Graphical Optimization Method for Symmetrical Bidirectional Corridor Progression

Kai Lu,1,2 Shuyan Jiang,1 Yiming Zhao,1 Yongjie Lin,1 and Yinhai Wang3

1South China University of Technology, School of Civil Engineering and Transportation, Guangzhou, Guangdong, China
2Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing, China
3University of Washington, Department of Civil and Environmental Engineering Seattle, Seattle, Washington, USA

Correspondence should be addressed to Yongjie Lin; linyjscut@scut.edu.cn

Received 13 August 2021; Accepted 1 October 2021; Published 2 November 2021

Academic Editor: JingXin Dong

Copyright © 2021 Kai Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The graphical progression method can obtain grand coordinated schemes with minimal computational complexity. However, there is no standardized solution for this method, and only a few related studies have been found thus far. Therefore, based on the in-depth discussion of the graphical optimization theory mechanism, a process-oriented and high-efficiency graphical method for symmetrical bidirectional corridor progression is proposed in this study. A two-round rotation transformation optimization process of the progression trajectory characteristic lines (PTC lines) is innovatively proposed. By establishing the updated judgment criteria for coordinated mode, the first round of PTC line rotation transformation realizes the optimization of coordinated modes and initial offsets. Giving the conditions for stopping rotation transformation and determining rotation points, rotation directions, and rotation angles, the second round of PTC line rotation transformation achieves the final optimization of the common signal cycle and offsets. The case study shows that the proposed graphical method can obtain the optimal progression effect through regular graphing and solving, although it can also be solved by highly efficient programming.

1. Introduction

Intersections are the road network nodes that frequently cause traffic disruption, severe delays, and accidents in a city [1]. Therefore, corridor progression has always been an effective way to ensure traffic safety and efficiency at intersections [2, 3]. Generally speaking, the solution methods of the corridor progression design scheme can be roughly divided into three types: model method, algebraic method, and graphical method.

In comparison, the model method can obtain multiple different ideal coordination design schemes. However, its modeling process is complex, requiring a long solution time for the sizeable calculated amount. The algebraic method, which can meet the requirements of corridor progression in various situations, has the advantages of good operability and robust reproducibility. However, practitioners often need to have a relatively complete theoretical knowledge of coordination planning. Meanwhile, the graphical method obtains coordination planning using time-space diagrams, illustrating the relationship between intersection spacing, signal timing, and vehicle movement. Although the graphical method is challenging to ensure the optimal corridor progression effect and measure the solution efficiency by manual drawing, it is suitable for engineering applications due to its slight computational complexity, strong operability, and intuitive reflection of the coordinated optimization process.

The model method constructs a linear or nonlinear programming optimization model based on the relationships between the progression bandwidth and signal timing parameters, travel time, and progression boundary trajectory [4]. Moreover, the mixed-integer linear programming method is usually used to realize the optimal solution of signal timing parameters. The most classic models are the MAXBAND model proposed by Morgan and Little [5] and the MULTIBAND model constructed by Gartner et al. [6]. The MAXBAND model optimized common signal cycle,
offsets, vehicle speed, and the order of left-turn phases to maximize the bandwidths, ensuring that most vehicles can drive through the downstream signal intersections without stopping [7]. The MULTIBAND model designed an individually weighted bandwidth for each directional road section, considering the traffic volumes and flow capacities. Extensive research has been constantly provided based on the MAXBAND and MULTIBAND models [8–10]. Optimizing the left-turn phase sequence of the MAXBAND model, Chang et al. [11] further established the MAXBAND-86 model. Lu et al. [12] introduced a bandwidth proration method under asymmetrical phasing, effectively solving each road section’s asymmetric bidirectional distance and unequal speed.

The graphical method establishes a set of easy-to-understand drawing rules and utilizes the transformation of basic elements on the time-space diagram to obtain ideal progression bandwidths. However, scholars have done little research on the graphical method of corridor progression until now. China Highway Association [25] defined the intuitive and straightforward graphical method as one of the earliest timing design methods for corridor progression. Xu [19] provided the basic solution idea of the graphical method, but there are still many deficiencies during the solution process. It lacked a specific design principle and well-defined rules for optimizing the common signal cycle and offsets. Lu and Cheng [26] introduced the concept of the NEMA phase based on the graphical method and optimized the phase sequence and offsets by the graphical way. Although an ideal bidirectional bandwidth was obtained, there was no amendment to the shortcomings of the existing graphical method.

In this study, we define the trajectory lines that reflect the unrestrained movement of characteristic vehicles in the progression as progression trajectory characteristic lines (PTC lines). Then, based on the rotation transformation of the PTC line, a graphical method for symmetrical bidirectional corridor progression is proposed to improve further and optimize the overall process of the graphical method. The corresponding progression coordination design process will also be presented in detail. The remainder of the article is organized as follows: Section 3 introduces the design principle of the proposed method. Section 4 presents a case study, which helps to compare the coordinated optimization effect between the proposed method, the improved algebraic method, and the MAXBAND model. Concluding remarks are provided in the last section.

2. Materials and Methods

2.1. Design Process. The graphical method proposed can be solved by a normal step-by-step graphical process and programming. We define the horizontal scaling of the time-space diagram to convert the progression design speed of the road section to the corridor progression design speed V. Meanwhile, we also define the vertical scaling of the time-space diagram to realize the transformation of the optimization of the common signal cycle into the optimization of the corridor progression speed. The design process of the proposed graphical method is refined and organized as shown in Figure 1, which is mainly divided into four parts: initialization, the first round of rotation transformation, the second round of rotation transformation, and scheme generation.

2.2. Initialization

2.2.1. Initial Common Signal Cycle. Let us suppose that there are n signalized intersections along the corridor and number the intersections in the ascending order in the outbound
direction. Then, the pth ($1 \leq p \leq n$) intersection is defined as I_p in sequence along the outbound direction.

The common signal cycle range will be determined by the signal cycle range of each intersection, denoted as $[C_{\text{min}}, C_{\text{max}}]$. The initial common signal cycle C_1 can be valued as the midpoint between the minimum common signal cycle C_{min} and the maximum common signal cycle C_{max}.

2.2.2. Adjusted Distance and Speed. Let d_p and v_p be the actual distance and the progression design speed between intersection I_p and I_{p+1} ($1 \leq p \leq n-1$), respectively. Then, we find that the optimal effect of progression coordination does not change in the time-space diagram as long as the travel time of the road section remains unchanged. For example, as shown in Figure 2, when we simultaneously change the progression design speed and distance of the road section highlighted by the blue and purple arrows in Figure 2(a), but keep the vehicle travel time unchanged, the progression bandwidth of the corridor remains unchanged in Figure 2(b). Therefore, it can be said that the proposed method can be applied to coordinate corridors with inconsistent progression design speeds across road segments. We define it as the horizontal scaling of the time-space diagram.

