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Deep Reinforcement Learning (DRL) is widely used in path planning with its powerful neural network fitting ability and learning
ability. However, existing DRL-based methods use discrete action space and do not consider the impact of historical state
information, resulting in the algorithm not being able to learn the optimal strategy to plan the path, and the planned path has arcs
or too many corners, which does not meet the actual sailing requirements of the ship. In this paper, an optimized path planning
method for coastal ships based on improved Deep Deterministic Policy Gradient (DDPG) and Douglas–Peucker (DP) algorithm
is proposed. Firstly, Long Short-Term Memory (LSTM) is used to improve the network structure of DDPG, which uses the
historical state information to approximate the current environmental state information, so that the predicted action is more
accurate. On the other hand, the traditional reward function of DDPG may lead to low learning efficiency and convergence speed
of the model. Hence, this paper improves the reward principle of traditional DDPG through the mainline reward function and
auxiliary reward function, which not only helps to plan a better path for ship but also improves the convergence speed of the
model. Secondly, aiming at the problem that too many turning points exist in the above-planned path which may increase the
navigation risk, an improved DP algorithm is proposed to further optimize the planned path to make the final path more safe and
economical. Finally, simulation experiments are carried out to verify the proposedmethod from the aspects of plan planning effect
and convergence trend. Results show that the proposed method can plan safe and economic navigation paths and has good
stability and convergence.

1. Introduction

With the development of economic globalization, trade
between countries is getting closer. Ships have been an
important means of transportation in international trade
and national transportation due to their characteristics of
large transportation capacity, low energy consumption,
small transportation cost, and green environment protec-
tion, which has a pivotal position in economic development
[1, 2]. ,e development of economy has put forward re-
quirements for maritime intelligent transportation, and ship
automation is the most basic and urgent part of the solution.
In the study of ship automation, path planning is one of the
most important parts [3–5].

,e coastal waters are different from narrow waters and
open waters. ,e narrow waters have coastline restrictions
and are relatively narrow, mainly referring to straits and
rivers. Ships sailing in open waters are not restricted by
coastlines, but dynamic obstacles such as icebergs will ap-
pear. ,ere are proven obstacles in coastal waters, and there
will be no dynamic obstacles and reefs like icebergs, but the
shore-based information obstacles (temporary obstacle
areas) such as ship-wreck area, restricted navigation area,
and military exercise area will appear. ,e path planning of
coastal ships is mainly to avoid proven obstacles and shore-
based information obstacles and plan a safe and effective
path for ships [6, 7]. ,e problem of avoiding ships belongs
to the field of collision avoidance, and there are special rules
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for collision avoidance [8], so this paper mainly avoids
proven obstacles and shore-based information obstacles. For
the coastal ship path planning problem, many methods have
been proposed by domestic and foreign scholars, mainly
including traditional path planning methods, bionic intel-
ligence algorithms, and machine learning-related algo-
rithms. Traditional path planning methods require complete
environmental information as a priori knowledge, but it is
quite difficult to obtain the surrounding environmental
information in the unknown marine environment. Bionic
intelligence algorithms regard the path planning problem as
an optimal path problem, using the path distance as a
constraint and the collision hazard and range loss as ob-
jective functions [9]. However, this kind of method is
particularly prone to local optimality, and the solution is
computationally intensive and requires very high system
performance.

In recent years, DRL has a good performance in the
field of path planning. DRL obtains the state from the
environment by interacting with the unknown environ-
ment and provides training samples for neural network. At
the same time, it can use the strong fitting ability of neural
network to complete the task better [10, 11]. At present,
most DRL-based path planning methods use algorithms
based on discrete action space, such as Q-learning and
Deep Q-learning (DQN) [12–15]. In these algorithms, the
optional actions of ships are limited, which may make it
impossible to learn an optimal path planning strategy.
Some scholars also use DDPG or A3C algorithm to es-
tablish path planning models in continuous action space
[16, 17]. However, this kind of research partly depends on
the grid environment, and grid partition strategy directly
affects the planning path. Moreover, the reward function is
defined as follows: while the ship performing an action, it
will be given a fixed positive value if its next state is closer to
the target point; otherwise, it will be given a fixed negative
value. ,is will lead to the slow convergence of the algo-
rithm, and the planned path does not conform to the ship
navigation specification. In addition, the influence of the
historical state on the current state is not considered, which
also lowers the learning efficiency and convergence speed
of the model.

,is paper focuses on the ship autonomous path plan-
ning in continuous action space and continuous environ-
ment and adopts the DDPG algorithm for path planning.
Meanwhile, in view of the poor processing capability of
time-series data in the fully connected layer of DDPG,
LSTM, which has better timing capability, is added to im-
prove the approximation accuracy and the data utilization
rate by approximating current environment state infor-
mation with historical state information. Meanwhile, the
mainline reward function and auxiliary reward function are
established to optimize the strategy of DDPG and guide the
ship to the target point by avoiding obstacles. Because of the
size of the ship, the planned path is required to be as straight
as possible, with few corners and avoiding passing through
complex obstacles, which is the biggest difference from the
path planning of unmanned vehicle and robot paths.
,erefore, this paper proposes an improved

Douglas–Peucker (DP) algorithm to optimize the planned
path so as to make it more in line with the actual navigation
requirements of ships.

In summary, the main contributions of this paper are as
follows:

(1) ,e network structure of the DDPG is improved. In
the traditional DDPG network structure, each layer
of the network is a fully connected layer network,
and only the current status data is obtained each
time, which is ignoring the historical status data. For
this reason, themethod in this paper not only obtains
the current state data of the ship but also obtains the
final training data input of the historical observation
state as a collection of current data and historical
state data. To better learn the relationship between
the historical state and the current state, this paper
changes the first layer of the DDPG network to the
LSTM that processes more time-series data, so that
the LSTM allows the DDPG to predict better actions.

(2) A ship path planning method based on the above-
improved DDPG and reward function optimization
is proposed. Aiming at the problems of low data
utilization and slow convergence speed of most
unmanned ship path planning based on deep rein-
forcement learning, this paper optimizes the tradi-
tional reward function and designs the mainline and
auxiliary reward function. ,e mainline reward
function is used to guide the ship to reach the target
point and complete the path planning task. Mean-
while, the auxiliary function gives reasonable pun-
ishment in the process of path planning, so as to
avoid obstacles. ,e ship path planning is realized by
improved DDPG and optimized reward function.

(3) A path optimization method based on the improved
Douglas-Peucker (DP) algorithm is proposed. Be-
cause of the excessive turning points in the planned
path, which increases the risk of the ship during
navigation and is not economical, this paper pro-
poses an improved DP algorithm to compare the
path. Optimization and removal of redundant
turning points make the planned path safer and
more economical and more in line with the actual
sailing requirements of the ship.

,e rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 presents the ship path
planning model based on optimized DDPG. Section 4
recommends path optimization based on an improved DP
algorithm. Section 5 introduces simulation experiments and
result analysis. Conclusion and future work are presented in
Section 6.

2. Related Research

Currently, the main fields involved in path planning contain
robotics [18, 19], unmanned vehicles [20, 21], and ships. For
ship path planning, researchers have proposed many
methods, which are mainly classified into traditional
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algorithms, bionic intelligence algorithms, and machine
learning-related algorithms.

