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In cities, road traffic accidents are critical endangerment to people’s safety. A vast number of studies which are designed to
understand these accidents’ leading causes and mechanisms exist. The widely held view is that emerging analysis methods can be a
critical tool for understanding the complex interactions between land use and urban transportation. Using a case study of Suzhou
Industrial Park (SIP) in Suzhou, China, this paper examines the relationship between different land use types and traffic accidents
using a gradient boosting model (GBM) machine learning method. The results show that the GBM can be used as an effective
accident model for a variety of research and analysis methods by (1) ranking the influential factors, (2) testing the degree of
interpretation of each variable as the complexity of iterations changes, and (3) obtaining partial dependence plots, among other
methods. The findings of this study also suggest that land use types—including facility points—demonstrate differing degrees of
influence at two geographical scales: local level and neighborhood level. In the ranking of relative importance at both scales, the
variables of education institutions, traffic lights, and service institutions are all ranked high—with a more significant influence on
the occurrence of accidents. However, residential land and land use mix variables differed significantly in both scales and showed a
significant deviation compared to the other results. When adjusting the complexity of the decision tree, the local level is more
suitable for measuring variables such as residential areas and green parks where pedestrians and vehicles have fixed mobility
periods and moderate flows. On the contrary, the nearest neighborhood level is more suitable to a small number of variables
related to public service facilities at fixed locations, such as traffic lights and bus stops. In the partial dependence plots, all variables,
except educational institutions and residences, show a positive correlation for accidents in the fitting process. The results of this
study can ideally help inform transportation planners to reconsider transport accident occurrence rates in the context of the
proximity to various land use types and public service facilities.

1. Introduction

Trafhic safety is a crucial issue affecting the quality of urban
residential life. According to global statistics from the World
Health Organization (WHO), around 3,700 people die per
day due to road traffic collisions, and tens of millions suffer
related injuries each year [1]. China has one of the highest
rates of traffic accidents in the world, with more than 260
thousand fatalities annually. The WHO’s 2015 global status
report on road safety [2] indicates that 18.2 deaths per every

10,000 people occur in China, a statistic which also reflects
the world average. However, China’s rate is higher than the
rest of the Western Pacific region’s average of 16.9 deaths per
every 10,000 people [2], and it only falls below Southeast
Asia and Africa in the six major regions designated by the
WHO (see Figure 1).

Traffic accidents threaten people’s lives, in addition to
generating substantial economic losses. In general, traffic
accidents involve the subjective actor (the driver) and the
objective environment (vehicles and roads). Exploring the
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Ficure 1: WHO statistics for death on the road in 2015.

causes and mechanisms of traffic accidents within this dy-
namic will help reduce their overall risk.

Earlier studies have already identified these specific
influencing factors:

(1) The natural environment: cloudy or rainy weather,
temperature, humidity, and visibility are proven to
be related to traffic accidents [3, 4]; lousy weather
(rain/fog/snow) also has a significant positive cor-
relation with accidents [5].

(2) Road conditions: greater complexity of the road en-
vironment, including a number of intersections, road
network density, and a number of vehicles, is likely to
create more potential risks of an accident [6, 7].

(3) Human conditions: high employment and pop-
ulation densities in a given site lead to an increase in
traffic flow and consequently increase accidents
[8-10]; accordingly, sparsely populated areas have
lower accident rates [11]. Age demographics and
education levels will also affect the times and fre-
quencies of people going out, thus influencing the
conditions for accidents [11].

(4) The social environment: studies show the relationship
between facility accessibility, land use, and traffic ac-
cidents. For example, industrial land, commercial land,
and land mix are all positively correlated with traffic
accidents [5]. Educational land use areas report varied
results in the literature. For instance, evidence shows
that educational land use has a significant impact on
accidents [4], while a study found that education land
use has the least magnitude among other factors on
accidents [12]. Natural land use corresponds to the
highest safety level, demonstrating the fewest risks
[8, 13]. However, Zou et al. [14] uses truck crash se-
verity data in New York City to examine whether traffic
accidents are caused by land use patterns rather than
land types. He points out that, in one case, both service
employment and recreational employment occupy

high-density land, but fewer traffic accidents occur in
the service employment region. His study also dem-
onstrates that this is subject to change in any given
environment and becomes more evident in the rec-
reational employment region. This illustrates the need
to take more detailed land use into account when
considering accident conditions.

