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Moving camera-based object tracking method for the intelligent transportation system (ITS) has drawn increasing attention. )e
unpredictability of driving environments and noise from the camera calibration, however, make conventional ground plane
estimation unreliable and adversely affecting the tracking result. In this paper, we propose an object tracking system using an
adaptive ground plane estimation algorithm, facilitated with constrained multiple kernel (CMK) tracking and Kalman filtering, to
continuously update the location of moving objects. )e proposed algorithm takes advantage of the structure from motion (SfM)
to estimate the pose of moving camera, and then the estimated camera’s yaw angle is used as a feedback to improve the accuracy of
the ground plane estimation. To further robustly and efficiently tracking objects under occlusion, the constrained multiple kernel
tracking technique is adopted in the proposed system to track moving objects in 3D space (depth). )e proposed system is
evaluated on several challenging datasets, and the experimental results show the favorable performance, which not only can
efficiently track on-road objects in a dashcam equipped on a free-moving vehicle but also can well handle occlusion in the tracking.

1. Introduction

Currently, video-based traffic surveillance plays an impor-
tant role in intelligent transportation systems (ITSs). And as
more and more people use the dashcam during driving,
video analysis based on dascam has thus become a very
important research area, and object tracking such as pe-
destrians and vehicles is a crucial and unavoidable task in
this field. By tracking pedestrians or vehicles, their move-
ment trajectories can be collected in the video for advanced
analysis, such as human or vehicle flow estimation, collision
avoidance of abnormal behavior, and criminal tracking.
)erefore, researchers are motivated to develop an effective
tracking system, which not only can track objects in the
scene but also is able to collect the information for higher-
level analysis.

Tracking vehicle and pedestrian in moving cameras is
quite challenging due to several reasons. First, the appear-
ance of these objects may change greatly due to nonrigid
deformation, different viewing perspectives, and other visual
attributes. Second, frequent occlusion by other objects in the
scene will cause severe identity switches. Last but not least,
object tracking in moving camera is more challenging than
that in static cameras, because of the combined effects of
rapidly changing lighting conditions, blur, and the issues
mentioned above. Moreover, many robust and effective
object tracking techniques used in static cameras cannot be
directly applied in moving camera, such as background
subtraction and constant ground plane assumption, thus
making the problem more difficult. Unlike using back-
ground-based methods to extract moving objects blobs
under static cameras, object detection is widely used in video
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analysis under moving camera. )erefore, the challenge
becomes to successfully detect objects in themoving cameras
and then apply tracking techniques to track the detected
ones, which are so-called tracking-by-detection schemes.
However, when the object is partially or fully occluded, the
detection cannot work well and thus affect the tracking
result. Hence, the constrained multiple kernel (CMK)
tracking technique was further adopted in the proposed
system and facilitated with the estimated ground plane and
Kalman filter, to overcome the occlusion issue during the
tracking.

In this paper, we extend our previous work [1] and
propose an efficient and robust 3D object tracking system
based on adaptive ground plane estimation, which also
successfully integrates structure from motion (SfM), object
detection, CMK tracking, and Kalman filter framework. )e
proposed system begins with object detection and structure
from motion for estimating camera pose. )en, the adaptive
ground planes are estimated based on the camera motions,
and the 3D location of the objects relative to the cameras can
be inferred. By taking 3D information into account, the
CMK tracking method is used to overcome the occlusion
issue during the tracking. Hence, the proposed system can
not only handle the occlusion but also estimate a reliable
ground plane simultaneously. Figure 1 shows an example of
the tracked objects on the estimated ground plane (the red
squares on the ground). )e number above the bounding
box represents the distance of the detected objects from the
camera.

)e remaining of this paper is organized as follows:
Section 2 gives a brief survey on the related work. In Section
3, we describe the proposed tracking system. )e depth
CMK tracking which includes depth map construction,
CMK tracking, hypothesized association, and Kalman filter
are described in Section 4, and Section 5 depicts the adaptive
ground plane estimation algorithm.)e experimental results
are demonstrated in Section 6. Finally, the conclusion of this
work is given in Section 7.

2. Related Work

Recently, ground plane estimation-based tracking methods
[2–6] have attracted a lot of attention. By applying the
ground plane estimation method to each frame of a video
sequence for detecting a reliable ground plane, the relative
3D location of the camera and the objects can be inferred,
thereby making the object tracking more robust.

In general, the existing ground plane estimation ap-
proaches can be roughly divided into two categories: 2D or
3D approaches based on the sensor type. Within 2D ap-
proaches, homography is the most popular approach for
ground plane estimation, which based on feature corre-
spondence to calculate every pair of consecutive frames and
the first requisite is to find a set of reliable feature points
lying on the ground plane. Usually, corner detectors such as
Harris are used to extract features, followed by a robust
estimation technique in which the dominant homography is
estimated. Arróspide et al. [7] used Kalman filtering and
Conrad and DeSouza [8] used modified expectation

maximization to build confidence in the ground plane
transformation across successive frames. Both of the two
methods assumed the camera can only see the ground plane
with objects above it, and the roll angle of sensors is zero.
With the homography decomposition results combined with
contour searching [9] or a Bayes filter [10] to estimate the
ground plane in 2D images, homography has also been
successfully used as a first step. However, again the ground
plane is assumed to be the area in front of the camera, or the
single color ground plane is assumed to occupy the majority
of the FOV.)e other 2D approaches used depth-image data
or histogram of the disparity map [11] instead of traditional
RGB image data [12, 13], and Jin et al. [14] proposed a
ground plane detection method based on depth map driven,
which grows a plane from the largest area having similar
depth values in the depth map, and the largest plane is
considered to be the ground plane. Kircali and Tek [15]
estimated the ground plane by comparing the depth map of
new coming frame with a precalibrated depth map in which
the ground plane was predefined. Skulimowski et al. [16]
used the gradient of the V-disparity pixel values to detect
ground plane which has an arbitrary camera roll angle.
Furthermore, Cherian et al. [6] reconstruct the depth map
from a single RGB image by applying multiple texture-based
filters with a Markov random field and estimate the ground
plane based on texture-based searching segmentation. Due
to the intrinsic features of the algorithm, this approach
assumed the ground plane has a unique texture and the
camera is parallel to the ground plane. Dragon et al. [17, 18]
formulate the ground plane estimation problem as a hidden
Markov model (HMM) based on temporal sampling and
decomposing of homography. )e decomposition of the
homography with the highest probability indicates the
orientation and ego motion of the camera’s movement. Man
et al. [19] develop a ground plane estimation approach based
on monocular images with a predefined region of interest,
which requires a known pitch angle of the camera.