,e traditional algorithms mainly include the speed
barrier method, A∗, Artificial Potential Field (APF), and
Rapidly Exploring Random Tree (RRT). ,e A∗ algorithm
divides the area to be searched into square lattices, checks its
adjacent squares from the starting point, then expands
around to find the target, and finally finds the path with the
least movement cost from the feasible lattices. For example,
Gao et al. [22] proposed a global path planning method for
surface unmanned ships based on an improved A∗ algo-
rithm. ,e method finds the global optimal solution in a
larger range by expanding the search region of the original
A∗ to 24 and 48 neighborhoods in the established raster
map. ,e disadvantage of this method is that it depends on
the design of the raster map, and the size and number of
raster spacing can directly affect the computational speed
and accuracy of the algorithm. Chen et al. [23] proposed a
hybrid method for global path planning of autonomous
surface ships at sea, which considers the collision risk, the
proximity of the path to obstacles, and the speed constraint
that the ship may reach while generating a ship navigation
path. Experimental results show that themethod can find the
optimal path considering collision risk and obstacle dis-
tance. Fan et al. [24] added a distance correction factor and
positive hexagonal guidance to the repulsive potential field
function to address the problems of unreachable targets and
the existence of local minimum in the traditional AFP
method, while the relative velocity method for motion target
detection and obstacle avoidance was proposed for dynamic
environments. Experiments show that the method can be
used in both static and dynamic environments. However,
when there is an equal repulsive and attractive force or when
the repulsive force at the target point is large, the ship stalls
and falls into a local optimum. Wang et al. [25] combined
the ship domain model with the artificial potential field
method to plan the path by judging the motion charac-
teristics of the obstacle, taking into account the speed and
heading of ship. Experiments show that the method can plan
out a path, but it is not practical. Xiang et al. [26] proposed
an improved two-way RRTalgorithm for local path planning
of unmanned ships. ,e algorithm solves the problem of
more course twists and turns of the original RRTplanning by
adding corner constraints to the randomly set nodes of the
original RRT [27] and setting a step length strategy. ,e
method can plan out a path quickly, but it may not be the
optimal one.

Bionic intelligent algorithms mainly include genetic
algorithm, particle swarm algorithm, and ant colony algo-
rithm. Wei et al. [28] proposed an improved genetic algo-
rithm to establish the motion model of the underwater robot
and design a reasonable crossover and variation adaptive
probability model. Experiments proved that the algorithm
effectively improved the convergence of the genetic algo-
rithm. Jiang et al. [29] proposed an improved adaptive
genetic simulated annealing algorithm, which improved the
initial population generation strategy based on the tradi-
tional genetic algorithm and introduced an improved
adaptive operator with a simulated annealing strategy in the

mutation operation. ,e experimental results show that the
algorithm may avoid falling into the local optimum and
convergence fast. Ding et al. [30] modeled the navigation
environment information extracted from the electronic
chart as the experimental data needed and adopted a particle
swarm algorithm for unmanned ship path planning with
path distance as the constrain. ,e simulation experimental
results show that the algorithm works. Lazarowska et al. [31]
converted the ship path planning problem into an optimi-
zation problem and used the ant colony algorithm to solve
the optimal path with collision hazard and range loss as the
objective function. Experiments show that the method can
plan out a ship navigation path, but it is computationally
intensive and requires very high system performance. Xie
et al. [32] proposed an improved Beetle Antenna Search
(BAS) based algorithm for the underdriven surface ship path
planning problem. Simulation experiments show that the
planned path is quite good, but the algorithm is mainly used
for offline decision-making.

Machine learning algorithms mainly refer to deep
learning algorithms, reinforcement learning algorithms, and
DRL algorithms. DRL generates training samples by
interacting with the environment and guides itself to learn a
strategy to complete the task based on these samples [33].
,e purpose of deep reinforcement learning is to maximize
the cumulative rewards that an agent receives during
training and to learn the optimal strategy [34].

Many scholars have applied DRL to ship path planning.
For example, Zhou et al. [12] proposed a DQN-based col-
laborative path planning for unmanned ships by defining
thirteen actions and letting the ship choose the optimal
action in the current state among them. ,e action space of
this method is discrete and cannot be applied to a contin-
uous action environment. Chen et al. [13] used the
Q-learning algorithm for unmanned ship path planning and
maneuvering. Using the trained model, ships could find the
correct path and navigation strategy by themselves. A
comparison with existing methods shows that the method is
more effective in self-learning and continuous optimization
and is closer to human operation. However, the method is
prone to be latitude disasters under complex navigation
conditions. Bhopale et al. [14] used an improved Q-learning
algorithm for underwater vehicle obstacle avoidance, which
forced the underwater robot to leave the unsafe area instead
of attempting new or random actions when the underwater
vehicle detected an obstacle, reducing the number of col-
lisions. Experiments show that the method allows the un-
derwater vehicle to avoid the detected obstacles. However,
the method relies on Q-tables and has a poor fitting ability.
Zhang et al. [35] proposed a behavior-based hazard
avoidance decision model for unmanned ships based on the
Sarsa algorithm and argued that it is feasible for the Sarsa
algorithm to enhance the hazard avoidance of unmanned
ships. However, the method only demonstrated the feasi-
bility at the theoretical level and was not tested in an ex-
perimental environment and no experimental results were
given. Zhang et al. [15] proposed an autonomous navigation
decision model based on hierarchical deep reinforcement
learning. ,e model consists of two main layers: a scene
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segmentation layer and an autonomous navigation decision
layer. ,e method uses the environment model, ship motion
space, reward function, and search strategy to learn the
environment state in quantized subscenes and train the
navigation strategy. Experimental results show that the
improved DRL algorithm can effectively enhance navigation
safety and collision avoidance ability, but the planned path
still has some unnecessary waypoints, which increase the
ship navigation overhead. Guo et al. [16] performed ship
path planning by combining DDPG and artificial potential
field, but it mainly focused on local collision avoidance and
did not consider the influence of the historical state on the
current state. Cao et al. [17] proposed an A3C-based target
search algorithm for underwater robots, which enables the
underwater robots through a designed asynchronous
dominance evaluation network structure to learn from their
experience and generate a search strategy and uses DRL and
dual-stream Q-learning algorithms for underwater robot
navigation to further optimize the search path. It is shown
that the agent can avoid obstacles and reach the search target
point, but this method depends on the grid environment and
the action space is discrete and it cannot be applied to the
continuous action environment.

,e feature, advantages, and disadvantages of the above-
mentioned ship path planning methods are compared, as
shown in Table 1.

To solve these problems, this paper proposes a ship path
planning model based on LSTM and DDPG.,emodel uses
the historical state information to approximate the current
environmental state information and constructs the main-
line reward function and auxiliary reward function to op-
timize the action selection strategy of DDPG to guide the
ship to avoid obstacles and reach the target point. An im-
proved DP algorithm is designed to compress and optimize
the planned path, which makes it safer and more
economical.

3. Ship Path Planning Based on
Improved DDPG

A ship path planning model is trained by ship’s actual
navigation environment information, so the actual naviga-
tion environment information should be processed firstly,
and then the structure, state space, action space, and reward
function of the model should be designed.

3.1. Coastal Ship Path Planning Framework. To improve the
safety and practicability of coastal ship path planning, this
paper proposes research methods related to path planning.
By processing environmental information to complete
marine environment modeling, the coastal ship path plan-
ning model is constructed according to safety and economic
indicators. ,e coastal ship path planning framework is
shown in Figure 1.

As can be seen from Figure 1, the framework includes two
parts: marine environment modeling and path planning of
coastal ships. First, the marine environmental information is
processed and the experimental environment is constructed

using quantitative environmental data. At the same time, the
ship state space is designed to analyze actual navigation
characteristics. Secondly, according to the design of the rele-
vant algorithm based on the combination of the DDPG al-
gorithm and the path planning method, the path planning
model based on the improved DDPG is obtained by improving
the network structure of the DDPG algorithm and optimizing
the reward function. In response to the actual navigation re-
quirements of the ship, this paper proposes an improved DP
algorithm to optimize the planned path, so that the final path is
safer and more economical. In this section, we mainly intro-
duce the modeling of the marine environment and the path
planning model based on the improved DDPG. Path opti-
mization based on the improved DP algorithm will be in-
troduced in Section 4.