Therefore, to facilitate the diagrammatic design process, when the design speed of the road section is inconsistent with the corridor progression design speed V, we will convert the progression design speed of the road section to V by adjusting the intersection distance. The adjusted distance
The red interval of coordinated phase
The green interval of coordinated phase

\[D_p = V \cdot \sum_{k=1}^{p-1} \frac{d_k}{v_k} \] \hspace{1cm} (1)

On the other hand, we find that the optimal effect of progression coordination does not change in the time-space diagram as long as the product of \(V \) and \(C \) remains unchanged. For example, as shown in Figure 3, when we change the common signal cycle and corridor progression design speed but keep their product unchanged in Figure 3(a), the percentage of progression bandwidth of the corridor remains unchanged in Figure 3(b). We define it as the vertical scaling of the time-space diagram.

Then, we can first keep the common signal cycle \(C_1 \) unchanged and optimize the adjusted speed to find their optimal product value to obtain the best coordination effect. Finally, the final adjusted speed is adjusted to \(V \), and the optimal common signal cycle \(C_R \) can be obtained.

According to the corridor progression design speed \(V \) and the range of the common signal cycle \([C_{\min}, C_{\max}]\), the adjusted speed \(V_{(i,j)} \) obtained after the \(j \)th rotation transformation in the \(i \)th round should satisfy the following equation:

\[\frac{V \cdot C_{\min}}{C_1} \leq V_{(i,j)} \leq \frac{V \cdot C_{\max}}{C_1} \] \hspace{1cm} (2)

2.2.3. Possible Coordinated Mode. To balance the effect of bidirectional corridor progression, the coordinated mode of each intersection must adopt synchronous coordination or backstepping coordination. Synchronous coordination means that the green center point of the coordinated phase is consistent with intersection \(I_1 \), whereas backstepping coordination means that the red center point is consistent with the green center point of the coordinated phase at \(I_1 \). The

2.3. The First Round of Rotation Transformation. The optimization of the intersection coordinated mode can be realized by defining the rules of the first round of PTC line rotation transformation. First, we define the green center point of the coordinated phase at \(I_1 \) as the reference point \(O_{1,1} \) of the time-space diagram coordinate system. A horizontal line can be drawn from \(O_{1,1} \) and rotated until the cotangent of its angle with the \(x \)-axis equals the corridor progression design speed \(V \). This process is defined as the first rotation transformation of the PTC line in the first round. We define the rotated ray as the initial PTC line \(L_1 \) and then assign \(V \) to adjusted speed \(V_{(0,1)} \).

The following steps have to be executed cyclically until the coordinated modes of all intersections have been determined.

2.3.1. Primary Judgment Factor Calculation. The intersection \(I_p \) is selected as the current coordinated intersection during the first round’s \(p \)th (2 ≤ \(p \) ≤ \(n \)) rotation transformation. According to PTC line \(L_{p-1} \) obtained by the last rotation transformation, the crossing point of \(L_{p-1} \) and the timeline of \(I_p \) is marked as \(O_{lp} \) as shown in Figure 4(a). The coordinated phase horizontal red center lines at \(I_1 \) have crossing points with the timeline of \(I_1 \), and so we define the point closest to \(O_{lp} \) as \(O_{lp} \). The coordinated phase horizontal green center lines at \(I_1 \) have crossing points with the timeline of \(I_1 \) and so we define the point closest to \(O_{lp} \) as \(O_{lp} \).
Our first step is to define and calculate some basic parameters, and the initialization routine can be presented below.

Initialization procedure

Step0. Determine the range of the common signal cycle \([C_{\min}, C_{\max}]\) and calculate the initial common signal cycle \(C_1 = 0.5(C_{\min} + C_{\max})\).

Step1. Make a judgment of whether the progression design speeds of all road sections equal the corridor progression design speed or not. If there is an inequality, calculate the intersection adjusted distance \(D_p\) for the corresponding road section as shown in Equation (1).

Step2. Determine the range of adjusted speed \(V_{(i, j)}\) obtained after the \(j\)th rotation transformation in the \(i\)th round, as shown in Equation (2).

Algorithm 1: Initialization procedure.

Starting at the point \(O_{L1}\), we can make a ray \(l_{Rp} (l_{Gp})\) passing through the point \(O_{Rp} (O_{Gp})\), and the corresponding adjusted speed \(V_{Rp} (V_{Gp})\) satisfies the following:

\[
V_{Rp} = \frac{D_p}{y_{Rp}} \left(\frac{D_p}{y_{Gp}} \right)
\]

(Figure 3: The vertical scaling of the time-space diagram. (a) Before the vertical scaling. (b) After the vertical scaling.)

(Figure 4: The determination of the coordinated mode when \(f_p \geq 0\).)
The time difference between points O_{lp} and O_{rp} (O_{gp}), which corresponds to the distance between the ordinate of points y_{lp} and y_{rp} (y_{gp}), is recorded as $T_{rp}(T_{gp})$. Then, the primary judgment factor f_p can be constructed according to T_{rp} and T_{gp}:

$$f_p = T_{rp} - T_{gp} = \left| y_{lp} - y_{rp} \right| - \left| y_{lp} - y_{gp} \right|.$$ (4)

2.3.2. Optimal Coordinated Mode Calculation. We define $f_{p}(p,q)$ ($f_{p}(p,q)$) ($1 < q < p$) as a Boolean variable. When ray l_{lp} (l_{gp}) does not pass through the red interval of the intersection l_{q} ($1 < q < p$), $f_{p}(p,q)$ ($f_{p}(p,q)$) is 0. When ray l_{lp} (l_{gp}) passes through the red interval of l_{p}, $f_{p}(p,q)$ ($f_{g}(p,q)$) is 1. Also, the red interval crossing amount of l_{lp} (l_{gp}) in l_{q} can be defined as $T_{r}(p,q)$ ($T_{g}(p,q)$).