)e ground plane estimation method in 3D commonly
utilizes the depth sensors as LIDAR [20] or TOF [21] to get
the 3D point cloud data, which can provide the 3D structure
of the environment and then be used as an effective way to
estimate the ground plane. Borrmann et al. [22] use all
points of 3D point cloud to calculate, which has high
computation cost. RANSAC-like approaches [23, 24], which
can then be used as an effective way to estimate the ground
plane, are unlimited to number of iteration.)us, processing
time cannot be guaranteed. A less expensive alternative to

Figure 1: )e ground plane estimation and 3D tracking of pe-
destrians and vehicles based on our system.
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generate 3D point clouds is the use of a stereo camera in
which the ground plane can be estimated from disparity
[25]. Assuming that the scene is static, monocular ap-
proaches for simultaneous localizing and mapping (SLAM)
can also be used to extract the 3D shape and then the ground
plane can be estimated [26, 27]. Zhang and Czarnuch [28]
proposed a perspective ground plane estimation approach
which combines the robustness of 2D and 3D data analysis.
Other 3D approaches [29–31] use the 3D normal vector for
each raw data point rather than estimation of the raw points
directly. However, we assume that the camera roll and pitch
angles are zero. More recently, machine learning technique
has been used in ground plane estimation, which requires
minimal orientation variations (i.e., 0 ∼ 15∘) [32].

Although the above approaches can successfully detect
the ground plane and achieve good experimental results,
they are specifically designed to only produce one single
ground plane based on the available data and not suitable for
the unpredictability of dynamic road conditions. In addi-
tion, these approaches do not utilize the estimated camera
pose information. In addition, the camera’s pose is the most
significant factor for representing the ground plane in the
scene. )e reliability and accuracy of the ground plane
estimation can thus be improved by taking advantage of the
camera pose information.

Our proposed tracking system is inspired by the ap-
proach in [33], which also has mounted the monocular
dashcam on a free-moving vehicle. However, due to the
driving road condition is continuously changing, if the
ground plane is only estimated in the beginning may not be
applicable for the entire video sequence, therefore, it is very
useful to take advantage of the camera’s pose information
estimated from the essential matrix calculation phase. In
contrast to the most existing ground plane estimation
methods, our approach introduces the estimated camera yaw
angle as a feedback to estimate ground plane adaptively,
which aims to overcome the deficiency of the previous
methods caused by fixed frame window for smoothing the
results. Based on the reliably estimated ground plane, we can
locate the detected objects in 3D space and combine CMK
tracking with the 3D information, so as to deal with the
partial or fully occlusion issues during tracking.

3. Overview of the Proposed System

)e proposed tracking system is shown in Figure 2. After
converting the video from the dashcam to image sequences,
there are two parallel procedures launched simultaneously.
In the structure from motion phase, the proposed system
extracts the Harris corner features in the current image at
time step t and matches them to the features observed in the
previous N frames. By using the singular value decompo-
sition (SVD), we can estimate the camera’s essential matrix
for each image frame. )en, according to the camera es-
sential matrix, the ground plane for the entire image se-
quences can thus be estimated adaptively, where we assume
the dashcam is mounted on the vehicle with a fixed height.
Meanwhile, a pretrained object detector is adopted to detect
desired objects such as vehicle and pedestrian in the image

sequences. In the pose estimation stage, the 2D locations of
detected objects can be back-projected to 3D locations by
using the estimated ground plane. Once the 3D locations of
the detected objects is obtained from the pose estimation
stage, the depth CMK tracking is applied to track them in the
Kalman filter framework. First, for each target, the 3D lo-
cations of its candidate are predicted by the Kalman filter
predication. )en, the CMK tracking is applied to relocate
the candidate’s 3D locations by maximizing the similarity
between candidates and target.)e Kalman filter continually
updates and finally gets the reliable tracking result. Besides,
based on the object’s 3D information relative to the camera
motion, a depth map can be constructed to represent the
relative 3D locations of all the detected objects. )erefore,
with the help of depth information between the targets, the
proposed system not only is able to effectively track objects
but also can overcome occlusion during the tracking.

3.1. Robust Feature Extraction. )e ideal ground plane es-
timation largely depends on the selected image feature
detector, which should contain the invariance of rotation,
scale, and image noise. Scale-invariant feature transform
(SIFT) [34] feature is a very effective scale-space feature, but
it can be very time-consuming for real-time applications. As
for the speeded-up robust features (SURFs) with lower
computational complexity, its stability is a major problem
because it often detects unstable features even after edge
suppression as a post treatment. )e Harris corner feature
detector is thus introduced to solve the above issues, which
has also been widely studied in the previous works [35–38].
Firstly, its feature extraction execution speed can be used in
real-time applications with reasonable robustness in accu-
racy. Secondly, to robustly estimate the ground plane, more
corner points on the ground plane are welcome to partic-
ipate in the calculation of the camera parameters. Figure 3
shows an example of using the Harris corner feature detector
to extract feature points. )e detected feature points in the
current image are marked with green crosses. Feature points
that are detected as outliers during the processing are
marked with red crosses. )ese points can be matched from
one image frame to the next by choosing matches that have
the highest cross-correlation of image intensity for regions
surrounding the points. )e paths of the feature points are
drawn in orange here.