3.2. Ship Actual Navigation Information Processing. When
processing the actual navigation environment information
of the ship, first the Mercator transformation method is used
to convert the longitude and latitude of the obstacle and the
ship’s starting and target point into coordinates in the
Cartesian coordinate system. ,en the smallest area
enclosing the starting point and target point is regarded as
the target environment, and coordinates of obstacles are
scaled to the target environment. Finally, each obstacle is
replaced with an expanded circumscribed circle to prevent
the planned path from being too close to the obstacle and
increase the navigation risk of the ship.

Visibility Graph is adopted to obtain the circumcircle of
an obstacle. Assume that the number of vertices of an ob-
stacle is n. A polygon is obtained by drawing a line between
every two adjacent vertices. ,en the circumscribed circle of
the polygon is created. Since obstacles are not regular
polygons in the actual environment, if the center of the
polygon is defined as the center of the circle, the obstacle
might not be enclosed within it. In this paper, the center of
gravity of the polygon is regarded as the center of the circle,
and the longest one of n · (n − 1)/2 line segments generated
by connecting any two vertices of the obstacle is regarded as
the diameter of the circle.

3.3. Structure Design of the Path Planning Model Based on
Improved DDPG. DDPG can randomly select actions in the
continuous action space according to the learned strategy. It
is a deterministic policy algorithm that can output only a
certain action according to a given state. Compared with
DQN, DDPG samples fewer data and executes more effi-
ciently. ,erefore, this paper uses the DDPG algorithm for
ship path planning.

,e path planning of the ship needs to obtain the current
ship state information and then calculate the data of the
hidden layer network by formula (1). Finally, the hidden
layer network predicts an action according to the learned
strategy. ,e ship performs this action and the reward
function evaluates the state after performing the action and
gives a reward or punishment. At the same time, rewards
and penalties in turn affect the parameter update of the
network. ,rough such a cycle of learning and updating, the
model learns a good strategy for path planning.
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3.3.1. Improvement of DDPG Algorithm

(1) Improvement of the DDPG Structure. DDPG is a DRL
algorithm based on the AC framework, which includes a
policy network, called an Actor network, and an evaluation
network, called a Critic network. ,e Actor network is used

to map states to a specific action, and the Critic network is
used to estimate the action. ,e network of DDPG is
structured as the main network and target network. ,e
main network, including the main Actor and Critic network,
is used to yield and evaluate actions and update network
parameters.,e target network includes the target Actor and

Table 1: Comparison of the existing ship path planning methods.

Category Algorithm Feature Advantage Disadvantage

Traditional
algorithm

A∗
Complete path planning by

searching for feasible nodes in
the grid environment

Strong versatility ,e planned path is relatively
close to the obstacle

APF
Guide the ship to complete path
planning through attraction and

repulsion

Applicable to static and dynamic
environments

,e planned path has a curve
that does not apply to ships

RRT
By randomly sampling from the
feasible area of the environment
until reaching the target point

High speed

,e planned path is not
guaranteed to be the shortest,
and there are many turning

points

Bionic
intelligence
algorithm

Genetic
algorithm

,e search for a suitable path is
carried out mainly through step-
by-step iterations of selection,

crossover, and mutation
operations by genetic algorithms

High scalability and robustness Slow convergence speed, easy to
fall into local optimum

Ant colony
algorithm

Guiding ant colonies towards
optimal paths by mimicking the
pheromones released by ants

during foraging

Better overall, suitable for small
environments

,e convergence speed is slow,
and it is easy to fall into the local

optimum. When the
environment is large, the

algorithm execution time will
increase accordingly

Particle swarm
optimization
algorithm

,rough the interplay of each
particle’s self-awareness and the
social experience of all particles,

iterative path planning is
eventually achieved

Few parameters, fast
convergence

Easily trapped in a local
optimum

DRL
algorithm

Q-learning

,rough the establishment of the
Q table, the state, action, and

reward are saved in the Q table,
and the path is planned by

finding the action with the largest
reward in a similar state from the

Q table each time

Suitable for small environments
and limited action options

Depends on Q table, poor fitting
ability

DQN

Convert the Q table in Q-
learning into a neural network,
and use the neural network to fit
the relationship between state,
action, and reward, so as to
maximize the reward for each
predicted action and get the

optimal path

,ere is no need to look up the
action, but to predict the action

directly. After the model is
trained, it can be directly
migrated to a similar scene

,e available actions are limited

DDPG

,e selection of predictive
actions by neural networks
employs a slow update

mechanism to prevent overfitting

,ere is no restriction on the
number of actions, and the
trained model can be directly
transferred to similar scenarios

Only focus on the current state
during training, without

considering the historical state
information

Method of this
paper

Consider historical state
information, process historical
state information and current

state information through LSTM,
and design primary and

secondary reward functions to
speed up the convergence of the

algorithm

,ere is no limit on the number
of actions. Historical state
information is taken into

account, and data utilization is
increased. ,e trained model can
be directly migrated to similar

scenarios
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Critic network, which is used to update the value function
and select the optimal action according to the next state. ,e
target network does not carry out online training and
updating of network parameters. ,e target and main
network have the same neural network structure and ini-
tialization parameters. A soft update method is used to
update the target network parameters, greatly improving the
stability of learning.

In the process of path planning, the ship preferentially
avoids the nearest obstacle in the current state, because the
ship can only observe part of the environment in the current
state, which increases the difficulty of the algorithm to
predict the action [36, 37].

In the traditional DDPG network structure, each layer of
the network is a fully connected layer network, and only the
current status data is obtained each time, ignoring the
historical status data. ,e DRL algorithm learns the strategy
to complete the task by interacting with the environment. If
the data obtained in this way is not fully utilized, the learned
strategy may not be optimal, and the most effective action
may not be predicted. For this reason, this paper chooses
Long Short-TermMemory (LSTM) as the first layer network
of the Actor and Critic networks in DDPG. By integrating
current state information and historical state information,
the integrated data is used to calculate the next input to the
layer network, so that the action predicted by the algorithm
is more consistent with the current state [38, 39]. ,e im-
proved DDPG network structure is shown in Figure 2.

,e LSTM layer in the Actor network is used to receive
the ship status information st at the current moment t in the
simulation environment and integrate it with the historical
status information ht−1, and the integrated information is
recorded as ht. At the same time, ht is used to calculate the
input ot of the next layer of the network through the forget
gate and information enhancement gate of LSTM, and fi-
nally, the integrated data ht is saved through the output gate

for the next calculation. ,e calculation of ot is shown in
formula (1), where f is determined by LSTM and ω is the
network parameter of LSTM, and then enter ot into the
hidden layer composed of a 3-layer fully connected layer
network.,is can help DRL learn the optimal strategy faster.
,e number of neurons in each hidden layer is 256, and the
ReLU activation function performs nonlinear processing on
the output node of each hidden layer. Among them, in a
neural network, when the number of neurons is too small,
the network cannot have the necessary learning ability and
information processing ability. On the contrary, if there are
too many neurons, it will not only greatly increase the
complexity of the network structure but also make the
network easier to fall into a local minimum during the
learning process, and the learning speed of the network will

Marine
environmental data

Ocean data, shore-based
information extraction 

Construction of path
planning environment 

Parh planning based on
improved DDPP

algorithm

Improvement of DDPP
network structure 

Path optimization based on
improved Douglas algorithm 

Improvement of Douglas
Algorithm 

Path data

Marine environment modeling

Path planning of coastal ships

Optimization of the
reward function 

Figure 1: Coastal ship path planning framework.
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Input:state
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Figure 2: Improved DDPG network structure.
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become very slow. ,is paper comprehensively refers to the
selection of the number of neurons in literature [15] and
literature [16] and finally determines the number of neurons
in this paper. ,e DDPG algorithm predicts the best exe-
cution action in the current state according to formula (2),
where μ is the hidden layer network parameter and π is the
learned strategy. At the same time, in the last layer of the
network, the Tanh activation function is used to limit the
network single output action value between [−1, 1], and
finally, the network output action is converted into action in
the continuous action range. Critic network and Actor
network have the same network structure. ,e evaluation
value of the output action of the Critic network is the final
network result, which is called the Q value. When outputting
the final action value Q, the activation function is not used to
ensure that the output result of the network is a certain
action value, which is used to evaluate the output action of
the Actor network.