When $f_{p} \geq 0$, the situation is shown in Figure 4. If ray l_{gp} does not pass through any red interval of the coordinated phase, all $f_{p}(p,q)$ equals 0. The current coordinated intersection can form a synchronous coordinated mode with I_{1}, where $F_{p} = 0$. If ray l_{gp} passes through any red interval of the coordinated phase while ray l_{lp} does not pass through any red interval, as shown in Figure 4(b), the backstepping coordinated mode can be chosen, where $F_{p} = 1$. If both l_{lp} and l_{gp} pass through the red interval of the coordinated phase, and if the maximum red interval crossing amount of l_{gp} is less than or equal to l_{lp}, as shown in Figure 4(c), these two intersections can form a synchronous coordinated mode, where $F_{p} = 0$. Otherwise, the backstepping coordinated mode will be chosen as $F_{p} = 1$.

Similarly, when $f_{p} < 0$, if ray l_{lp} does not pass through any red interval of the coordinated phase, all $f_{p}(p,q)$ equals 0, $F_{p} = 1$. If ray l_{gp} passes through any red interval of the coordinated phase while ray l_{lgp} does not pass through any red interval, then $F_{p} = 0$. If both l_{lp} and l_{gp} pass through the red interval of the coordinated phase, and if the maximum red interval crossing amount of l_{lgp} is less than or equal to l_{lp}, $F_{p} = 1$. Otherwise, $F_{p} = 0$.

2.3.3. PTC Line Optimization. If the current coordinated intersection has formed a synchronous coordinated mode with I_{1} and V_{gp} is within the rotation range of the PTC line, we can define l_{gp} as PTC line L_{p} and assign the value of V_{gp} to the adjusted speed $V_{1,p}$ as shown in Figure 5(a). When V_{gp} is out of the rotation range, we can keep the PTC line unchanged, that is, as shown in Figure 5(b), L_{p} is the same as L_{p-1}, and $V_{1,p}$ equals $V_{1,p-1}$.

Similarly, if the current coordinated intersection has formed a backstepping coordinated mode with I_{1} and V_{gp} is within the rotation range of the PTC line, we can define l_{gp} as PTC line L_{p} and assign the value of V_{gp} to $V_{1,p}$. When V_{gp} is out of the rotation range, we can keep the PTC line unchanged. L_{p} is the same as L_{p-1}, and $V_{1,p}$ equals $V_{1,p-1}$.

2.4. The Second Round of Rotation Transformation. The final optimization of the common signal cycle and the offsets will be determined upon completing second round of PTC line rotation transformation.

After the first round of rotation transformation, the coordinated modes of all signalized intersections have been determined. We assign adjusted speed $V_{1,n}$ to $V_{2,n}$. Then, the beginning PTC line L_{b0} and the end PTC line L_{e0} of the outbound progression can be obtained. Then, the initial bandwidth R_{0} and ratio R_{n} can also be calculated. Meanwhile, the bottleneck intersections of the beginning PTC line are put into the intersection set S_{b0}, and the bottleneck intersections of the end PTC line are put into the intersection set S_{e0}. The calculation of related parameters will be introduced in the next section.

We define a termination decision parameter F_{A}, which is a Boolean variable. The following steps have to be executed cyclically until the termination decision parameter F_{A} equals 1.

2.4.1. Bottleneck Intersection Recognition. We assume that the obtained beginning PTC line, end PTC line, adjusted speed, bandwidth, and bandwidth ratio after the mth rotation transformation in the second round are defined as $L_{BM}, L_{EM}, V_{(2,m)}, b_{m}$, and R_{m} respectively. The parameters obtained from the m-th rotation transformation need to be used during the mth rotation transformation in the second round.

According to $F_{p} = V_{(2,m)}, C_{1}$, and λ_{p} we can draw the beginning and end PTC lines in the time-space diagram. We define the Boolean variables $K_{B}((m-1,p))$ and $K_{E}((m-1,p))$ as the judgment factors of the bottleneck intersection of the beginning and end PTC lines. When $K_{B}((m-1,p))$ equals 1, intersection I_{p} is the bottleneck intersection of the beginning PTC line after the m-th rotation transformation, $I_{p} \in S_{BM_{1}}$, and the corresponding bottleneck point is defined as P_{Bp}. When $K_{E}((m-1,p))$ equals 1, I_{p} is the bottleneck intersection of the end PTC line after the m-th rotation transformation, $I_{p} \in S_{EM_{1}}$, and the corresponding bottleneck point is recorded as P_{Ep}.

Before the other calculation steps of the mth rotation transformation in the second round, it is necessary to judge whether the sets $S_{BM_{1}}$ and $S_{EM_{1}}$ meet the conditions for stopping rotation. If the conditions for stopping rotation are unsatisfied, then it must be continued to complete the mth rotation transformation until the bottleneck intersections meet the conditions of stopping rotation, where $F_{A} = 1$.

2.4.2. Conditions for Stopping the Rotation

Condition 1. $\exists I_{k} \in (S_{BM_{1}} \cap S_{EM_{1}})$, that is, there are both bottleneck points of the beginning and end PTC lines at intersection I_{k}. At this time, the ratio of the bandwidth R_{m} equals the split of the coordinated phase at I_{k}, which means that it has already reached the maximum value of the bandwidth ratio. Therefore, there is no need to continue the rotation transformation of the PTC line.

Condition 2. $\exists I_{l} \in S_{EM_{1}}, I_{j} \in S_{BM_{1}}, I_{k} \in S_{EM_{1}}$, and $i < j < k$, that is, there are two bottleneck intersections of the end PTC line located upstream and downstream of a bottleneck intersection of the beginning PTC line, respectively.
Our second step is to optimize the intersection coordinated modes, and the first round of the rotation transformation routine can be presented below.

First Round Rotation Transformation Procedure

Step 0. Determine the crossing point O_{Lp}, O_{Rp}, and O_{Gp}

First, let $y_{Lp} = D_p / (V(1,p-1))$. Then, if $\text{mod}((y_{Lp} \cdot |C_i|/2), 2) = 0$, y_{Rp} equals $C_i \cdot (y_{Lp} \cdot |C_i|/2) + C_i/2$ and y_{Gp} equals $C_i \cdot (y_{Lp} \cdot |C_i|/2) + 1/2$. If $y_{Rp} = C_i \cdot (y_{Lp} \cdot |C_i|/2) - C_i/2$ and $y_{Gp} = C_i \cdot (y_{Lp} \cdot |C_i|/2) + 1/2.$

Step 1. Calculate the primary judgment factor f_{p} as shown in Equation (4).

Step 2. Make a judgment of whether ray l_{Rp} and l_{Gp} pass through the red interval of any intersection I_q ($1 < q < p$) or not.