Earlier research on traffic accidents can also be divided
into micro- and macroscales [15, 16]. The former focuses on
the road itself, such as crossroads or intersections [7, 13, 17]
and highways [18, 19]; a closer look examines road length
and width, vehicle speeds, and traffic flow, to list a few, as
tools to optimize the road structure. On the macrolevel, most
census tracts [4, 20, 21], traffic analysis zones (TAZs)
[8, 22-24], and living communities [24] are used to identify
social and economic factors (such as population and land
use) that illustrate the spatial agglomeration of accidents.

Looking from different scales also tends to indicate di-
verse accident outcomes. Huang et al. [25] point out that
detecting road facility as hotspots is more accurately an
analysis tool than observing their entire encompassing region.
Some crossroad traffic accident studies delineate the scales of
15 m, 60 m, and 75 m, respectively, and correspondingly reach
different conclusions [26, 27]. Some results indicate that
collisions are more likely to occur at distances of 100 to 200 ft.
from intersections, while some of the experimental results are
smaller, below 50ft. Yu and Zhu [28] found that creating
buffer zones around schools (with distances of 0.5, 1, 1.5, and
2 miles, respectively) will each impact security of the school
zone differently. In this way, they demonstrate the tangible
biases that examining land use at different scales present,
given that every scale will incorporate a different range of
influencing factors. Nevertheless, autocorrelation and het-
erogeneity of spatial effects must also be considered; re-
gardless of scale, geographic units with higher internal
similarities will achieve more stable statistical results.

Among these commonly used research scales, TAZ is the
only regional system associated with transportation.



Journal of Advanced Transportation

Compared with larger geographic scales, TAZ has better
internal similarities in land use, road network, and traffic
operation. In light of comparably smaller geographic scales,
TAZ would link traffic data to produce more evident so-
cioeconomic characteristics. The scale at which TAZ
operates is also easy to integrate with the transportation
planning process and is therefore used as a local level re-
search scale in this paper.

In addition to discussing the scale of TAZ, this paper is
going to address other research scales. In western literature,
accident research in geographic scales also includes local
areas [29], counties [16, 30, 31], and regions [32]. In the
Chinese context, although the study of land form is often
divided into administrative regions such as provinces and
cities [33, 34] or terrain areas such as plateaus and hills
[35-37], a consistently defined scope at which road network
patterns are observed to impact traffic safety remains
neglected in the literature. Therefore, it is necessary to ex-
plore different research scales that are more suitable for site
characteristics and data. This research is a contribution to
help fill this gap.

This paper attempts to utilize a scale that is relatively
homologous to that of the TAZ model. The center of each
TAZ is used as the centroid to generate Thiessen polygons
using ArcGIS, thus avoiding the problem of missing or
duplicated study areas that can easily be caused by buffers.
The Thiessen polygons are irregularly shaped polygons with
varying areas based on the centroid, and they are more
spatially homogeneous than administrative boundaries.
After studying collision models with different spatial units
such as census tracts, state electoral divisions, developed grid
cells, and natural area boundaries, some scholars have
recommended Thiessen polygons because of their higher
spatial performance [38-40]. The Thiessen polygon is,
therefore, chosen as the research scale of the nearest
neighborhood level apart from the TAZ area.

The different study scales may inadvertently create a
modifiable areal unit problem (MAUP) or the issue of
changing statistical properties due to differences in areal
units. However, since both selected scales build on existing
TAZ areas and do not involve adjustments in basic spatial
units such as census tracts or urban structure based on major
roadways, the changes in the statistical results should be
modest at most [40]. The results from the two study scales
(the local level of the TAZ area and the nearest neighbor-
hood level bounded by the Tyson polygon) would then be
comparatively analyzed.