3.2. Essential Matrix Calculation. Camera pose plays a
crucial role in the ground plane estimation for the entire
image sequences, and the computation of the camera yaw
angle θ is the key to calculate camera pose. According to the
study in [39], there are three camera parameters used to
describe two relative poses of a camera moving on a planar
surface, i.e., the polar coordinates (ρ,φc) and yaw angle θ of
the second position c2 relative to the first position c1 (see
Figure 4).

In addition, we can set ρ � ] · Δt, where ] is the velocity
of the vehicle and Δt is the transition time between the two
end positions c1 and c2. )erefore, only two parameters
(φ, θ) need to be calculated. In addition, according to the
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Ackermann steering principle, a circular motion called the
instantaneous center of rotation (ICR) can be used to de-
scribe the motion of a camera mounted on a vehicle. )e
linear driving can be represented along with a circle of
infinite radius. With this assumption, we can easily get
φ � θ/2. )us, there is only one parameter, and the camera
yaw angle θ needs to be calculated.

As we all know, the essential matrix can be represented
by the rotation matrix R and the translation matrix T, which
are related to the camera pose. )en, we have

R �

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

T � ρ ·

cos φ

sin φ

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(1)

where we consider the camera moves on the (x, y) plane and
rotates around the z axis. Given two coplanar points, p and
p′, which are represented as p � x y z 

T and
p′ � x′ y′ z′ 

T in the image coordinates, they must meet
the epipolar constraint:

p′
T
EP � 0, (2)

where E is the essential matrix defined as E � [T]×R. Note
that R is the rotation matrix defined in (1) and [T]× denotes
the skew symmetric matrix:

[T]× �

0 − Tz Ty

Tz 0 − Tx

− Ty TX 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

)en, using the constraint φ � θ/2 and equations (1) and
(3), we can obtain the expression of the essential matrix of
the camera moving on a planar surface:

E � ρ ·

0 0 sin
θ
2

0 0 − cos
θ
2

sin
θ
2

cos
θ
2

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)
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Figure 2: Overview of the proposed system.

Figure 3: Example of Harris corner feature point extraction.
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By replacing (4) into (2), we can notice that every image
points contribute the following homogeneous equation:

sin
θ
2

· x′z + z′x(  + cos
θ
2

· y′z − z′y(  � 0. (5)

)e rotation angle θ between a pair of successive images
can be obtained from (5) as

θ � − 2 arctan
y′z − z′y
x′z + z′x

 . (6)

Conversely, given m consecutive image points, θ can be
estimated indirectly by solving linearly for the vector
[sin(θ/2), cos(θ/2)] using SVD. To this end, a m × 2 data
matrix D is first formed, where each row is formed by the
two coefficients of equation (5), as follows:

x′z + z′x( , y′z − z′y(  . (7)

)en, the matrix D is decomposed by using SVD:

Dm×2 � Um×2Λ2×2V2×2, (8)

where the columns of V2×2 contain the eigenvectors ei of
DTD. And the eigenvector e∗ � [sin(θ/2), cos(θ/2)] cor-
responding to the minimum eigenvalue minimizes the sum
of squares of the residuals, subject to ‖e∗‖ � 1. Finally, the
yaw angle of the camera θ can be estimated from e∗.

3.3. Object Detection. Object detection is the first step in the
tracking-by-detection schemes, and accurate object detec-
tion can roughly determine the quality of the tracking
system. Unlike detecting objects under static camera, object
detection under moving cameras is more challenging due to
the dynamic background, illumination changes, and so on.
Because the background is constantly changing, the method
based on background extraction is no longer applicable for
mobile cameras. )erefore, the pretrained object detectors
are widely studied in recent years.)e work in [40] proposes
a human detector by using histogram of gradient (HOG) as
the features, which can effectively represent the shape of
human. )e deformable part model (DPM) [41] extends the
concept of [40], which uses a root and several part templates
to describe different partitions of the object, and the part
templates are spatially connected with the root template
according to the predefined geometry, thereby accurately
depicting the object. In the latest research, the convolution
neural network (CNN)-based object detector has drawn
increasing attention and has achieved favorable perfor-
mance, which can detect hundreds of objects with a high
detection accuracy.

In this paper, the objects to be detected and tracked are
mainly focusing on the pedestrians and vehicles, which
should move on the estimated ground plane. In fact, these
objects can be any objects on the road, such as bicycles and
animals. In order to avoid detecting other false objects in the
field of view, we adopt the state-of-the-art pretrained
YOLOv3 detector [42], which uses the most advanced CNN

technology to help detecting pedestrians and vehicles. )e
detector can be embedded independently in the proposed
system, so as to functionally perform object detection. To
efficiently track the object, the tracking procedure is
launched only when the object has been detected in five
consecutive image frames; otherwise, the detection is con-
sidered as a false alarm. Furthermore, the detected objects
are refined by morphological operations to accurately locate
their positions.

4. Depth CMK Tracking

In this section, we mainly describe how to track objects with
constrained multiple kernels (CMKs) in 3D space under the
framework of the Kalman filter. )e depth CMK tracking is
triggered to track the objects when its 3D locations are
obtained from the pose estimation stage (see Figure 2). In
other words, we associate the objects in the current frame
with the detected objects in the next frame facilitated with
the Kalman filtering. On the other hand, with the help of the
depth information, we can get the relative 3D locations
between the objects to overcome the occlusion in the
tracking. By effectively combining depth information and
CMK tracking into the Kalman filter framework, the pro-
posed system can not only track objects effectively but also
well handle occlusion problems during tracking.