If $|D_q / V_{Gp} - y_{R(p,q)}| \leq 0.5 \cdot C_i \cdot \lambda_p$, $f_{BP}(q) = 0$, otherwise $f_{BP}(q) = 1$ and $T_{G(p,q)} = |D_q / V_{Gp} - y_{R(p,q)} - 0.5 \cdot C_i \cdot \lambda_p|$. If $|D_q / V_{Gp} - y_{G(p,q)}| \leq 0.5 \cdot C_i \cdot \lambda_p$, $f_{GP}(q) = 0$, otherwise $f_{GP}(q) = 1$ and $T_{G(p,q)} = |D_q / V_{Gp} - y_{G(p,q)} - 0.5 \cdot C_i \cdot \lambda_p|$. $y_{R(p,q)}$ ($y_{G(p,q)}$) is the ordinate of the green center point of I_q which is closest to the crossing point of I_{Rp} (I_{Gp}) and the timeline of I_q and λ_p is the green split of I_p.

Step 3. Determine the coordinated mode of I_p.

If $f_{p} \geq 0$ and $\sum_{q=2}^{p-1} f_{G(p,q)} = 0$, or $f_{p} < 0$ and $\sum_{q=2}^{p-1} f_{B(p,q)} > 0$ and $\sum_{q=2}^{p-1} f_{G(p,q)} = 0$, or $\sum_{q=2}^{p-1} f_{B(p,q)} > 0$, $\sum_{q=2}^{p-1} f_{G(p,q)} > 0$ and $\max (T_{G(p,q)}, \ldots, T_{G(p,p-1)}) < \max (T_{R(p,q)}, \ldots, T_{R(p,p-1)})$, the coordinated mode judgment factor F_p equals 0.

If $f_{p} < 0$ and $\sum_{q=2}^{p-1} f_{R(p,q)} = 0$, or $f_{p} \geq 0$, $\sum_{q=2}^{p-1} f_{G(p,q)} > 0$ and $\sum_{q=2}^{p-1} f_{R(p,q)} = 0$, or $\sum_{q=2}^{p-1} f_{G(p,q)} > 0$ and $\max (T_{G(p,q)}, \ldots, T_{G(p,p-1)}) > \max (T_{R(p,q)}, \ldots, T_{R(p,p-1)})$, the coordinated mode judgment factor F_p equals 1.

Step 4. PTC line optimization.

If $F_p = 0$ and V_{Gp} is within the rotation range, calculate V_{Gp} as shown in Equation (3), and then let $V_{(1,p)}$ equal V_{Gp}, else if $F_p = 1$ and V_{Rp} is within the rotation range, calculate V_{Rp} and then let $V_{(1,p)}$ equal V_{Rp}, else $V_{(1,p)} = V_{(1,p-1)}$.

Step 5. Make a judgment of whether p equals n or not. If $p < n$, let p equal $p + 1$ and then return to Step 0.

The corresponding bandwidth will decrease when we increase the progression speed and rotate the PTC line clockwise, as shown in Figure 6(a). Furthermore, when we reduce the progression speed and rotate the PTC line counter-clockwise the corresponding bandwidth will decrease, as shown in Figure 6(b). Therefore, the further rotation transformation of the PTC line has to be finished.

Condition 3. $\exists I_j \in S_{Bm-1}$, $I_j \in S_{Bm-1}$, and $i < j < k$, that is, there are two bottleneck intersections of the beginning PTC line located upstream and downstream of a bottleneck intersection of the end PTC line, respectively.

2.4.3. Rotation Points and Direction Recognition. It is necessary to determine the rotation points and direction according to the relationship between the rotation points.
transformation and the progression bandwidth during the
mth rotation transformation in the second round.

When increasing the progression speed, that is,
$V_{(2, m)} > V_{(2, m-1)}$, the rotation point of L_{Bm} should fall at the
most downstream bottleneck intersection in S_{Bm-1}, and the
rotation point of L_{Em} should fall at the most upstream
bottleneck intersection in S_{Em-1}, as shown in Figures 8(a)
and 8(b). Therefore, when rotating the PTC line clockwise,
we should select intersections $I_i \in S_{Em-1}$, $I_j \in S_{Bm-1}$ to en-
sure that $\forall I_k \in S_{Em-1}$ satisfies $i \leq k$ and $\forall I_j \in S_{Bm-1}$ satisfies
$j \geq l$. Then, the bottleneck point P_{Ei} and P_{Bj} should be taken
as the rotation points.
When reducing the progression speed, that is, $V_{(2,m)} < V_{(2,m-1)}$, the rotation point of L_{Em} should fall at the most downstream bottleneck intersection in S_{Em-1}, and the rotation point of L_{Bm} should fall at the most upstream bottleneck intersection in S_{Bm-1}, as shown in Figures 8(c) and 8(d). Therefore, when rotating the PTC line counter-clockwise, we should select intersections $I_i \in S_{Em-1}$, $I_j \in S_{Bm-1}$ to ensure that $\forall I_k \in S_{Em-1}$ satisfies $i \geq k$ and $\forall I_l \in S_{Bm-1}$ satisfies $j \leq l$. Then, the bottleneck point P_{Ei} and P_{Bl} should be taken as the rotation points.
\(D_m \) is defined as the abscissa difference between the bottleneck rotation points \(P_{Bj} \) and \(P_{Ei} \) in the \(m \)th rotation transformation in the second round, that is, \(D_m = x_j - x_i \). Then, the bandwidth \(b_m \) can be calculated as follows:

\[
b_m = b_{m-1} + \Delta b_m = b_{m-1} + D_m \cdot \left(\frac{1}{V_{(2,m)}} - \frac{1}{V_{(2,m-1)}} \right),
\]

where \(\Delta b_m \) is the bandwidth increment resulting from the transformation of the progression speed from \(V_{(2,m-1)} \) to \(V_{(2,m)} \).

We define a Boolean variable \(K_{Dm} \) as the judgment factor of the rotation direction. When \(K_{Dm} \) equals 0, the rotation direction is the counter-clockwise rotation, whereas the rotation direction is the clockwise rotation when \(K_{Dm} \) equals 1.

Scenario 1. If \(\forall I_k \in S_{Em-1} \) and \(\forall I_l \in S_{Bm-1} \) satisfy \(k < l \), that is, all the bottleneck intersections of the end PTC line are located upstream of any bottleneck intersection of the beginning PTC line, then \(D_m > 0 \). At this time, if the PTC line is rotated clockwise, \(V_{(2,m)} > V_{(2,m-1)} \), the obtained bandwidth after the rotation will decrease according to Equation (5). If the PTC line is rotated counter-clockwise, \(V_{(2,m)} < V_{(2,m-1)} \), the obtained bandwidth after the rotation will increase according to Equation (5). Therefore, the rotation direction in Scenario 1 should be determined as the counter-clockwise rotation, \(K_{Dm} = 0 \).

