Figure 8: Network outputs. 'e first column denotes inputs, the second column denotes semantic segmentations, and the third column
denotes instance segmentations after clustering. (a) Shadow. (b) Lane markings are severely worn and blocked by vehicles.

Figure 9: Testing results on TuSimple.
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'e real-time performance of the method on current
hardware devices (shown in Table 1) is slightly off. 'e
running time of our method now is about 54ms per frame.
Normally, 50ms could satisfy the real-time requirements for
most situations. 'e method mainly takes time on clustering
algorithm, which takes up nearly half of the running time.
'is is because the cluster algorithm cannot speed up
through GPU. But it can be made up by some simple so-
lutions when applying to engineering. One is upgrading

CPU and GPU, and the other is reducing the images’ size
when preprocessing. By doing these, our method can be
applied in engineering.

5. Conclusion

In this paper, we present a new network for lane detection,
which uses Split Attention and Self-Attention Distillation to
enhance the performance in challenging traffic situations.

Crowded

(a)

Dazzle light

(b)

Shadow

(c)

No-line

(d)

Arrow

(e)

Curve

(f )

Crossroad

(g)

Night

(h)

Figure 10: Testing on CULane. Since there is no line at crossroad, the detection result is none, as shown in (g). (a) Crowded. (b) Dazzle light.
(c) Shadow. (d) No line. (e) Arrow. (f ) Curve. (g) Crossroad. (h) Night.

Table 5: 'e running time of algorithm (test on TuSimple).

Process Preprocessing and neural network Clustering Postprocessing Total
Time 15.1ms 31.3ms 8.1ms 54.5ms

10 Journal of Advanced Transportation



Using pixel embedding to obtain lane instances, our method
also has no limits of number of lanes.

'e results on TuSimple show that RS-Lane has com-
parable performance with the state of the art in most normal
situations. And the results on CULane show that RS-Lane
improves in challenging traffic situations such as no line and
shadow. In general, our method achieves the state-of-the-art
performance and provides a reference for the application of
lane detection. 'ough the real-time performance is slightly
off, our method can be applied in engineering by making a
little change.

In the future, we will further explore how to improve the
speed and accuracy at the same time. We will also continue
working on the situations with various weather conditions,
such as rainy and foggy. Besides, our work is a part of
Cooperative Vehicle Infrastructure System, especially for
future intelligent vehicle design and control with 5G tech-
nology [42–44].
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github.io/projects/CULane.html.

Conflicts of Interest

'e authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

'is study was partially supported by the National Key R&D
Program of China (no. 2020YFB1600400), Guangzhou
Science and Technology Plan Project (no. 202007050004),
Shenzhen Fundamental Research Program (no.
JCYJ20200109142217397), and Guangdong Natural Science
Foundation (no. 2021A1515011794).

References

[1] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans,
and L. Van Gool, “Towards end-to-end lane detection: an
instance segmentation approach,” in Proceedings of the 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 286–291,
Suzhou, China, June 2018.

[2] H. Zhang, C. Wu, Z. Zhang et al., “Resnest: split-attention
networks,” 2020, https://arxiv.org/abs/2004.08955.

[3] Y. Hou, M. Zheng, C. Liu, and C. Change Loy, “Learning
lightweight lane detection cnns by self attention distillation,”
in Proceedings of the IEEE International Conference on
Computer Vision, Seoul, Republic of Korea, November 2019.

[4] I. K. Somawirata and F. Utaminingrum, “Road detection
based on the color space and cluster connecting,” in Pro-
ceedings of the 2016 IEEE International Conference on Signal
and Image Processing (ICSIP), Beijing, China, August 2016.

[5] K.-Y. Chiu and S.-F. Lin, “Lane detection using color-based
segmentation,” in Proceedings of the IEEE Proceedings. In-
telligent Vehicles Symposium 2005, Las Vegas, NV, USA, June
2005.

[6] C. Ma, L. Mao, Y. Zhang, and M. Xie, “Lane detection using
heuristic search methods based on color clustering,” in
Proceedings of the 2010 International Conference on Com-
munications, Circuits and Systems (ICCCAS), Chengdu,
China, July 2010.
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