Most of the methods employed in early quantitative
studies of traffic accidents focus mainly on singular influ-
encing factors. Gasparini [41] and Li et al. [42] first adopted
Markov chain traffic accident statistical models to analyze
the time factors of traffic accidents; Kim and Yamashita [43]
compared the number of accidents per unit area in different
land use and found that commercial geographic entities have
the lowest level of traffic safety.

Later studies began to incorporate the generalized linear
model (GLM) and used to study the relationship between
various influencing factors and the frequency of accidents.
The logistic model and the logit model were used multiple

times in US studies to analyze accident severity
[3, 18, 29, 44]; Kim et al. [45] and Dissanayake et al. [46]
employed Poisson regression and negative binomial re-
gression. They examined the respective relationships be-
tween geographic entities such as parks, businesses, schools,
and high-density residential buildings with traffic accidents.
It is not easy to measure the difference between various
geographic units. Adjacent geographic units usually have
spatial autocorrelation, yet spatial heterogeneity often occurs
when they are far apart. Random parameters and spatial
models such as Bayesian space models use spatial autore-
gressive models (SAMs) and geographically weighted re-
gression (GWR) models to solve this issue via traffic safety
spatial analyses [24, 47, 48].

It can be concluded that earlier research focuses on
macroanalysis of accidents with the intent to produce sta-
tistics from their data by emphasizing single factors or
multiple factors in the process. Since the 1990s, alongside the
development of machine learning and the advancement of
data mining technology, systematic causation is being
studied increasingly often with the application of machine
learning models to traffic accidents. Li and Shao [6] use
backpropagation (BP) neural networks and the artificial
neutral network (ANN) as methods to identify critical causal
factors to the severity of injuries in traffic accidents. The
neural network method incorporates the occurrence of
traffic accidents as an input and output system. Influencing
factors such as people, vehicles, roads, and the traffic en-
vironment are considered as input layer variables. The
number of accidents or fatalities is operated as output layer
variables. Through multiple corrections of parameters, a
complex, nonlinear relationship network model between
variables is established and more accurate traffic accident
analysis results are obtained. Chong et al. [49] proposed
testing artificial neural networks and decision trees to model
the severity of traffic accident injuries. Experiments using
datasets obtained from national automotive sampling sys-
tems showed that decision trees outperformed neural net-
works. Advanced algorithms that have already been applied
to the monitoring of sudden traffic events include the
probability neural network (PNN) and the support vector
machines (SVMs) [50, 51]; Al-Ghamdi et al. [3] introduce a
mixed model of wavelets transformation and logistic re-
gression to their traffic events testing method. Further re-
search suggests that the causes of traffic accidents are
systematic and intrinsically linked. BP and ANN machine
learning methods establish nonlinear networks with input
variables. While the obtained results from these models are
interpreted in terms of causal relationships, the outcome
parameters can be compared either within the same dataset
[49] or across different models.

Recent big data technology uses data mining and ma-
chine learning techniques to calculate traffic data, identify
potential risk factors, and assist in offering targeted measures
to avoid and prevent traffic accidents. This paper uses a new
machine learning method known as the gradient boosting
model (GBM) as a novel application to the traffic accident
research field. In doing so, this research aims to explore the
relationship between complex land use characteristics and



traffic accidents. Using the same data source, the scale of the
local level bounded by TAZ and the scale of the nearest
neighborhood level bounded by the Thiessen polygons are
separately counted to check the power of the model and the
explanatory effect of the variables at the two locational levels.

The following section will introduce the mathematical
model of the methodology used in this paper. The third
section will then present the data and variables. The fourth
section contains the experimental results and discussion and
divided between the preparation of the GBM model, the
interpretation degree of each variable, the explanatory power
within the two scales in the case of a change in parameter
“number of trees,” and the partial dependence of each
variable. Section 5 will presents the conclusions and limi-
tations of this research.