4.1. Depth Map Construction. A depth map can be con-
structed based on the 3D location of the detected objects,
which represent the relative 3D location of all the tracked
objects. Figure 5 shows an example of the depth map, where
Figure 5(a) shows the result of detect objects and Figure 5(b)
shows the corresponding depth map. )e depth map depicts
the relative distance between the detected object and the
camera. )e higher intensity (brighter) means that the de-
tected object is closer to the camera. By using the depth map,
we can roughly assess whether an object is occluded by other
objects based on the visibility vi ∈ [0, 1]:

vi �
visible area of the i

th target
total area of the i

th target
, (9)

and if vi � 1, it means the ith target is totally visible; if
0< vi < 1, it implies the ith target is partially occluded;
otherwise, it is fully occluded by other targets. As shown in
Figure 5(a), all of the five objects are totally visible. So, the
visibility should be set to vi � 1.

4.2. CMK Tracking. In traditional kernel-based tracking, a
histogram including spatial and color information is usually
used to represent the target and candidate model. During the
histogram extraction, the contribution of a pixel is deter-
mined by the distance between the pixel and the kernel
center. In [43], the tracking problem for maximizing the
similarity simi(x) is formulated as locating x that maximizes
the probability density function (pdf) f(x):
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f(x) �


Nh

i�0 ωik x − zi( /h
����

����
2

 


Nh

i�0 k x − zi( /h
����

����
2

 

, (10)

where x is the kernel center; the subscript i represents each
pixel location inside the kernel; k(·)is a kernel function with
a convex and monotonic decreasing kernel profile. zi and ωi

are the position to be considered and the weight of a pixel,
respectively; h is the bandwidth of the kernel.

After back-projecting the 2D locations to 3D locations of
the detected object in the pose estimation stage, we use the
depth CMK tracking technique to track them. )e objective
of depth CMK tracking is to find the candidate model that
has the highest similarity to the target model, which is
composed of multiple kernels with prespecified constraints
in 3D space. For an object described by Nk kernels, the total
cost function J(X) is defined as the sum of Nk individual
kernel cost functions Jk(X), which is inversely proportional
to the similarity:

J(X) � 

Nk

k�1
Jk(X),

Jk(X)∝ 1

simik(X)
, (11)

where simik(X) is the similarity function at the location
X ∈ R3. In addition, the constraint function C(X) is used to
confine the kernels according to their spatial interrela-
tionships, and in order to maintain the relative location of
each kernel, the constraint function needs to be set by
C(X) � 0. )us, the problem is further formulated as

X � argminXJ(X), subject toC(X) � 0. (12)

However, when the object is occluded by other objects,
not all the kernels in the object can be used for matching. To
overcome this issue, we assigned an adaptively adjustable
weight wk to each kernel within the object. So, the cost
function for the ith target is as follows:

J
i
(X) � 

Nk

k�1
w

i
k · J

i
k(X). (13)

Taking the depth information into account, the visibility
of each object can be set as a weight to handle global op-
timization. In other words, the total cost function in (11)
becomes to

J(X) � 

Nq

i�1
vi · J

i
(X) � 

Nq

i�1
vi · 

Nk

k�1
w

i
k · J

i
k(X)⎛⎝ ⎞⎠, (14)

where Nq is the number of the objects in the qth image frame
and wi

k is a weight which is proportional to the similarity for
the ith target of each kernel Nk.

At the same time, the constraint functions C(X) � 0
must be considered to maintain the relative locations of the
kernels. Figure 6(a) shows an example of the object was
described by 2-kernel layouts in 2D space.

Unlike the work in [44] sets the constraints in 2D space,
the constraints set in this paper are based on the 3D ge-
ometry. Without loss of generality, we discussed the 2-kernel
case as shown in Figure 6(b), but it can be easily extended to
the multikernel case. To represent an object in the 3D space,
we define an object plane (− nq, πq) for the object in the qth

image frame, where nq is the normal vector of the qth image
frames, and πq for the offset of the plane. In order to set the
constraints properly, we start to estimate two auxiliary
vectors, which are uq � − nq × gq and u1,2 � X1 − X2. First,
the distance between two kernel centers should be remained
the same initial distance L, which implies

u1,2
����

����
2

� (L)
2
. (15)

Second, the angle ϕq between the vector uq and u1,2 and
the angle ςq between − nq and u1,2 should be kept constant as
well:

uq · u1,2

uq

�����

����� u1,2
����

����
� cos ϕq ,

− nq · u1,2

− nq

�����

����� u1,2
����

����
� cos ςq .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

)ese constraints can bind the kernels of the object to
each other in the 3D space during the tracking. As shown in
Figure 7(a), the constraint ϕq restricts the left-right move-
ment of the kernels, and the constraint ςq restricts the
forward-backward movement of the kernels which is shown
in Figure 7(b).

In order to gradually decrease the total cost function and
maintain the constraints satisfied during the candidate
model searching, the projected gradient method in [45] is

(a) (b)

Figure 5: Example of the depth map, showing (a) tracked objects and (b) the relative depth map.
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adopted to iteratively solve the constrained optimization
problem. )e basic concept of the method is to project the
movement vector δX, i.e., the gradient vector of the J(x),
onto two orthogonal spaces. One is associated with de-
creasing the total cost function, and the other is responsible
for satisfying the constraint function C(X) � 0:

δX � α − I + CX C
T
XCX 

− 1
C

T
X VWJX

+ − CX C
T
XCX 

− 1
CX 

� δA
X + δB

X,

(17)

where α is the size of searching step; I is a 3Nq × 3Nq

identity matrix,C(x) � [c1(x), . . . , cm(x)]T consists of m

constraint functions, and cj(X): R3·Nq ·Nk⟶ R is the jth

constraint function; V �

v1Iv · · · 0
⋮ ⋱ ⋮
0 · · · vNq

Iv

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦, where Iv is an

3Nk × 3Nk identity matrix, which represents the visibility of

kernels in the object; W �

w1Iw · · · 0
⋮ ⋱ ⋮
0 · · · wNk

Iw

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, where Iw is

an 3Nq × 3Nq identity matrix, which represents the simi-
larity of the object.