Scenario 2. If \(\forall I_k \in S_{Em-1} \) and \(\forall I_l \in S_{Bm-1} \) satisfy \(k > l \), that is, all of the bottleneck intersections of the end PTC line are located downstream of any bottleneck intersection of the beginning PTC line, then \(D_m < 0 \). At this time, if the PTC line is rotated clockwise, \(V_{(2,m)} > V_{(2,m-1)} \), the obtained bandwidth after the rotation will increase according to Equation (5). If the PTC line is rotated counter-clockwise, \(V_{(2,m)} < V_{(2,m-1)} \), the obtained bandwidth after the rotation will decrease according to Equation (5). Therefore, the rotation direction in Scenario 2 should be determined as the clockwise rotation, \(K_{Dm} = 1 \).

2.4.4. **Rotation Angle Calculation.** Taking the bottleneck point of the end PTC line \(P_{Ei} \) and the bottleneck point of the beginning PTC line \(P_{Bj} \) as extreme points, we can calculate the rotation angle formed with other designated crossing points and determine the adjusted speed comprehensively after the rotation transformation.

The green endpoint of the coordinated phase crossed by the end PTC line \(L_{Em} \) at intersection \(I_k (1 \leq k \leq n) \) is defined as \(P_{Eg} \), and the green start point of the coordinated phase crossed by the beginning PTC line \(L_{Bm} \) at \(I_k (1 \leq k \leq n) \) is defined as \(P_{Bg} \).

The adjusted speed \(V_{Fk} (V_{Sk}) \) corresponding to the rotation line \(L_{Fk} (L_{Sk}) \) formed by connecting points \(P_{Bg} (P_{Bj}) \) and \(P_{Eg} (P_{Ei}) \) can be calculated by the following equation:

\[
V_{Fk}(V_{Sk}) = \frac{x_k - x_i}{y_{Fk} - y_{Ei}} \cdot \left(\frac{x_k - x_i}{y_{Sk} - y_{Bj}} \right).
\]

Here, \(y_{Fk} \) and \(y_{Ei} \) represent the ordinate of points \(P_{Fk} \) and \(P_{Ei} \) respectively; \(y_{Sk} \) and \(y_{Bj} \) represent the ordinate of points \(P_{Sk} \) and \(P_{Bj} \) respectively.

If \(K_{Dm} \) equals 0, we should connect points \(P_{Fg} \) and \(P_{Eg} \) (\(i + 1 \leq g \leq j \)) in turn to form the rotation line \(L_{Pg} \). When the corresponding adjusted speed \(V_{Fg} \) is within the adjusted speed range, the eligible \(V_{Fg} \) is incorporated into the optimal vehicle speed set, \(S_{Vm} \), obtained after the \(m \)th rotation transformation. Meanwhile, \(P_{Bj} \) and \(P_{Sk} \) (\(1 \leq h \leq j \)) are connected to form the rotation line \(L_{Sh} \). When the corresponding adjusted speed \(V_{Sh} \) is within the adjusted speed range, the eligible \(V_{Sh} \) is incorporated into \(S_{Vm} \). Then, we have to select the maximum value in \(S_{Vm} \) as the adjusted speed \(V_{(2,m)} \) determined by the \(m \)th rotation transformation of the vehicle PTC line in the second round, as shown in Figure 9(a).

If \(K_{Dm} \) equals 1, we should connect points \(P_{Bg} \) and \(P_{Eg} \) (\(1 \leq g \leq i \)) in turn to form the rotation line \(L_{Pg} \). When \(V_{Fg} \) is within the adjusted speed range, the eligible \(V_{Fg} \) is incorporated into \(S_{Vm} \). Meanwhile, points \(P_{Bj} \) and \(P_{Sh} \) (\(j + 1 \leq h \leq n \)) are connected to form the rotation line \(L_{Sh} \). When \(V_{Sh} \) is within the adjusted speed range, the eligible \(V_{Sh} \) is incorporated into \(S_{Vm} \). Then, we have to select the minimum value in \(S_{Vm} \) as \(V_{(2,m)} \), as shown in Figure 9(b).

According to \(V_{(2,m)} \), the end PTC line \(L_{Em} \) and the beginning PTC line \(L_{Bm} \) in the outbound direction can be obtained after the rotation transformation. Before entering the next rotation transformation in the second round, the sets of the bottleneck intersections can be updated as \(S_{Em} \) and \(S_{Bm} \) according to \(L_{Em} \) and \(L_{Bm} \).

2.5. **Scheme Generation**

2.5.1. **Optimal Common Signal Cycle Calculation.** The optimal adjusted speed \(V_B \) can be calculated according to the final PTC line obtained after the rotation transformations in the second round. According to the vertical scaling of the time-space diagram, the optimal common signal cycle \(C_B \) can be calculated by the following equation:

\[
C_B = \frac{C_t \cdot V_B}{V}.
\]

2.5.2. **Offset Calculation.** When the coordinated mode of each intersection and the optimal common signal cycle have been determined, combined with the known split distribution scheme, the green interval of the coordinated phase and absolute offset of each intersection can be calculated. The absolute offset of the intersection \(I_p \) (\(1 \leq p \leq n \)) is the beginning of the coordinated phase at \(I_p \) defined as \(O_p \). While the green center point of the coordinated phase at intersection \(I_l \) is defined as the offset reference point with a value
Our third step is to optimize the common signal cycle and offsets, and the second round of the rotation transformation routine can be presented below.

Second Round Rotation Transformation Procedure

Step0. Determine the bottleneck intersections and the set $S_{Bm,1}$ and $S_{Em,1}$.

According to F_p, $V_{(2,m-1),j}$, C_1, and λ_p, draw the beginning and end PTC lines in the time-space diagram. If I_p is the bottleneck intersection of the beginning PTC line, let $K_{p(m-1),p} = 1$ and add I_p in set $S_{Bm,1}$, else $K_{p(m-1),p} = 0$. And if I_p is the bottleneck intersection of the end PTC line, let $K_{p(m-1),p} = 1$ and add I_p in set $S_{Em,1}$, else $K_{p(m-1),p} = 0$.

Step1. Make a judgment of whether the sets $S_{Bm,1}$ and $S_{Em,1}$ meet any condition for stopping rotation.