2. Materials and Methods

2.1. Methodological Review. This section demonstrates a de-
velopment from traditional statistical methods to data-driven
methods. Mannering et al. [52] point that the choice of analysis
method for crash data should take into account the trade-off
between prediction capability and the causal nature of factors
contributing to accidents. Traditional statistical methods have
been relatively easy to use data as it presents accuracy in
prediction and rationale in causality. With a big dataset, the
data-driven approach should be primarily used. Other re-
searchers suggest that cultivating new methodologies to ad-
dress unobserved heterogeneity and endogeneity is beneficial
for understanding accident determinants [53]. When selecting
different methods, in addition to consideration for the dataset,
implicit assumptions also need to be made based on the
likelihood or severity of the accident [54]. This helps to embody
different aspects of the accident mechanism and make more
accurate safety decisions. The following is a detailed analysis of
the choice of methods in this study.

Statistical models are designed to capture the relation-
ship between independent and dependent variables as ac-
curately as possible. The ordinary least squares (OLSs)
method in its simplified form demonstrates a linear rela-
tionship, wherein the error term satisfies a normal/Gaussian
distribution and satisfies homoscedasticity. Although the
errors do not meet the condition of being normally dis-
tributed and homoscedastic, the generalized least squares
(GLSs) method can use its link function to convert a number
of target variables that satisfy a particular distribution
condition into a linear model, thereby eliminating hetero-
scedasticity in linear relations. Weighted least squares
(WLSs) can also be used to convert the model to a linear
format by weighting the explanatory variables to eliminate
their heteroscedasticity.

Despite their potential usefulness, Mannering and Bhat
[53] note that simple linear regressions such as OLS, GLS,
and WLS are seldom used as a method in accident research.
Linear regression methods, in their varied forms, are only
applicable to fit hyperplane datasets without using other
factors as weights. Traflic accidents are the outcome of in-
terweaving multiple influencing factors, which largely rely
on the construction and solution of complex nonlinear
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problems [53, 55]. Linear regression models cannot adapt to
capture complex patterns, and it is impractical to add in-
teraction terms or use polynomials. Therefore, global re-
gression based on linear models alone is not sufficient for
this type of analysis. To address this issue, the GWR method
could be used to build spatial models, which use locally
weighted regression to enhance the accuracy of the results. It
calculates weights by constructing spatial kernel functions
and then uses local regression to intuitively reflect the
nonstationary characteristics of geographic relationships
[56]. However, in reality, the accurate modeling of complex
geographic relationships requires increasingly nonstationary
solution accuracy and computing power. If GWR is used, the
model needs further improvements in proximity analysis,
calculation of kernel weights, and optimization of band-
width parameters, among other areas [38, 57].

In addition, various machine learning methods and
spatial regression models have been increasingly used in
traffic accident research due to their capacity for superfitting
to nonlinear problems. Among them, support vector ma-
chine (SVM) methods use kernel functions for nonlinear
classification [58-60]; hierarchical clustering algorithms
divide traffic impacts into layers based on data distribution
[61]; K-means clustering algorithms and GWR both perform
cluster analysis based on the collection distance of sample
points [62]; and deep learning is often applied to general
graph models or hypergraph models without massive
constraints [62], such as image recognition of traffic acci-
dents in social media and black spot recognition in urban
traffic safety [63-65]. However, the earlier studies present a
lack of accuracy due to the errors and unobserved variances.

As this study looks at the impact of each land use type on
traffic accidents and its pattern at different spatial levels,
regression- and tree-based models are selected to address the
complexity of issues and factors involved in accidents. The
latter involves drawing multiple trees from top to bottom
through multiple terminal nodes to visually represent the
detailed effects of each factor in the model in a nested manner
[66]. In one of these tree-based regression methods, boosting
first builds multiple decision trees by an orderly sampling of
the initial training set and then combines the multiple trees to
slowly train the prediction model to improve the prediction
performance [66]. The gradient boosting method (GBM) is
used to implement this boosting technique.