As proved in [44], δA
x and δB

x have the following three
characteristics. )e first one is that δA

x and δB
x are orthogonal

to each other. )e second one is that moving along the δA
x

will decrease the total cost function J(X) while keeping the
same values of the constraint function C(x). )e last one is
that moving along the δB

x can lower the absolute values of

constraint function C(x). Owing to these three character-
istics, the optimal solution can be reached in an iterative
manner. )e iteration is stopped until either the cost
function and the absolute values of constraint are both lower
than some given thresholds εj and εc, respectively, or the
iteration count is larger than a threshold T (Algorithm 1 in
[44]).

4.3. Hypothesized Association. Due to the occlusion or
unreliable detection, objects may not be detected within a
few frames. )erefore, some tracked targets cannot be
successfully associated with the detections in subsequent
frames. A hypothesized association which has been located
by the CMK tracking with the best color similarity was
inserted to consistently track a nonassociated target. By
inserting hypothetical associations, it not only can improve
the detection rate, but it also helps to continuously track the
target. When an object is occluded, we can predict the 3D
location by taking advantage of its 3D information, and a
hypothesized association is thus used to pretend a possible
detection. On the other hand, if a tracked target cannot be
successfully associated to detection for several frames
(empirically set as five frames in this work), then this target is
considered as a missed target.

4.4. Kalman Filter Prediction and Update. Kalman filter is a
traditional unscented transform-based state estimation
method, which is used to approximate the mean and co-
variance of random variables after a nonlinear conversion.
Most of tracking problems can be formulated as a state
estimation problem.)e tracking target can be regarded as a

xmin xmax

ymin

ymax

Kernel 1

Kernel 2
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X1

X2
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–nq
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L

(b)

Figure 6: (a) Layout of an object with two kernels in 2D space. (b) Illustration of the 3D-based constraints in a 2-kernel layout.
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Figure 7: Constraints for binding two kernels in 3D space along the (a) left-right direction and the (b) forward-backward direction.
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state, and the tracking problem is to predict and locate where
the target (state) will appear in the next time. For this reason,
the Kalman filter is widely used to solve tracking problems.
)e traditional Kalman filter is defined as follows:

xt � Ftxt− 1 + wt− 1,

yt � Htxt + vt,
(18)

where xt ∈ Rn and yt ∈ Rm denote the state and measure-
ment vector at the time step t, respectively; Ft is the state
transition matrix; Ht is measurement matrix;
wt− 1 ∼ N(0, Q) and vt ∼ N(0, R) are the system and mea-
surement noise, and these two random variables are un-
correlated Gaussian white-noise sequence, with their
covariance matrix Q and R, respectively.

In the stage of prediction, the predictions for state and
error covariance are as follows:

xt � Ftxt− 1, (19)

Pt � FtPt− 1F
T
t + Qt− 1. (20)

After completing the measurement, the Kalman filter
will be updated as follows:

Kt � PtH
T
t Ht

PtH
T
t + Rt 

− 1
,

xt � xt + Kt yt − Htxt( ,

Pt � I − KtHt( Pt.

(21)

)e implementation of the Kalman filter algorithm is
formulated as follows.

4.4.1. Initialization. For each object, the state vector is
defined as xt � ut vt _ut _vt at bt 

T and the measurement
vector is defined as yt � ut vt at bt 

T, where
(ut, vt), ( _ut, _vt), and (at, bt) denote the object position,
velocity, and size, respectively. Hence, the initial for the state
transition matrix Ft and the measurement matrix Ht are
defined as

Ft �

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ht �

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(22)

4.4.2. State Transition Matrix Update. In addition, the size
of object in the image sequence will probably change when it
is moving toward or away from the camera, and the
extracted color histogram used for similarity measurement is
highly dependent on the kernel size. On the other hand,
when the multiple kernel tracking is performed, the result of
segmentation might be no longer reliable for estimating the
similarity due to occlusion. Hence, the state transition
matrix needs to be modified adaptively to reflect the po-
tential size changes. So, we embed the factor of kernel size
into the matrix Ft:

Ft �

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 +
β∇f hx( 

at− 1
0

0 0 0 0 0 1 +
β∇f hy 

bt− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Input:
Output: (gk,φk)

(1) Initial frame number N� 30.
(2) Load a new frame fk, k is the number of input frames.
(3) If k<N, set D � [(g1,φ1)

T, . . . , (gk,φk)], go to step 6.
(4) If θrotation � |θk− 1 − θk− N|> θthreshold, using N∗ � |1 − (2/π) · θrotation| · N frames to estimate ground plane. Set

D � [(gk− N∗ ,φk− N∗ )
T, . . . , (gk− 1,φk− 1)

T] else set D � [(gk− N,φk− N)T, . . . , (gk− 1,φk− 1)
T]. Go to step 6.

(5) If the θrotation > (π/2) go to step 1.
(6) Input the D to RPCA and output the final (gk,φk).

ALGORITHM 1: Adaptive ground plane estimation.
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where β is the step size which also contains the smoothing
factor; ∇f(h) is the derivative of the pdf with the kernel
bandwidth h. Hence, the predict size of the object becomes
to

at

bt

  �
at− 1 + β∇f hx( 

bt− 1 + β∇f hy 
⎡⎢⎣ ⎤⎥⎦. (24)

If the object is occluded so much that the average
similarity value of all the kernels is lower than a certain
threshold, the mechanism of state transition matrix update
stops and Ft returns to the default setting as (22).