At each timestep t, the LSTM layer in the Actor network
is used to receive the ship status information st and form the
integrated state information ot:

ot � f ht;ω( 􏼁, (1)

where f is a transition function determined by LSTM, ω is
the network parameter of the LSTM, and
ht � st−T, st−T+1, . . . , st is the historical observations from
t − T to t. Inputting ot instead of ht into the hidden layer
composed of a 3-layer fully connected layer network can
help DDPG learn the optimal strategy faster. ,e number of
neurons in each hidden layer is 256, and the ReLU activation
function performs nonlinear processing on the output node
of each hidden layer. At the same time, the Tanh activation
function is used to limit the network output action value at
between [−1, 1] in the last layer of the network:

at � π ot; μ( 􏼁, (2)

where μ indicates parameters of the hidden layer. ,e Critic
network that has the same network structure as the Actor
network is used to evaluate the output action of the Actor
network. Its result is called the Q value which does not need
to be processed by the activation function in the final output.

(2) Optimized Design of Reward Function. In deep rein-
forcement learning, the reward function plays an important
role in evaluating the effectiveness of behavior decision and
the safety of obstacle avoidance. ,e goal of deep rein-
forcement learning is to obtain the most rewarding search
strategy in the process of ship navigation. When designing
the reward function, the ship should avoid the obstacles
safely and quickly to reach the target point. At present, most
of the reward functions used in the path planning of un-
manned ship based on deep reinforcement learning are fixed
positive reward values when the next state of the ship is
closer to the target point after the ship performs the action.
Otherwise, given a fixed negative reward value, the use of
this reward function will lead to slow convergence speed of
the deep reinforcement learning algorithm. And the planned
path does not meet the ship navigation specifications [40].

Based on the traditional reward function, this paper opti-
mizes and designs the mainline reward function and aux-
iliary reward function. ,e mainline reward function is used
to guide the ship to reach the target point and complete the
path planning task. At the same time, the path planning task
is further decomposed into subobjectives, and auxiliary
reward functions are designed, respectively, so as to guide
the agent to seek advantages and avoid disadvantages and
improve the probability of mainline events. In order to
ensure the core status and attractiveness of the mainline
reward function, the absolute value of the auxiliary reward
function is set relatively small to avoid affecting the guiding
role of the mainline reward function. In this paper, the
auxiliary reward function is divided into two parts: the first
part is the punishment near the obstacle, the second part is
the reward near the target point. ,e punishment near the
obstacle is mainly used to help the ship learn to avoid the
obstacle strategy, and the reward near the target point is used
to help the ship move towards the target point quickly:

(1) Mainline reward function: the primary reward
function is divided into two parts. One part is mainly
used to guide the ship to move towards the target
point in the process of ship navigation to complete
the path planning task. ,e other part is to give the
ship a larger final reward to encourage the ship to
reach the target point. For the first part, in order to
make the ship move to the target point as much as
possible, the reward function set in this paper is
shown in the following formula:

reward � − dgoal + α
κ

κ + min dobs( 􏼁
􏼠 􏼡

σ

􏼠 􏼡, (3)

where dgoal is the distance between the ship and the
target point and min(dobs) is the distance between
the ship and the nearest obstacle, κ is the adjustment
factor, which is used to adjust the impact of the
nearest obstacle on the reward in general, and σ is the
index coefficient, which has the same effect with κ.
,e value of σ and κ is [1, 10]. For the second part, in
order to guide the ship to reach the target point and
ensure the core status and attractiveness of the
mainline reward function, this paper selects
reward �10 as the final reward to reach the target
point.

(2) Auxiliary reward function: auxiliary reward function
is divided into punishment near obstacles and re-
ward near target point. Its main function is to assist
the mainline reward function to let ships learn the
strategy of avoiding obstacles and reaching target
point quickly.

,e penalty near the obstacle refers to the fact that when
the ship has not met the obstacle near the obstacle (here-
inafter referred to as the dangerous area), in order to help the
ship leave the area quickly, the penalty should be increased
near the obstacle. ,e penalty value is inversely proportional
to the distance between the ship and the obstacle. Similarly,
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in order to avoid falling into the local optimum, the pun-
ishment in the dangerous area should not be too intensive,
and there is a certain gap between the punishment in the
dangerous area and that in the obstacle area. ,e specific
punishment value is calculated by

min(d obs)> α andmin(d obs)≤ β, reward � −3,

min(d obs)> β andmin(d obs)≤ δ, reward � −1.5,
􏼨

(4)

where min(d obs) is the minimum distance between the
ship and the obstacle, α, β, and δ are thresholds standing for
diverse distance ranges to the obstacle, and different pen-
alties are given in the range of α, β, and δ.

,e reward near the target point mainly refers to that
when the ship has not reached the target point near the
target point (hereinafter referred to as the reward domain),
in order to help the ship reach the target point quickly,
different rewards are given according to the distance be-
tween the ship and the target point to speed up the con-
vergence speed of the model. At the same time, in order to
prevent the ship from falling into the local optimum, the
rewards in the reward domain should not be too dense.
,ere should be a gap with the reward of reaching the target
point. ,e specific calculation method of reward value is
shown in

dgoal > z and dgoal ≤ l, reward � 1.5,

dgoal > l anddgoal ≤ ζ, reward � 1,

⎧⎨

⎩ (5)

where z, l, and ζ are thresholds representing diverse distance
ranges to the target point, dgoal is the distance between the
ship and the target point, and different rewards are given in
the range of z, l, and ζ, respectively.

3.3.2. Structure of Path Planning. Figure 3 shows the ship
path planning model based on improved DDPG. ,e model
mainly includes improved DDPG algorithm and environ-
ment model (ship’s actual environment information, action
controller, and path optimization). During the path plan-
ning process, the model first processes the ship’s actual
navigation information environment status information
according to the description in Section 3.1, which is denoted
as st. Meanwhile, it is entered into the Actor network and the
Critic network. ,en, the optimal ship action strategy is
output, which satisfies the ship’s maximum cumulative
return during the learning process, by randomly extracting
data from the experience buffer pool for repeated training
and learning. Action controller module in the environment
executes the generated action, calculates the reward value of
the ship’s execution of the action according to the reward
function, and stores the current ship state, the executed
action, the return value of the executed action, and the ship
state at the next moment after the action is executed in the
replay buffer. ,e improved DDPG uses the status and
return value to estimate the value of current actions and
constantly adjusts its value function so that its output action
is more in line with the current ship’s actual sailing status.
Finally, the planned path is further optimized through the

path optimization module, which makes the optimized path
safer and more economical. During the training process, the
Actor network in the algorithm uses Actor Optimizer, uses
deterministic policy gradients to update network parame-
ters, and continuously corrects the action strategies which is
generated. Critic network uses Critic Optimizer to train
network parameters by minimizing the loss function and
evaluate the action strategy in terms of action value.

In the process of updating the network parameters, first,
obtain some experience from the replay buffer D, and then,
obtain the target return value y _i through the target network,
and its calculation is shown in

y _i � ri + cQ′ si+1, μ′ hi+1 | Q
μ′

􏼒 􏼓θQ′
􏼒 􏼓. (6)

,en, update the main Critic network according to the
target return value y _i , and input si and ai into the main
Critic network to obtain the actual value Q and the policy
gradient ▽θμJ. ,en calculate the error of the main Critic
network according to the error equation, and update the
network by minimizing the error. ,e error equation is
shown in formula (7). At the same time, the main Actor
network is updated according to the policy gradient ▽θμJ,
and the calculation of ▽θμJ is shown in

L �
1
N

􏽘
i

si − Q si, ai|θ
Q

􏼐 􏼑􏼐 􏼑
2
, (7)

▽θμJ ≈
1
N

􏽘
ii

▽aQ s, a|θQ
􏼐 􏼑|s�si,a�μ si( )▽θμμ h|θμ( 􏼁|si

. (8)

Finally, the target network parameters are updated. ,e
target network will not directly copy the parameters of the
main network but will update the parameters in a soft update
mode; that is, the parameters are only updated a little bit
each time. ,e update is shown in formula (9):

θQ′
� τθQ

+(1 − τ)θQ′
,

θμ′ � τθμ +(1 − τ)θμ′ .