This research identifies GBM as a better method over
traditional methods such as generalized linear functions of
all kinds since it can use different steps and a few critical
parameters to help explain the loss function in the model.
This loss function is the same as the rule of finding error
patterns in the linear function to help describe the model
more accurately. Therefore, when the interpretation of the
model in some traditional methods is not accurate enough,
GBM can learn nonlinear relationships to achieve better
accuracy. GBM is also very receptive to outliers and is not
sensitive to noisy data; it works to account for missing data
while efficiently calculating. Additionally, the bagging al-
gorithm, which also belongs to the tree-based algorithm,
shares similarities with the characteristics of GBM. However,
bagging uses a self-service sampling method (sampling method
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with replacement; duplicate samples may be taken) in building
a decision-tree, which is less efficient than GBM. It is more
suitable for data with fewer dimensions and higher accuracy
requirements [62]. The land-type data obtained in this research
is complex in its distribution, and the sizes of various types of
land use vary greatly and are mixed with each other. Therefore,
GBM would have a higher accuracy when sampling and is thus
selected as the method for use in this research.

2.2. GBM Model. As previously mentioned, the gradient
boosting model (GBM) is selected for the machine learning
method used in this paper. Boosting algorithms are a com-
monly used machine learning method that can be applied to
classify regression problems. GBM uses boosting to distin-
guish the strong from among weak classifiers and obtains the
new model by training in the direction of gradient descent of
the previously modeled loss function. Generally, an important
criterion for evaluating the performance of a model is a loss
function. The loss function essentially refers to the degree of
the model’s unreliability. As the loss function decreases, the
model becomes more reliable and predictable. The best way to
improve the model performance is to make the loss function
decline in the direction of the gradient. Given the increasing
difficulty in loss function optimization in previous machine
learning models, Friedman [67] proposed the following
gradient boosting algorithm. It acts as a greedy function
approximation method designed to obtain the next model by
training in the gradient descent direction of the current model
loss function. The following is its mathematical derivation.

Firstly, the model is initially set up with ¢ as the coef-
ficient and & as the assumed classification rule of the overall
function F(x):

N
F(x) = Z &,h, (%), (1)
n=1

where X = {x, x5, ..., x,,} represents the independent variables
in the input space and Y represents the response variable in
the output space. Given a training dataset [50],", the pur-
pose of which is to find a hypothesis function F* (x) that
maps the x function to y, and the difference between this
hypothetical function and the real function can be repre-
sented by a loss function. The loss function ¥ (y, F(x)) is a
nonnegative real-valued function of F* (x) and Y, with the
ultimate goal of minimizing the loss function:

F*(x) = argp(, min E, W (y, F(x)). (2)

Then, in combination with equation (1), approach Fx (x)
by a linear expansion in equation (2):

M
F(x)= Y Bah(x;a,), (3)
m=1

where the function h(x; a,,) is a simple classifier with x and
a=1{a;, a,,...} is the parameter in the classifier function.
However, the expansion coefficient {p,,}JM 0 and the clas-
sifier parameter {a,,}M 0 are mainly obtained in the training
data using the segment-by-segment training algorithm. The

initial hypothetical function Fy (x) is given first, and then,
m=1,2, ..., M iterates stepwise as in the following equations:

N
(/Sm’am) = arg minﬁ,a z ¥ (yi’ Fm—l ('xi) + ﬁh (X,-; am))’
i=1
(4)

F,, (x)=F,_, (x)+ B,h(x;a,,). (5)

Gradient boosting uses a two-step strategy to solve the
loss function ¥(y, F(x)) in equation (4). The first step is to
put the function h(x; a) into the least squares as (6) and get
the current pseudoresidual:

N
a, = argminz (i — ph (x;50)]". (6)

i=1

In the second step, given h(x; a), the optimal value of the
coefficient f3,,, is determined by the following formula:

N
B,y = arg ming Z‘{’ (¥i» Fpuet (%) + B (x;3 a,,))- (7)
i=1

This strategy first replaces the difficult optimization
problem by the least square method of equation (6), then
optimizing loss function ¥ based on a simple parameter in
equation (7). The gradient boosting model has achieved
rapid development in recent years. Zhao et al. [26] reported a
stochastic gradient decision tree based on GBM and con-
structed a decision tree model with two methods. Elsewhere,
an extended end-to-end promotion tree system named
XGBoost (extreme gradient boosting) model was proposed
by Tianqgi Chen in 2016 and has widely been used in image
classification and loss estimation since then [68, 69].