4.4.3. Measurement Noise Covariance Matrix Update.
Weuse the object tracking result as a measurement to update
the Kalman filter during the tracking. Although the system is
robust under occlusion by using multiple kernels tracking, it
still needs a mechanism to avoid the errors caused by in-
correct measurements. It can be seen from (19) and (20) that
not only does the Kalman gain Kt control the tradeoff be-
tween using the prediction and the measurement, but also it
is inversely proportional to the measurement noise co-
variance matrix R. Hence, we can adaptively adjust the
portion measurement contribution to avoid errors by
changing the covariance matrix as follows:

R �

σ2 × J(X) 0 0 0

0 σ2 × J(X) 0 0

0 0 w
2

× J(X) 0

0 0 0 h
2

× J(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

where J(X) is the total cost function of all kernels; σ2 is the
predefined variance value, and w and h are the width and
height of the kernel, respectively. With the help of the
adaptively covariance matrix, if the total similarity between
the candidate and the target is high, the diagonal term of the
covariance matrix will be small. In this way, the Kalman gain
will have a larger value, which will make the updated state
closer to a reliable measurement.

5. Adaptive Ground Plane Estimation

Due to the unpredictability of driving road conditions, the
ground plane estimated in the beginning may not be suitable
for the entire image sequences. )erefore, the ground plane
needs to be continuously reestimated based on the dynamic
road conditions. In [33], the ground plane is reestimated and
parameter smoothened every fg � 200 frames to mitigate
the adverse impact by the camera calibration noises.
However, using a fixed number of frames for estimating the
ground plane can affect the measurement accuracy when the
camera is moving on a curve. In this paper, we propose to
update the ground plane every single frame, based on an
adaptively chosen N frames for parameter smoothing, by
taking advantage of the camera rotation yaw angle calculated
in the essential matrix calculation phase. )e adaptive
ground plane estimation algorithm is shown as follows.

In the algorithm, θk is the camera yaw angle at the kth

frame; (gk,φk) is the ground plane at the kth frame;gk ∈ R is
the normal vector; and φk ∈ R is the offset of the plane. D is a
single 4 × fN matrix, and its elements are fN ground planes,
which is estimated by each pair of consecutive frames:

D � gq,φq 
T
, . . . , gq+fN

,φq+fN
 

T
 . (26)

Due to the noisy camera calibrations and the unpre-
dictability of road conditions, some ground planes (gq,φq)

may be unreliable; therefore, the robust principle compo-
nent analysis (RPCA) [46] is applied to decompose a low-
rank 4 × fN matrix A from D. )e low-rank matrix’s mean
vector (gk,φk) is considered to be our final ground plane,
which is more robust to the noise contributed from the
camera calibration and essential matrix calculation stage (see
Section 3.2), derived from those fN consecutive frames.
Figure 8 shows an example of using a set of ground
planes (gq,φq)T|q � 1, . . . , fN  to estimate the final ground
plane (gk,φk). )e gray planes are the image sequences
converted from the driving recorder, and H is the camera
height. )e final ground plane for fN consecutive frames
(dot-line plane) is obtained from a set of ground planes
(solid planes).

6. Experiment Results

In this section, we show experimental results of the proposed
system on the Kitti datasets [47], which are taken with high
quality dash cameras with motion pose ground truth and
GPS information available. We test eight sequences (see
Figure 9(a)), which are relatively short, and most of them are
driving on a curvy road. Figure 9(b) shows the relative
ground plane estimation results by applying our proposed
method. We also test two of self-recorded video sequences
captured around the University of Washington (UW)
campus using a driving recorder mounted on a fixed height
1650mm. And a more complex scenario in the ETHMS
dataset, which includes multiple pedestrians on one scene, is
also tested, and Table 1 shows the configurations of the
tested videos.

6.1. Be Relative Angular and Distance Errors. To demon-
strate the accuracy of our proposed adaptive ground esti-
mation, we compare the performance on the Kitti dataset
with the following three different methods: the method in [4]
is a stereo algorithm based on graphical model; the method
in [17] formulates the ground plane estimation as a state
continuous hidden Markov model where the hidden state
contains ground plane; the method in [33] adopted the
simultaneous localization and mapping (SLAM) technique
to estimate the ground plane by using constant frames.

As in the method [17], the average relative angular error
and distance error of the camera’s motion are applied to
evaluate the accuracy of the ground plane estimation. For the
performance measurement, we calculate the camera poses
and compare them with the given camera pose ground truth.
)e average relative angular and distance errors, which are
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normalized by the path length, are given in Tables 2 and 3
separately.

Tables 2 and 3 show that the performance of our ap-
proach is better than the method [33] in both relative
angular errors and comparable relative distance errors.
)at is because the estimated ground plane becomes more
reliable after applying the adaptive ground plane estima-
tion algorithm. Unlike the method in [33] that uses a
constant number of frames to estimate the ground plane,
our proposed method takes advantage of the estimated yaw
angle in the camera pose to fight the adverse effects of the
changing road conditions. Compared to the method used

in [17], our proposed scheme also shows better perfor-
mance, except for the angular error in datasets 1 and 5,
similarly except for the distance error in dataset 6 when
compared with the method used in [4]. )e major reason of
the better performance is that our method can be well
contributed by the noise reduction from the camera cali-
bration and the unpredictability of road conditions as
facilitated by taking advantage of the characteristics of
adaptive-length RPCA.

6.2. Detection Performance. To demonstrate the detection
performance of our proposed system, we compared it with
three methods [33, 48, 49] with different human detectors on
the ETHMS dataset, in terms of the detection rate and false

Table 1: Configurations of the datasets.

Sequence Resolution #Frames Frame per second
Dataset seq#1 1242 × 375 77 15
Dataset seq#2 1242 × 375 155 15
Dataset seq#3 1242 × 375 447 15
Dataset seq#4 1242 × 375 233 15
Dataset seq#5 1242 × 375 154 15
Dataset seq#6 1242 × 375 384 15
Dataset seq#7 1242 × 375 87 15
Dataset seq#8 1242 × 375 106 15
UWcamp#1 1920 × 1080 1100 30
UWcamp#2 1920 × 1080 200 30
ETHMS #4 640 × 480 450 15

(g1, φ1)

(g2, φ2)
(gk, φk)

(gfN, φfN)

Figure 8: Example of the ground plane estimation.