⎧⎪⎨

⎪⎩
(9)

Among them, θQ and θμ are the parameters of the main
Actor network and the main Critic network, θQ′ and θμ′ are
the parameters of the target Actor network and the target
Critic network, and τ≪ 1 is the update coefficient.

3.3.3. State Space. ,is paper mainly studies the path
planning of coastal ships. In the planning process, the ship
first needs to read and quantify the environmental infor-
mation in the nautical chart. At the same time, the ship will
receive shore-based information (shore-based information
mainly includes ship-wreck area, restricted navigation area,
and military exercise area). ,ese pieces of information are
sent by special departments. We will also read shore-based
information and quantify it and convert it into obstacle
environmental data in the experimental environment. When
planning a path, the strategy of avoiding obstacles closest to
the ship at the current moment is adopted. At each moment,
the ship navigation status information provided by the
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experimental environment mainly includes the distance
between the ship and the nearest obstacle, the distance
between the ship and the target point, and the speed and
azimuth of the ship.

Figure 4 shows the ship state information diagram in the
experimental environment at time t. A diamond represents
the ship Sship and its current position is denoted as
(xship, yship); a pentagram represents the position of the next
waypoint, namely, the target point Sgoal, and its position is
recorded as (xgoal, ygoal); a circle represents an obstacle
Sobscale � (xobs, yobs). In the environment, the north direc-
tion is the direction of axis Y; the east direction is the di-
rection of axis X; vshiP denotes the speed of the ship; (vx, vy)

represents the component of vship on the X, Y coordinate
axis separately, which can be calculated by formula (10); φv is
the speed azimuth of the ship; ϕ is the angle between the
target point and the ship speed; φobs is the relative azimuth
between the ship speed and the obstacle; dgoal is the distance
between the ship and the target point; and dobscale is the
distance between the ship and the obstacle:

vx � vship sin φv,

vy � vship cos φv.

⎧⎨

⎩ (10)

,e experimental environment is based on the position
of obstacles and the ship; the ship navigation information
fusion module calculates the distance between each obstacle
and the ship at the current time, selects the nearest obstacle
(xobs, yobs), and calculates (dxobs, dyobs) according to for-
mula (11), which represents the projections of the distance

between the ship and the obstacle at the moment t in X-axis
and Y-axis directions:

dxobs � xobs − xship,

dyobs � yobs − yship.

⎧⎨

⎩ (11)

,e state information at time t is defined as
st � [vx, vy, px, py, dxobs, dyobs,φv,ϕ], where px and py are
the projections of the distance between the ship’s position
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and the target point at the moment t in X-axis and Y-axis
directions, and they are calculated as shown in

px � xgoal − xship,

py � ygoal − yship.

⎧⎨

⎩ (12)

3.3.4. Action Space Design. During the ship’s navigation, the
pilot ensures the safety of the ship in the complex navigation
area by changing the course and speed. In ship path planning
based on improved DDPG, the ship motion is controlled by
action which is predicted by the algorithm according to the
ship state. At the same time, in order to let the agent try more
new actions to explore better action strategies and avoid
falling into the local optimum, random noise is introduced
in the training process, and the decision-making process of
the action is changed from determinism to a random
process. ,e value at of the action is sampled from the
random process. ,e action selection process is shown in
Figure 5.

In the learning process, there is a trade-off between
exploration and exploitation. On one hand, the agent needs
to choose as many different behaviors as possible to find the
optimal strategy, which can be called exploration. On the
other hand, the agent will consider the behavior with the
largest Q value to obtain huge returns, which can be called
exploitation. Exploration is very important for learning and
only through exploration can the optimal strategy be de-
termined. However, too much exploration will reduce the
performance of ship path planning and affect the learning
efficiency. Because the ε − greedy strategy can prevent the
system from falling into the local optimal, the algorithm
adopts it to complete the action selection of ship path
planning. In the ε − greedy strategy, a certain probability of
random change is increased in the process of behavior se-
lection. In the current state, the agent will randomly select
the action with probability ε to ensure that all state spaces
can be explored and choose the action amax with the largest
current Q value with probability 1 − ε to make the best use of
the knowledge learned.

In this paper, the ship’s action space mainly includes
action control strategies and action exploration strategies.
,e action control strategy mainly adopts Actor network to
predict the action of the ship.,e action exploration strategy
is to add random noise to the output action when designing
the neural network structure to encourage the ship to try
more new actions.

(1) Action Control Strategy. In our path planning model,
Actions yield by the Actor network includes the ship’s speed
increment dv, which is used to control the changes of the
magnitude of speed, and heading increment dα, which is
used to control the speed direction change, and the ship’s
movement is controlled by the speed and heading together.
,e Tanh activation function is used to ensure that the
output value of the neural network is between −1 and 1. ,e
update formulas for heading, speed, and ship position in this
paper are shown in formulas (13)–(15), where αt is the

current heading, αt−1 is the previous heading, Mα is the
maximum heading increment that can be selected, Mv is the
maximum speed increment, (xship,t

, yship,t
) is the current ship

position, (xship,t
, yship,t

) is the ship position at the previous
time, and dt is the update time step.

αt �
αt−1 + Tanh dα( 􏼁Mα( 􏼁

π
, (13)

vt � vt−1 + Tanh dv( 􏼁Mv( 􏼁, (14)

xship,t
� xship,t

+ vt · cos αt( 􏼁 · dt,

yship,t
� xship,t

+ vt · sin αt( 􏼁 · dt.

⎧⎨

⎩ (15)

At the same time, in order to prevent the ship’s speed
from increasing endlessly, the maximum axis speed Vmax is
set. ,e maximum axis speed refers to the maximum speed
value in a single direction along the X-axis or the Y-axis.
When the maximum value of ship speed vship on the X axis
or the Y-axis is reached, no further increase is made to limit
the ship speed.

(2) Action Exploration Strategy. In terms of action explo-
ration strategies, the value of Action in algorithms such as
DQN is discrete, but the value of Action in DDPG is
continuous. Action exploration in the continuous control
space enables the unmanned ship to explore well and find
better actions. DDPG constructs an exploration policy μ′ by
adding random noise from a noise process J to the actor
policy.

μ′ st( 􏼁 � μ st( 􏼁 + J. (16)

,is paper adopts the Ornstein-Uhlenbeck (OU) noise
mentioned in the literature [27], which is generated by the
OU process and is suitable for continuous space. ,e OU
process is time-dependent, and the exploration of the en-
vironment is more efficient. ,erefore, adding OU noise to
the action policy in the DDPG algorithm can accelerate the
training speed and improve the exploration efficiency.

4. Path Optimization Based on Improved
DP Algorithm

Since the path planning model based on the improved
DDPG algorithm ultimately retains the random exploratory
nature of the ships to fully explore the environmental in-
formation, the path planned by this algorithm has many
unnecessary turning points. In order to reduce the

Random
process

sampling

Policy Network θ μ

UO noise

at μ(St)

Figure 5: Improved DDPG action selection process.
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operational risk during the actual navigation, it is necessary
to compress these inappropriate turning points. An im-
proved DP algorithm is proposed to optimize the path
planned.

,e trajectory data compression algorithms are mainly
divided into two categories: one is the nonlinear trajectory
fitting algorithm to smooth the trajectory [41], and the
optimized trajectory handled with this type of method is
more consistent with the actual robot motion trajectory, but
it is not suitable for ships. Another category is the segmented
linearization of the motion trajectory algorithm [42], which
optimizes the trajectory as segmented straight lines, and the
path optimized is in the shape of polyline. Due to the fact
that the ship’s path in the actual navigation process is
composed of several waypoints and its navigation path is a
polyline, the second type of algorithm is more suitable for
the path optimization of the ship. Among many linear
compression algorithms, the DP algorithm [43] is the most
representative and widely used algorithm.