If $\exists I_k \in (S_{Bm,1} \cap S_{Em,1})$, or $\exists I_i \in S_{Em,1}, I_j \in S_{Bm,1}, I_k \in S_{Em,1}$ and $i < j < k$, or $\exists I_k \in S_{Bm,1}, I_j \in S_{Em,1}, I_i \in S_{Bm,1}$ and $i < j < k$, then $F_A = 1$, finish the second round of rotation transformation. Otherwise, if $F_A = 0$, proceed to Step 2.

Step2. Determine the rotation direction.

If $\forall I_k \in S_{Em,1}, \forall I_i \in S_{Bm,1}$, and $k < l$, let $K_{Dm} = 0$, else if $\forall I_k \in S_{Em,1}, \forall I_i \in S_{Bm,1}$, and $k > l$, let $K_{Dm} = 1$.

Step3. Determine the rotation angle.

If $K_{Dm} = 0$, connect points P_{Ei} and P_{Eg} ($i + 1 \leq g \leq n$), points P_{Bj} and P_{Bh} ($1 \leq h \leq j - 1$) in turn, calculate the corresponding V_{Eg} and V_{Bh} as shown in Equation (6), add the eligible V_{Eg} and V_{Bh} in set S_{ym}, then select the maximum value in S_{ym} as the updated adjusted speed $V_{(2,m)}$.

If $K_{Dm} = 1$, connect points P_{Ei} and P_{Eg} ($1 \leq g \leq i - 1$), points P_{Bj} and P_{Bh} ($j + 1 \leq h \leq n$) in turn, calculate the corresponding V_{Eg} and V_{Bh} as shown in Equation (6), add the eligible V_{Eg} and V_{Bh} in set S_{ym}, then select the minimum value in S_{ym} as the updated adjusted speed $V_{(2,m)}$.

Step4. Let $m = m + 1$, and return to Step 0.

Algorithm 3: Second round rotation transformation procedure.

![Figure 9: Rotation angle determination.](image-url)
the progression design speed is 40 km/h, which approximately equals 11 m/s.

2.7. Scheme Generation. The proposed method can obtain the scheme through a limited number of rule-guided drawings, and it is suitable for engineering applications. The related process can be shown as follows:

2.7.1. Initialization. The initial common signal cycle \(C_1 \) is valued as the midpoint between the minimum common signal cycle \(C_{\text{min}} \) and the maximum common signal cycle \(C_{\text{max}} \), which is 80 s. Because the progression design speeds of all the road sections are 11 m/s, there is no need to adjust the intersection distance. When the initial common signal cycle \(C_1 \) is unchanged, the adjusted speed range can be determined as [8.25, 13.75] m/s.

2.7.2. The First Round of Rotation Transformation. The green center point of the coordinated phase at intersection \(I_1 \) is defined as the reference point \(O_{L1} \) of the coordinate system of the time-space diagram. A horizontal line from the reference point \(O_{L1} \) can be drawn, and then, it is rotated until the cotangent of its angle with the x-axis equals the corridor progression design speed \(V \). We can define the rotated ray as the initial PTC line \(L_1 \) and assign the value of \(V \) to adjusted speed \(V_{(1,1)} \). Then, the first rotation transformation in the first round is completed.

The intersection \(I_2 \) is selected as the current coordinated intersection. According to PTC line \(L_1 \) obtained by the first rotation transformation, the crossing point of the PTC line \(L_1 \) and the timeline of \(I_2 \) is marked as \(O_{L2} \). The nearest crossing point of the coordinated phase horizontal red (green) center line at \(I_1 \), and the timeline of \(I_2 \) is identified and recorded as \(O_{G2} \), as shown in Figure 11(a). The time difference \(T_{R2} \) between points \(O_{L2} \) and \(O_{R2} \) is 8 s, and the time difference \(T_{G2} \) between points \(O_{L2} \) and \(O_{G2} \) is 32 s. Then, \(f_2 = -24 \) s.

Ray \(l_{R2} \) does not pass through the red interval of the coordinated phase, and \(f_2 < 0 \), and then, \(l_2 \) can form a backstepping coordinated mode with \(l_1 \), where \(f_2 = 1 \).

The corresponding adjusted speed \(V_{R2} \) of \(l_{R2} \) is 8.75 m/s, within the adjusted speed range [8.25, 13.75] m/s. Therefore, \(l_{R2} \) is defined as PTC line \(L_2 \), and the value of \(V_{R2} \) is assigned to the adjusted speed \(V_{(1,2)} \). Up to now, the second rotation transformation in the first round is finished.

Repeat the above steps to complete the 3rd to 8th rotation transformation in the first round in turn. Then, the coordinated mode between \(I_1 \) and \(I_3 \), \(I_4 \), \(I_5 \), \(I_6 \), \(I_7 \), and \(I_8 \) can be determined, respectively. The coordination process is shown in Figures 11(b)–11(g).

After the first round of rotation transformation, \(I_2 \), \(I_5 \), and \(I_8 \) form a backstepping coordinated mode with \(I_1 \), \(F_2 = F_5 = F_8 = 1 \), whereas the intersections \(I_3 \), \(I_4 \), \(I_6 \) and \(I_7 \) form a synchronous coordinated mode with \(I_1 \), \(F_3 = F_4 = F_6 = F_7 = 0 \). The adjusted speed is 11.40 m/s, and the time-space diagram obtained after the first round of rotation transformation is shown in Figure 11(h). The corresponding bandwidth is 24 s, and the bandwidth ratio is 30.0%.

2.7.3. The Second Round of Rotation Transformation. According to the adjusted speed \(V_{(1,8)} \) finally obtained after the first round of rotation transformation, the end PTC line of vehicle band \(L_{B0} \) and the beginning PTC line of vehicle band \(L_{B0} \) of the outbound progression can be drawn, as shown in Figure 12. Meanwhile, the bottleneck intersections of the end PTC line are put into the set \(S_{B0} = \{ I_5 \} \). Also, the bottleneck intersections of the beginning PTC line are put into the set \(S_{B0} = \{ I_3 \} \).

The set \(S_{B0} \) and \(S_{B0} \) do not meet any conditions for stopping rotation. Then, we have to complete the first rotation transformation in the second round.