(a)

(b)

Figure 9: Overview of the 8 sequences from the Kitti dataset and their relative ground plane estimation results: (a) the sequences 1–8 (row-
wise starting top left), taken from the Kitti dataset; (b) the relative ground plane estimation result.

Table 2: )e average relative angular errors (DEG).

Dataset Our method Method [33] Method [17] Method [4]
1 0.06 0.11 0.02 0.8
2 0.05 0.20 0.07 1.22
3 0.03 0.08 0.04 0.27
4 0.01 0.03 0.23 0.92
5 0.06 0.06 0.01 0.41
6 0.03 0.08 0.07 0.39
7 0.05 0.10 0.20 3.06
8 0.10 0.59 0.11 1.68
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positive per image (FPPI). )is shows the performance of
inserting hypothesized association during tracking. )e test
results of the ETHMS dataset are shown in Table 4. )e
result shows that both the proposed method and the method
in [33] are superior to the method in [48, 49]. Both methods
further utilize the 3D information of the detected object,
instead of only using 2D information in [48, 49]. )ey can
effectively handle the occlusion issues. When compared with
the method [33] with the DPM detector, the proposed
method performs much better because it performs better in
the tracking with the adaptive ground plane estimation,
which results in increasing the detection rate and decreasing
the FPPI. And compared with DPM and YOLOv3 detectors,
the proposed method with YOLOv3 has a better perfor-
mance due to the low false positive detection rate in the
YOLOv3. )anks to the proper insertion of hypothesized
associations and the successive tracking, the detection rate of
the proposed method can achieve about 78%. )is implies
that missing detection can be improved by the tracking
techniques, and thus better detection results benefit the
tracking performance.

6.3. Multiple Object Tracking Result. To demonstrate the
tracking performance of our proposed system, we compare
the performance with the following three different tracking
methods: the method in [44] is a kernel-based human-
tracking system which tracks a human in 2D space and
without estimating the ground plane. )e method in [50]
uses the tracking-by-detection scheme to associate the de-
tected objects by calculating their similarity. )e method in
[33] is a human tracking system which uses a constant
number of frames to estimate the ground plane. To fairly
evaluate the tracking performance for each method, we
manually labeled 7302 locations as ground truth which
includes 31 moving vehicles and 89 pedestrians across 3393
frames and also adopt the followingmetrics which are widely
used in multiple object tracking (MOT) challenge [51].

(i) Multiple object tracking accuracy (MOTA): the
measurement of tracking accuracy combines three
sources of errors: false positive, false negative, and
identity switches.

(ii) Multiple object tracking precision (MOTP): the
measurement of object localization precision.

(iii) False positive (FP): the number of times of the
system detects an object but the ground truth is not
present in the image frame.

(iv) False negative (FN): the number of times of the
system failed to detect an object but the ground
truth is present in the image frame.

(v) ID switches (IDSs): the number of times two tra-
jectories switch their IDs.

)e comparison of the experimental results is shown in
Table 5. )e proposed method achieved the best perfor-
mance in all of the metrics except for FN.)e reason is that
the CNN-based tracking by detection retains more fore-
ground around the object regions. However, the extra
extracted background information will also cause the in-
crease in FP and IDS. )e ability of the proposed depth
CMK to deal with occlusion issues can be learned from the
fact that there is less identity switching, while the other
methods are tending to generate new object identities when
occlusion occurs. To facilitate the comparison of experi-
mental results, the red entries in Table 5 indicate that the
best results in the corresponding columns and blue italics
are the second best.

An additional typical example of performance com-
parison is shown in Figures 10 and 11, which both extract
five continuous frames from 175 to 179 from the UW
campus sequence 1. Figure 10 shows the tracking results in
the method [33], which use a constant number to estimate
ground plane. Figure 11 shows the tracking result in the
proposed method, which takes advantage of the yaw angle
from the camera pose to estimate the ground plane adap-
tively. From Figure 10, we can see that the camera mounted
on the driving vehicle starts to change direction in the frame
175, and in the frame of 177, the distance of the vehicle to the
camera sharply changed from 10.31 to 7.98, and then back to
8.31 in the frame 179. )e estimated ground plane remains
the same even when the vehicle starts to turn. Figure 11
shows the tracking performance of the proposed method
using adaptive ground plane estimation, we can see that the
distance of the vehicle gradually reduces from 10.51 to 8.44,
and the ground plane keeps changing with the direction of
the vehicle adaptively. It can be observed that the proposed
method can track objects more continuously and effectively
by using the adaptive ground plane estimation. Several
object tracking results with estimated ground plane are
shown in Figures 12–14, which show the tracking results on
the UW campus sequence 2, Kitti datasets, and ETHMS
datasets, respectively. )e results show favorable perfor-
mance of the proposed system, which not only can suc-
cessively track objects but also estimate a reliable ground
plane adaptively.

Table 3: )e average relative distance errors (%).

Dataset Our method Method [33] Method [17] Method [4]
1 0.01 0.01 0.59 0.69
2 0.02 0.02 0.75 0.40
3 0.03 0.03 0.72 0.23
4 0.01 0.01 1.99 0.33
5 0.01 0.01 0.34 0.41
6 0.40 0.40 0.74 0.28
7 0.01 0.01 1.65 4.95
8 0.01 0.01 2.13 1.11

Table 4: Comparison of detection rate and FPPI.