,e DP is an algorithm that approximates the curve as a
series of discrete points, connects a straight line fictitiously
between the first and last points, and optimizes the curve as a
polyline according to the distance between every point and
the line. ,e basic idea of the algorithm is to initialize a
trade-off threshold, connect the first and last points of the
curve to a straight line, and compute the distance between
every intermediate point and the straight line. ,en find the
maximum distance dmax, and compare dmax with the
trade-off threshold: if dmax< threshold, all intermediate
points on the curve are discarded; if dmax≥ threshold, the
curve is divided into two parts by this point, and the above
process is repeated for these two parts of the curve until all
the points are processed.

In nautical practice, when ships sail along the path, more
turning points will cause additional resource consumption.
,erefore, it is necessary to ensure that turning points on the
optimized path are as few as possible. Although the tradi-
tional DP algorithm is simple and relatively efficient, the
threshold value directly determines the number of turning
points in the optimized path. ,ere will be the following
problems: if the threshold is too large, the optimized path
may pass through the obstacle; if the threshold is too small,
there may still be some turning points to be removed.
,erefore, it is necessary to improve the DP algorithm.

4.1. Improvement of DP Algorithm. ,e basic idea of the
improvement is to remove the superfluous turning points in
the path to the maximum extent and to ensure that the path
can avoid all obstacles.,e specific approach is to reoptimize
the path obtained by the traditional DP algorithm to reduce
the unnecessary turning points.

First of all, the last track point of the path is set as the
current point. For each point starting from the first track
point to the prior point of the current point in the path, a
segment is drawn between it and the current point suc-
cessively; if there are no obstacles on the line, the path will be
updated by removing all track points between these two
points on the path.,en the second-to-last point on the path

is set as the current point, and repeat the operation when the
last track point is the current point. Repeat until the second
point is set as the current point. Finally, the optimized path
can be obtained by successively connecting the remaining
track points on the path to form a broken line.

For example, there is a path optimized by the traditional
DP algorithm; as shown in Figure 6(a), there are five track
points on the path, named A, B, C, D, and E. While the last
track point E is set as the current point, as shown in
Figure 6(b), line segment AE is drawn firstly and there is an
obstacle on it, so points B, C, and D remain; then line
segment BE is drawn and there is an obstacle on it too, so
points C and D remain, but as line segment CE is drawn,
there are no obstacles on CE, so point D is removed from the
path, as shown in Figure 6(c). Point B is removed while C is
set as the current point.

Compared with the path optimized by the tradition DP
algorithm, as shown in Figure 6(a), the turning points in the
path optimized by the improved DP algorithm, as shown in
Figure 6(c), are fewer, and there is only one turning point,
which greatly improves the economic benefits of the ship
during navigation.

4.2. Path Optimization Algorithm Based on Improved DP.
Using the improved DDPG algorithm, a trajectory curve
containing a set of points can be obtained. ,ese points are
the input of the improved DP algorithm used to optimize the
planned path. ,e steps are as follows:

Step 1. Set the value D as the threshold for whether to delete
a track point. ,e line segment between the starting point
Pstart and the ending point Pend of the trajectory curve is
taken as the chord l of the curve. Traverse all other points on
the curve, calculate the distance from each point to l, and
find the point Pmax farthest from l and the distance dmax
from Pmax to l.

Step 2. Compare the size of dmax with the threshold D; if
dmax <D, then take the line segment as the approximation of
the trajectory curve and go to Step 4.

Step 3. If dmax ≥D, divide the curve into segments PstartPmax
and PendPmax , reset the start and endpoints for each section,
and go to Step 1.

Step 4. Store all segmentation points and Pstart and Pend in a
bidirectional circular linked list denoted as P. Define the left
and right pointers pointing to Pstart and Pend, respectively.

Step 5. If left and right are pointed to two adjacent points,
go to Step 7.

Step 6. If there is no obstacle on the line segment between
the point pointed by left and the point pointed by right,
remove all the dividing points in the middle of these two
points, and go to Step 7; otherwise, let left point to the next
dividing point and go to Step 5.
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Step 7. Let the right pointer move one step forward and
pointer left point to Pstart. If pointer right reaches Pstart, the
optimization is complete, and go to Step 8; otherwise, go to
Step 5.

Step 8. Connect the remaining points in the bidirectional
circular linked list P in turn to form a fold line, which is the
optimized path of the original trajectory.

5. Experimental Verification and
Result Analysis

In this section, simulation experiments are conducted to
verify the reliability and effectiveness of the method pro-
posed in this paper. It mainly includes verification in the
simulation experimental environment and comparison with
other algorithms. It is assumed that the sea area of the ship
sails is an open sea area with no coastline but only buoys and
other obstacles. In the actual environment, the number of
proven obstacles and shore-based information in coastal
waters will be very small, so this paper sets the

corresponding number of obstacles according to the actual
situation for experimental comparison.

5.1. Environment Construction and Parameter Setting.
Python, Gym, and Matlab are used to construct an envi-
ronment for algorithm verification. Gym is a python package
used to develop and compare reinforcement learning al-
gorithms. It allows researchers to customize training sce-
narios completing tasks and visualizing the process of
completing tasks. At the same time, it also provides many
existing scenarios for researchers to verify the effectiveness
of the algorithm. Matlab is a mathematical science and
technology application software. It provides researchers with
a high-tech computing environment for scientific calcula-
tion, visualization, and interactive programming. It is widely
used in data analysis, deep learning, robotics, and control
systems.

Obtain map data information through electronic chart
platform. ,is paper selects the real sea environment as the
environment space of model training. Read the obstacles in
the nautical chart, the ship’s starting point and target point,
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Figure 6: Improved DP algorithm idea diagram. (a) Path optimized by DP algorithm. (b) Optimization thinking chart of point E. (c) Improved DP
algorithm optimized path.
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and other data firstly. ,en use the method in Section 3.1 to
process and use Python and Gym to show the processed
environment. During the process of the ship’s actual voyage
information, 1 pixel (px) corresponds to 0.1 nautical miles.
,e size of the experimental environment is set for
600px · 600px, which is equivalent to 60 nm∗ 60 nm in the
actual chart. Figure 7 shows the experimental environment
after the actual environment has been processed. ,e green
point is the ship’s starting point with coordinates [540, 540],
the red point is the ship’s target point with coordinates [60,
60], and the yellow is the obstacle part. ,e color change
around the obstacle part represents the change in the height
of the obstacle, and the dark blue part is the navigable area of
the ship.

During the training, the environment interacts with the
improved DDPG algorithm to plan the ship’s sailing path.
When there is no obstacle in the environment or it is far
away from the obstacle, the algorithm will choose the action
that preferentially approaches the target point. When it is
close to an obstacle, the algorithm will prioritize actions to
avoid the obstacle and move towards the target point while
avoiding it. ,e path planning does not end until it reaches
the target point. In this process, the algorithm continuously
interacts with the environment to improve the ability of
action decision-making. ,e parameter settings of the
proposed model in the training process are shown in Table 2.
Because the DRL algorithm takes a long time to train the
model, we generally refer to the selection of the original
algorithm and the parameter settings of better papers in the
same research field for the selection of model parameters.
Among the model parameters in Table 2, the parameter
action space is set by this paper. According to the predicted
action, the model will be mapped to a specific action through
the formula in Section 3.3.4. ,e parameter ReLU is the
activation function used in this paper. We refer to the se-
lection of the literature [9] and literature [29] for the two
parameters update factor τ and explore decay rate.