Because the only bottleneck intersection of the end PTC line \(I_7 \) is located downstream of the only bottleneck intersection of the beginning PTC line \(I_8 \), it corresponds to the rotation direction judgment Scenario 2. Therefore, the PTC
The red interval of coordinated phase
The green interval of coordinated phase
The range of adjusted speed

Figure 11: Continued.
line can be rotated clockwise. Furthermore, the most upstream bottleneck point \(P_{BG} \) is selected as the rotation point of the end PTC line, whereas the most downstream bottleneck point \(P_{B3} \) is selected as the rotation point of the beginning PTC line.

As shown in Figure 12, we can connect points \(P_{E2} \) (\(P_{B3} \)) and \(P_{Eg} \) (\(1 \leq g \leq 6 \)) (\(P_{Sb} \) (\(4 \leq h \leq 8 \))) to form the rotation line \(L_{Eg} \) (\(L_{Sb} \)) and determine whether the corresponding adjusted speed \(V_{Eg} \) (\(V_{Sb} \)) is within the adjusted speed range. The calculation results are shown in Table 1.

It can be seen from Table 1 that \(S_{V1} = \{ V_{E1}, V_{F2}, V_{F4}, V_{F5}, V_{S6}, V_{S8} \} \). Then, select the minimum value \(V_{E1} \) in \(S_{V1} \) as the adjusted speed \(V_{(2, 1)} \). Then, \(V_{(2, 1)} \) is 12.11 m/s.

According to \(V_{(2, 1)} \), the end PTC line \(L_{E1} \) and the beginning PTC line \(L_{B1} \) of the outbound progression can be drawn. Determine the bottleneck intersections set of the end PTC line \(S_{E1} = \{ I_1, I_7 \} \) and the beginning PTC line bottleneck intersections set \(S_{B1} = \{ I_3 \} \), according to \(L_{E1} \) and \(L_{B1} \). Then, the updating of the sets of bottleneck intersections is completed, as shown in Figure 13.

The sets \(S_{E1} \) and \(S_{B1} \) meet one of the conditions for stopping rotation. At this time, \(\exists I_1 \in S_{E1}, I_3 \in S_{B1}, I_7 \in S_{E1} \), that is, there are two bottleneck intersections of the end PTC line located upstream and downstream of a bottleneck intersection of the beginning PTC line, which satisfies Condition 2 for stopping the rotation. Therefore, we can stop the further rotation transformation of the PTC line, and the second round of rotation transformation is finished.

2.7.4. Scheme Generation. The optimal adjusted speed \(V_B \) is 12.11 m/s, according to the final PTC line obtained after the second round of rotation transformation. Combined with the progression design speed \(V \), it can be calculated that the optimal common signal cycle \(C_B \) is 88 s.
According to the coordinated mode of each intersection and the optimal common signal cycle obtained after the two rounds of rotation transformation, combined with the green signal ratio distribution scheme, the green interval of the coordinated phase and absolute offset of each intersection can be calculated. The time-space diagram finally obtained is shown in Figure 14. The corresponding progression bandwidth is 32.85 s, and the bandwidth ratio reaches 37.3%.

2.7.5. Programmatic Solution. The proposed solution logic steps can be solved graphically and programmed to quickly obtain an optimal signal coordination control scheme. The above case can be solved by python programming to obtain the optimal signal coordination control scheme. The experimental environment of the model solver is the Windows 10 64-bit operating system, and the CPU is intel i5-6600 3.30GHz. The optimal signal coordination control scheme obtained by programming is the same as the graphical way, with a solution time of only 2.3×10^{-3} s.

2.8. Model Comparison. The MAXBAND model [7] and the improved algebraic method [20] can also be used to design the corridor progression schemes for the same case, and the calculation results are shown in Table 2. As for the coordinated mode between intersection I_1 and other intersections, the graphical method proposed in this study is consistent with the improved algebraic method and the MAXBAND model. As for the bandwidth ratio, the proposed graphical method can obtain 37.3% in both coordination directions, which is higher than the improved

| Table 1: The optional vehicle speed set during the first rotation transformation in the second round. |
|---------------------------------|-----------------|-----------------|-----------------|
| **Bottleneck points** | **The start point/endpoint of the coordinated phase** | **Adjusted speed (m/s)** | **Optional vehicle speed S_{V1}** |
| P_{E7} (2010, 268) | P_{E1} (0, 102) | $V_{E1} = 12.11$ | $V_{E1} \not\in S_{V1}$ |
| | P_{E2} (350, 144) | $V_{E2} = 13.39$ | $V_{E2} \not\in S_{V1}$ |
| | P_{E3} (750, 186) | $V_{E3} = 15.37$ | $V_{E3} \not\in S_{V1}$ |
| | P_{E4} (910, 186) | $V_{E4} = 13.41$ | $V_{E4} \not\in S_{V1}$ |
| | P_{E5} (1450, 224) | $V_{E5} = 12.73$ | $V_{E5} \in S_{V1}$ |
| | P_{E6} (1730, 266) | $V_{E6} = 140.00$ | $V_{E6} \not\in S_{V1}$ |
| P_{E3} (750, 134) | P_{E5} (910, 134) | $V_{E5} = \infty$ | $V_{E5} \not\in S_{V1}$ |
| | P_{E6} (1450, 176) | $V_{E6} = 16.67$ | $V_{E6} \not\in S_{V1}$ |
| | P_{E7} (2010, 212) | $V_{E7} = 16.15$ | $V_{E7} \not\in S_{V1}$ |
| | P_{E8} (2280, 260) | $V_{E8} = 12.11$ | $V_{E8} \not\in S_{V1}$ |

Figure 13: Updating the sets of bottleneck intersections.

Figure 14: The finally obtained time-space diagram.
algebraic method. Moreover, it also achieves the global optimal coordination effect, the same as the MAXBAND model.

Using the LINGO programming solution, the MAXBAND model can be solved in 3 s. Meanwhile, the proposed graphical method obtains the global optimal scheme in 2.3×10^{-3} s, which means the solving efficiency is more than a thousand times higher than the MAXBAND model.

It can be seen from Table 2 that for the symmetrical corridor progression design, the method proposed in this study has the advantages of solid operability, solving simplicity, and a small amount of calculation. It can obtain an ideal coordination effect and be solved by a rule-guided graphical method with a limited number of steps.

3. Conclusions

In summary, a symmetrical bidirectional corridor progression method based on graphical optimization theory is established in this study. According to the internal relationship between the PTC lines rotation transformation and the progression bandwidth, a step-by-step optimization process of symmetrical corridor progression based on the rotation transformation of the PTC lines is proposed. After a two-round rotation transformation of the PTC line, the comprehensive optimization of the intersection coordinated mode, common signal cycle, and offsets are realized.