Method Detector Detection rate (%) FPPI
Method [48] ISM 47 1.5
Method [48] HOG 67.5 1
Method [49] DPM 49.53 0.93
Method [49] SP 51.86 0.92
Method [33] DPM 75.58 0.89
Our method DPM 75.71 0.82
Our method YOLOv3 78.10 0.19
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6.4. Runtime Performance. Apart from the detectors, all the
experiments are processed on a laptop with an Intel Core i7,
2.2GHz CPU with 8GB DDR. )e implementation is
constructed by C/C++, and the experimental settings are
described as follows: in the structure frommotion phase, the
proposed system uses the Harris corner detector to extract
1000 features initially, which are tracked by a KLT tracker.
And these corresponding feature points are used to estimate
the camera pose. In object detection, the pretrained YOLOv3
detectors are independently used in the proposed system to
detect objects such as human and vehicle. In the depth CMK
tracking, a depth map is constructed to describe the relative
3D locations of all the tracked objects firstly, and the his-
togram of objects is constructed based on the HSV color

space with a roof kernel; then, the K-L distance is used for all
the similarity-related measurements. Table 6 shows the
running time of the proposed system on different datasets
with different image resolutions.

6.5. Discussion. In this paper, we proposed an adaptive
ground plane estimation algorithm-based tracking system.
Existing ground plane estimation methods are required to
meet significant assumptions, such as the ground plane is the
largest plane in the scene and the ground plane is constant in
color or texture. )ese assumptions are not practical in
cluttered or dynamic environments, especially not suitable
for driving environments. Our method can robustly estimate

Table 5: )e tracking performance between different methods.

Methods MOTA (%) MOTP (%) FP FN IDS
Our method 79.7 95.8 143 1313 29
Method [33] 76.2 92.1 268 1416 53
Method [44] 63.9 82.6 590 1955 91
Method [50] 7.8 90.7 316 1223 82

(a) (b) (c) (d) (e)

Figure 10: Tracking results in the method [33] without adaptive ground plane estimation on UW campus sequence #1. (a) Frame 175.
(b) Frame 176. (c) Frame 177. (d) Frame 178. (e) Frame 179.

(a) (b) (c) (d) (e)

Figure 11: Tracking result in ourmethod with adaptive ground plane estimation on UW campus sequence #1. (a) Frame 175. (b) Frame 176.
(c) Frame 177. (d) Frame 178. (e) Frame 179.

(a) (b) (c) (d)

Figure 12: Tracking results with the estimated ground plane on UW campus sequence #2. (a) Frame 3. (b) Frame 4. (c) Frame 5. (d) Frame 6.
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the ground plane on a moving camera with nonrestrictive
assumption: the camera is mounted on a fixed height of the
vehicle.

Combining the adaptive ground plane estimation, object
detection, Kalman filter framework, and efficient depth
CMK tracking techniques, the proposed tracking system can
not only track the object effectively but also robustly handle
occlusion during tracking. Nevertheless, several limitations
are still existed. First, the proposed approach adopts the
tracking-by-detection scheme to detect and then track ob-
jects, and this implies that the method highly relies on the
detection results. However, if the quality of video sequences
is not sufficient for the object detectors, the proposed
tracking system is not able to perform well on the poor
detection results. More specifically, the positive detection of
a target can always trigger the tracking of a specific object. In
other words, the proposed method may not work well at
night or some cases of insufficient lighting. Second, the
proposed method effectively estimates ground planes based
on certain video frames when the vehicle moves on flat
roads, but if the roads are severely bumpy, it will produce less
reliable estimation, resulting in larger error of the object
back-projection and impacting accuracy of the reprojected
3D information. Hence, the proposed method is not reliable
for the unmanned aerial vehicle, because its height dy-
namically changes and then infers unreliable 3D informa-
tion of objects.

In the future, we will focus on improving the perfor-
mance of the algorithm by enhancing the accuracy of the

object detection algorithms. In addition, we will also test our
algorithms on video sequences that have higher outdoor
complexity and more objects visible in the scene.

7. Conclusion

We propose a robust object tracking system and ground
plane estimation simultaneously in a dashcammounted on a
free-moving vehicle. )e proposed system effectively inte-
grates the object detection, ground plane estimation, CMK
tracking, and Kalman filter framework to relocate the objects
in 3D space, and the estimated camera yaw angle has been
adopted into the adaptive ground plane estimation.With the
depth CMK tracking, the 3D positions of the detected targets
are updated on the more reliable ground plane and occlusion
issue is also handled in the tracking system. )e experi-
mental result shows that the proposed method greatly im-
proved the tracking performance. Such tracking system can
be regarded as a key component for high-level applications,
such as video analysis in a large scale of the mobile network.
Besides, the proposed framework can also be futher applied
to the advanced driver assistance system (ADAS).

Data Availability

)e Kitti dataset used to support the findings of this study
may be released upon application to the KITTI Vision
Benchmark Suite, which is a project of Karlsruhe Institute of
Technology and Toyota Technological Institute at Chicago.
)e dataset can be downloaded for free at this web page
http://www.cvlibs.net/datasets/kitti/raw_data.php. )e
ETHMS dataset can be downloaded on the following web
page https://data.vision.ee.ethz.ch/cvl/aess/dataset/#pami09.
Requests for self-recorded UW data, 6/12 months, after the
publication of this article, will be considered by the corre-
sponding author.

(a) (b) (c) (d)

Figure 13: Tracking results with the estimated ground plane on the Kitti datasets. (a) Kitti dataset 2. (b) Kitti dataset 5. (c) Kitti dataset 6.
(d) Kitti dataset 8.

(a) (b) (c) (d)

Figure 14: Tracking results with the estimated ground plane on the ETHMS datasets. (a) Frame 175. (b) Frame 185. (c) Frame 191. (d) Frame 196.

Table 6: Runtime on different image resolutions.

Dataset Resolution Average runtime (fps)
Kitti 1242 × 375 0.87
UW campus 1920 × 1080 0.65
ETHMS 640 times 480 0.95
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