5.2. Model Validation. In order to verify the effectiveness of
this method, this section will compare the two parts of model
verification and experimental comparison. ,e model ver-
ification compares the improved DDPG algorithm in this
paper with the traditional DDPG algorithm and the im-
proved DP algorithm with the traditional DP algorithm.,e
experimental comparison mainly compares the path plan-
ned by the method proposed in this paper with the tradi-
tional DDPG algorithm, A∗ algorithm, RRT∗ algorithm,
RRT algorithm, APF algorithm, and BUG2 algorithm.

5.2.1. Improved DDPG Algorithm Validation. In path
planning, while detecting the ship reaches the target point or
collides with an obstacle, the current episode ends and the
next episode starts. For safety, if the ship is 1 nautical mile
away from the obstacle, it is considered that a collision has
been detected. Figure 8 shows the path planned by the model
under different iteration times. Since there are many turns in
the path planned by the algorithm in the initial exploration
stage, the 3D environment is not easy to display, so this

section uses the 2D environment to show the path planned
by the model under different iteration times. Among them,
the black polygons represent obstacles, and the circle around
each obstacle is the enclosing circle. ,e red circle in the
upper left corner represents the target point, the green circle
in the lower right corner is the starting point, and the blank
area in the middle is the navigable area.

As shown in Figure 8(a), in the initial 200 iterations, the
algorithm is in the initial exploration stage, and the strategy
learned is not optimal. Although the task of avoiding ob-
stacles to reach the target point is completed, there are many
exploratory actions at the target point and near the obstacle,
leading to many turning in the planned path. Figure 8(b)
shows the planned path at 600 iterations. It can be seen from
the figure that there are few broken lines near the obstacle,
and the broken lines near the target point are also reduced,
which indicates that the algorithm has learned the strategy to
avoid obstacles, but the strategy is not very stable due to the
small number of iterations. ,e planned path at 800 itera-
tions is shown in Figure 8(c). By continuous “exploration,”
the collision phenomenon is gradually reduced, and the
planned path is guaranteed from the safety aspect. Although
the path is still highly volatile, the redundant path points are
reduced considerably. ,e final planned path is shown in
Figure 8(d). It can be seen that the ship has successfully
avoided all obstacles to reach the target point. ,e planned
paths gradually tend to be stable, but there is still fluctuation,
which is due to the retention of the random exploration rate
of the action space.,e reward score of the algorithm during
the training process is shown in Figure 9.

It can be seen from Figure 9 that since there is no strategy
at the beginning of the iteration and the model is in the
exploratory stage, the episode reward is very low. From
around 200 episodes, the reward value begins to rise, but it is
still in the stage of exploring learning strategies. With the
continuous optimization of the model learning strategy, the
episode reward is on the rise. From around 700 episodes, it
can be seen that the reward starts to be stable and the model
has basically converged, but there are still poor rewards in
some episodes. ,is is because the algorithm is still ex-
ploratory during the training process, and there is still a
probability to choose some bad actions.
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,e number of training episodes and corresponding
steps of the DDPG algorithm combined with LSTM
(denoted as LSTM+DDPG) proposed in this paper and the
traditional DDPG algorithm (denoted as DDPG) is shown in
Figure 10.,e abscissa in the figure represents the number of
training rounds, and the ordinate recommends the number
of steps required from the starting point to the target point
for each iteration. ,e blue line indicates the iteration trend
of the DDPG algorithm combined with LSTM, while the red

line represents the iterative trend of the traditional DDPG
algorithm. Figure 10 clearly and intuitively shows the
convergence speed and training effect of the two algorithms
during training. It can be seen that the number of round
steps of the LSTM+DDPG starts to decrease around the
100th round, showing a trend of gradual convergence, while
the DDGP starts to converge around the 200th round. At the
same time, it can be seen that the number of round steps of
the DDPG algorithm is about 180, while the number of steps

Table 2: Parameter settings.

Name Value Description
Action space [−0.001, 0.001] Optional action of the ship
Learning rate α 0.001 Learning rate of neural network
Decay factor c 0.99 Decay factor of cumulative reward
Update factor τ 0.001 Discount factor for model
Explore decay rate 0.995 Exploration decay rate of action
Experience replay memory D 50000 Storing historical experience data
Sample size Dmin 256 Size of extracted empirical data
Episode 1000 Number of training rounds
Activation function ReLU Neuron activation function

(a) (b)

(c) (d)

Figure 8: Planned path effects under different iteration times. Planned path at (a) 200 iterations, (b) 600 iterations, (c) 800 iterations, and (d)
1000 iterations.
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of the LSTM+DDPG is about 150, which indicates that the
path planned by the DDPG algorithm has more redundancy.
In the rounds between 700 and 1000, the frequency of
fluctuations in the number of steps of the LSTM+DDPG is
very small, but the number of steps of the DDPG algorithm
fluctuates greatly. It shows that the LSTM+DDPG is better
than DDPG in terms of stability.

5.2.2. Improved DP Algorithm Verification. Since the
turning points of the ship’s navigation path during actual
sailing should be as few as possible, the turning points that
can be combined in the planned path should be handled
further. ,e DP algorithm is a relatively efficient path op-
timization algorithm so far, but its threshold value is not easy
to determine, and the optimized curve may have too many
turning points. ,e DP algorithm is improved in this paper.
Figure 11 shows the path optimized by the DP algorithm and
the path optimized by the improved DP algorithm. ,e

green circle in the lower right corner is the starting point, the
red circle in the upper left corner is the target point, the
yellow is the obstacle part, the color change around the
obstacle part represents the height change of the obstacle, the
dark blue part is the navigable area of the ship, and the white
line is the planned path.

Figure 11(a) shows the path optimized by the traditional
DP algorithm. Compared with the path without optimiza-
tion (see Figure 8(d)), it is much smoother overall, and the
number of turning points is much less. ,e number of
turning points is reduced to 3, but it can be seen from the
figure that some turning points can still be optimized.
Figure 11(b) shows the final path optimized by the improved
DP algorithm. ,e path is very smooth overall and there is
no redundant turning point. Compared with the path
without optimization, the number of turning points on the
path is reduced by 7. Compared with the path optimized by
the traditional DP algorithm, the number of turning points
is reduced to a minimum, with only one turning point. In
terms of the path length, the path length before optimization
is 101.597n miles, and the path length optimized by the
traditional DP algorithm is 80.863n miles, which is 20.734n
miles less than that without optimization. ,e path length
optimized by the improved DP algorithm is 73.1170n miles,
which is 28.48n miles less than the path without optimi-
zation and 7.746n miles less than the path optimized by the
traditional DP algorithm. From both the number of turning
points and the length, it shows that the path optimized by the
improved DP algorithm is more economical and safer.

5.3. Experimental Comparison. Figure 12 shows the path
planned by the proposed LSTM+DDPG algorithm, DDPG
algorithm, RRT algorithm, RRT∗ algorithm, APF method,
A∗ algorithm, and BUG2 algorithm in the same marine
environment.

Among them, the parameter setting of the
LSTM+DDPG algorithm is shown in Table 3.

,e path planned by the model proposed in this paper
(Figure 12(a)) has no redundant turning points, and the path
meets the actual sailing requirements of the ship and is
highly maneuverable. ,e path planned by the DDPG al-
gorithm (Figure 12(b)) has fewer turning points and shorter
distances. However, the path passes through multiple ob-
stacles, which increases the risk of navigation. ,e path
planning based on the RRTalgorithm (Figure 12(c)) is more
suitable for obstacles, but there aremore path turning points.
At the same time, the path passes through two relatively
close obstacles, which increases the risk of ship driving and is
not suitable for actual navigation regulations. ,e path
planned based on the RRT∗ algorithm (Figure 12(d)) is more
in line with the path of the ship sailing. But compared with
the path planned by the model proposed in this paper, there
is one more turning point, and the overall path length is
longer than the path planned by the model proposed in this
paper.,e path planned by the APF algorithm (Figure 12(e))
has a curvature, which does not conform to the actual
navigation path of the ship as a whole, and the planned path
passes through two relatively close obstacles, which increases
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Figure 11: Comparison of the path optimized by the DP algorithm and the path optimized by the improved DP algorithm. (a) Path
optimized by DP algorithm. (b) Path optimized by improved DP algorithm.
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the risk of ship driving. Figure 12(f) shows the path planned
by the A∗ algorithm. ,e A∗ algorithm walks in a straight
line when there is no obstacle and walks next to the obstacle
when it encounters an obstacle. It can be seen that the path
planned by the A∗ algorithm has no arc, and it passes be-
tween two obstacles that are relatively close and do not have
practical operability. ,e BUG2 algorithm will go around
obstacles when planning the path (Figure 12(g)), and the
path will stick to the obstacles. We can see that the whole

path planned with the BUG2 algorithm has no arc, and there
are relatively few turning points. However, the planned path
will also pass between two close obstacles, which is not
practical.