In the first round of PTC line rotation transformation, based on the existing graphical method designing flow, we have innovatively added a process for judging whether the PTC line passes through the red interval of the intersections with a determined coordinated mode or not, achieving a more optimized choice of coordinated mode at each intersection. Meanwhile, we have innovatively proposed the second round of PTC line rotation transformation. In the second round of PTC line rotation transformation, the regular bandwidth pattern during the rotation transformation of the PTC line is explored. Innovative rules for rotation transformation stop conditions and selection of the rotation points and direction are given to achieve the re-optimization of the common signal cycle.

The proposed graphical method can be used to obtain a signal coordination control scheme by a rule-guided graphical method and be programmed. It can be seen from the case study that the bandwidth ratio obtained by the first round of rotation transformation of the proposed graphical method is 30.0%, with the optimization of the coordinated mode and the initial offsets. Then, through the second round of rotation transformation, the re-optimization of the common signal cycle and the offsets increases the bandwidth ratio to 37.3%. Finally, the effect of the corridor progression control scheme, which is better than the improved algebraic method, is ultimately the same as the global optimal result of the MAXBAND model with a more than a thousand times higher solving efficiency.

The graphical method proposed in this study has the advantages of intuitive readability, strong operability, and is particularly suitable for engineering applications. The horizontal and vertical scaling of the time-space diagram is one of the few attempts to standardize a graphic solution to corridor traffic coordination control. However, extending the graphical method to the corridor progression under the asymmetrical phasing and constructing a more applicable graphical method for corridor progression will be important for future follow-up research.

Notations

- a_p: The ideal distance between intersection I_p and I_1
- b_m: The bandwidth obtained after the mth rotation transformation in the second round
- C: The common signal cycle
- C_i (C_B): The initial (optimal) common signal cycle
- C_{max} (C_{min}): The maximum (minimum) common signal cycle
- d_p: The actual distance between intersection I_p and I_{p+1} ($1 \leq p \leq n-1$)
- d_p': The adjusted distance between intersection I_p and I_{p+1} ($1 \leq p \leq n-1$)
- D_p: The adjusted distance between the nonbenchmark intersection I_p and the benchmark intersection I_1
- D_m: The difference between the abscissa of the bottleneck rotation point of the beginning and end PTC line in the mth rotation transformation in the second round
- f_p: The primary judgment factor for the coordinated mode of intersection I_p
\(f_{G(p,q)}(f_{R(p,q)}) \): The judgment factor of whether ray \(I_{cp}(I_{Rp}) \) passes through the red interval of the intersection \(I_p (1 < q < p) \) or not

\(F_p \): The coordinated mode judgment factor of intersection \(I_p \)

\(F_A \): The termination decision parameter of the second round of rotation transformation

\(I_p \): The \(p \)th signalized intersection along the corridor in the outbound direction

\(K_{Dm} \): The rotation direction judgment factor in the \(m \)th rotation transformation in the second round

\(K_E (m-1,p) \) (\(K_{R(m-1,p)} \)): The judgment factors of the bottleneck intersection of the end and beginning PTC lines

\(I_{cp} (I_{Rp}) \): A ray passes through point \(O_{cp} (O_{Rp}) \) started at point \(O_{11} \)

\(L_p \): The PTC line obtained after the \(p \)th rotation transformation in the first round

\(L_{Bm}(L_{Em}) \): The beginning (end) PTC line obtained after the \(m \)th rotation transformation in the second round

\(L_{Fk}(L_{Sk}) \): The rotation line formed by connecting the bottleneck rotation point of the end and beginning PTC line and the coordinated phase endpoint \(P_{Fk} \) (start point \(P_{Sk} \))

\(n \): The number of signalized intersections on the corridor

\(O_p \): The absolute offset of the intersection \(I_p \) (\(1 \leq p \leq n \))

\(O_{cp} (O_{Rp}) \): The nearest crossing point of the coordinated phase horizontal green (red) center line at the intersection \(I_1 \) and the timeline of \(I_p \)

\(O_{Ip} \): The crossing point of PTC line \(I_{p-1} \) and the timeline of intersection \(I_p \)

\(P_{Ej} (P_{Bk}) \): The bottleneck point of the end (beginning) PTC line at the bottleneck intersection \(I_j \)

\(P_{Fj} (P_{Sk}) \): The green interval end (start) point of the coordinated phase that is crossed by the PTC line at intersection \(I_k \)

\(R_{mi} \): The ratio of the bandwidth obtained after the \(m \)th rotation transformation in the second round

\(S_{Em}(S_{Bm}) \): The set of bottleneck intersections of the end (beginning) PTC line obtained after the \(m \)th rotation transformation in the second round

\(S_{Vm} \): The set of optional vehicle speed obtained after the \(m \)th rotation transformation in the second round

\(T_{cp} (T_{Rp}) \): The time difference between points \(O_{Ip} \) and \(O_{cp} (O_{Rp}) \)

\(T_{R(p,q)} \) \((T_{G(p,q)} \)) \((V_{Gp}) \): The red interval crossing amount of \(I_{Rp} \) \((I_{cp}) \) in \(I_j \) (\(1 < q < p \))

\(v_p \): The progression design speed between intersection \(I_p \) and \(I_{p+1} \) (\(1 \leq p \leq n-1 \))

\(V \): The corridor progression design speed

\(V_{i,j} \): The adjusted speed obtained after the \(j \)th rotation transformation in the \(i \)th round

\(V_{p} \): The optimal adjusted speed

\(V_{Gp} (V_{Sk}) \): The adjusted speed corresponding to the line \(L_{Gp} (L_{Sk}) \)

\(x_p \): The abscissa of intersection \(I_p \) in the time-space diagram

\(y_{Gp} (y_{Rp}) \): The ordinate of point \(O_{Gp} (O_{Rp}) \) in the time-space diagram

\(y_{G(p,q)}(y_{R(p,q)}) \): The ordinate of the green center point of \(I_p \) which is closest to the intersection of ray \(I_{cp} \) \((I_{Rp}) \) and the timeline of \(I_q \) (\(1 < q < p \))

\(y_{Ip} \): The ordinate of point \(O_{Ip} \) in the time-space diagram

\(\lambda_p \): The split of the coordinated phase of the intersection \(I_{p'} \)

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the State Key Laboratory of Subtropical Building Science in China, and the PacTrans in University of Washington. This work was supported by the National Natural Science Foundation of China (61773168 and 52172326) and the Guangdong Basic and Applied Basic Research Foundation (2021A1515010727 and 2020B1515120095).

References