Figure 12(a) is planned by the method in this paper. It
can be seen that the planned path has no redundant turning
points, and the path meets the actual sailing requirements of
the ship and is highly maneuverable. Compared with the
DDPG algorithm, although the length of the method in this
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Figure 12: Paths planned by different algorithms. (a) Path planned by LSTM+DDPG algorithm. (b) Path planned by DDPG algorithm.
(c) Path planned by RRTalgorithm. (d) Path planned by RRT∗ algorithm. (e) Path planned by APF algorithm. (f ) A∗ algorithm-planned
path. (g) Path planned by BUG2 algorithm.

Table 3: Parameter settings of the comparison algorithm.

Algorithm Parameter settings
LSTM+DDPG ,e parameter settings are shown in Table 2
DDPG ,e parameter settings are shown in Table 2
A∗ 8 neighborhood search
RRT∗ Step size: 10, sampling rate: 0.1, search radius: 20, and number of iterations: 10000
RRT Step size: 5, sampling rate: 0.05, and number of iterations: 10000

APF Attraction coefficient: 1.0, repulsion coefficient: 1000.0, step length: 2, iteration number: 5000, and obstacle influence
radius: 3

BUG2 ,e distance D from the ship’s current position to the target point; the distance F from the ship to the first visible obstacle
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paper is longer, the planned path does not pass through the
multiple obstacles, which ensures the safety of the ship
during navigation. Compared with the RRT algorithm, the
number of turning points in the path planned by the method
in this paper is much smaller than that of the RRTalgorithm,
and the turning points in the path increase the risk of the
ship during navigation and reduce the economic benefits of
the ship. In the same way, the path planned by the APF
method has arcs; during the actual navigation of the ship, too
many arcs of the path will greatly reduce the economic
benefits of the ship. Compared with the method in this
paper, the BUG2 algorithm, and the A∗ algorithm, the
planned path passes through the position closer to the
obstacle, which increases the risk of the actual navigation of
the ship. Compared with the method in this paper, the RRT∗
algorithm has a larger number of path turning points than
the path planned in this paper, so the economic benefits are
lower.

In order to further compare the different paths planned
by different algorithms, this paper further compares the
length of the planned path and the number of corners.
Figure 13 and 14 represent the comparison of the length of
the path planned by different algorithms and the comparison
of turning points number of the paths planned by different
algorithms.

From Figures 13 and 14, the used DDPG algorithm, A∗
algorithm, APF algorithm, the algorithm proposed in this
paper, and the path planned by the BUG2 algorithm are
sorted according to the length from small to large, and their
values correspond to 70.515n miles, 71.2989n miles,
72.8292nmiles, 73.117n. miles, and 75.1231nmiles. It can be
seen that the path lengths planned by these algorithms are
relatively close, and the difference is not very large. ,e
longest path planned by the RRTalgorithm is 81.5172nmiles,
followed by the RRT∗ algorithm at 80.066nmiles. Compared
with the previous algorithms, the length of the path planned
by these two algorithms is relatively long. From the com-
parison of the number of corners, the number of turning
points in the path planned by the algorithm proposed in this
paper is the least of one, followed by RRT∗, BUG2 algorithm,
DDPG, and A∗ algorithm. Furthermore, the path planned by
the APF algorithm and RRT algorithm with radian, leading
to the number of turning points, cannot be calculated, so the
number of corners of the APF algorithm and the RRT

algorithm in Figure 14 is marked as n. ,rough these
comparisons, we can see that, compared with the above
algorithms, the planned path is more practical, economical,
and safer.

It can also be seen from Figures 13 and 14 that the path
length planned by the method in this paper is 73.117 nmiles,
and the number of turning points is one. Although in terms
of length, the method in this paper is longer than the DDPG,
A∗, and APF algorithms, the safety of the path planned by
these three algorithms is insufficient, and the actual ship
operability is poor. In terms of the number of turning points,
the path planned by this method has fewer turning points
than the path planned by the above six methods. On the
whole, the path planned by the method in this paper has
stronger safety, higher economic benefits, and stronger
actual ship operability.

At the same time, this paper further compares the time of
path planning with the above algorithms, as shown in
Figure 15. It can be seen from the figure that the shortest
time for the RRT algorithm to plan a path is 0.6432s. ,is is
because the RRT algorithm randomly selects points for path
planning and ends as soon as the target point is reached,
without considering issues such as path length and the
number of turning points. ,e algorithm in this paper takes
0.7845s, the DDPG algorithm takes 0.9553s, the A∗ algo-
rithm takes 1.324s, the RRT∗ algorithm takes 1.0234s, and
the APF algorithm takes 2.341s. ,e longest time for the
BUG2 method is 4.3256s; this is because the BUG2 algo-
rithm will walk around the obstacle when it encounters an
obstacle and then determine which direction to plan from, so
it takes a long time.

To further illustrate the generality of the algorithm in this
paper, the algorithm is verified in different environments.
Figure 16 shows two environments with different levels of
complexity. ,e obstacles in environment 1 are the same in
size, and the obstacles in environment 2 are different in size.
Both environments use the algorithm in this paper for path
planning and path optimization, and the effects are shown in
Figure 17.

As seen from Figure 17, the path planned by this paper
algorithm in environment 1 has only one waypoint, and
environment 2 is relatively complicated, so there are two
waypoints in the planned path. ,ere is no case that the
paths planned by the two environments are close to or
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Figure 17: Paths planned for different environments. (a) ,e path planned by this paper algorithm in environment 1. (b),e path planned
by this paper algorithm in environment 2. (c),e path planned by APF algorithm in environment 1. (d),e path planned by APF algorithm
in environment 2. (e),e path planned by A∗ algorithm in environment 1. (f ),e path planned by A∗ algorithm in environment 2. (g),e
path planned by RRTalgorithm in environment 1. (h),e path planned by RRTalgorithm in environment 2. (i) ,e path planned by RRT∗
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through the obstacles, which is in line with the actual
navigation specifications of ships.

6. Conclusions

In order to improve the safety and economy of coastal ship
path planning, this paper proposes a coastal ship path
planning method based on improved DDPG and DP. ,is
method realizes the path planning of ships through im-
proved DDPG and optimized reward function. Compared
with traditional DDPG, this method improves the conver-
gence speed of the algorithm and the utilization of data. In
addition, the improved DP algorithm is used to further
optimize the planned path, which solves the problem that
there may be more inflection points in the planned path,
making the ship’s navigation safer and more economical,
and the planned path is more in line with the actual sailing
requirements of the ship. Experimental comparison with
other path planning algorithms and verification results in
different environments show that the path planned by the
method proposed in this research has obvious advantages in
terms of path length and number of inflection points.

However, the method in this paper still cannot solve the
following problems, and these problems are also the key
parts that need to be studied in the next part of this paper:

(1) ,is paper cannot deal with the situation of dynamic
obstacles in the sea at present. ,is part is the next
research work.

(2) ,is paper cannot solve the problem when the ship
encounters another ship during the voyage, that is,
the collision avoidance operation needs to be
combined with the collision avoidance rules, which is
another work in the next research.
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