2.3. Relative Importance of Factors. When predicting the
coefficients of the independent variables in the model, it is
difficult to rank the coefficients of the independent variables
in the model. Moreover, multicollinearity frequently causes
interactions between variables in the model, and autocor-
relation tends to cause errors. This paper conducts relative
weight analysis to solve these problems by sorting the im-
portance of the fit of the model according to each inde-
pendent variable. It also helps to clarify the multicollinearity
between variables [70]. The symbol R; (where i=1, 2, ..., n)
refers to the reliability set of the influencing factors of the
entire traffic accident. R (R, Ry, ..., R,) is the first poly-
nomial of the i-th influencing factor and its reliability. If
taking the partial derivative with respect to R; (where i=1, 2,
..., n), the following equation is obtained:

R(R,,R,.....R,)
fi= OR;

1

,  (amongthem, i=1,2,...,n).

(8)

Then, I; in equation (8) is the difference between the
reliability of the entire set of influencing factors obtained by
taking the maximum value 1 and the minimum value 0 in R
(R, Ry, ..., R,) except for the influencing factor I, ceteris



paribus. I; is the maximum degree of influence of i (where
i=1,2,...,n)on the reliability of the set. With an attempt to
compare the relative importance of each factor in the factor
set, it is assumed that the reliability of each factor in I; (where
i=1, 2, ..., n) is r, thus the weighting expression of the
relative importance of each factor in the reliability of the
factor set is as follows:
o=

l 2io 1i(r)

(amongthem, i = 1,2,...,n).

(9)

Equation (9) gives the relative importance of each
influencing factor in the reliability of the factor set under
different reliability conditions. This method of measuring is
applied and discussed by many scholars [71, 72]. They also
point out its controversies like large instability, inability to
respond to positive or negative correlations, and unclear
quantifiers.

2.4. Partial Dependence. Partial dependence changes the
value of the target feature while controlling other fixed
variables and how the fitting result of the observation model
changes. The idea is the marginal effect of variables on the
predictions of machine learning models [67]. The estimation
method of the partial function is

Faale) = Y Flwsxd) (10)
i=1

where xs is the feature drawn in the partial dependence
graph, while x, is the actual eigenvalue of the feature other
than the selected variable. These two types of features to-
gether constitute the feature space x. The assumption of
partial dependence is that feature C is not related to other
features in dataset S. n refers to the number of instances.

This function represents the effect of the selected ex-
planatory variable and can be used to explain the “black box”
model of GBM [73, 74]. Partial dependence resolves the issue
that the importance of this indicator cannot reflect the
positive and negative relationship to a certain extent. In
general, the direction of the partial dependence plot reflects
the directions of correlation between variables and outcome,
whether it is positive or negative. Compared with the earlier
GBM models, which could only plot the importance of
variables in a ranked bar chart, the newer GBM model has
added the function of partial dependence plot. The advan-
tage of this method is that it is intuitive, easy to operate, and
can explain causality; however, it can also be interpreted as
impractical to show a complete distribution of features at
times and assume that the calculated variables are inde-
pendent of other variables [62].

3. Data and Model Building

3.1. Study Area and Data Source. This study selected Suzhou
Industrial Park (SIP) as a study area. Established in 1992 and
located in the eastern part of Suzhou City, SIP is adjacent to
Kunshan City and contains both Jinji Lake and Dushu Lake.
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Itislocated in the east of the Taihu Plain in the Yangtze River
Delta. The administrative region covers an area of 278 square
kilometers, with a registered population of 0.576 million
[75]. SIP has a multilayered transportation system with a
dense network of highways, national and provincial high-
ways, railways, waterways, and other transportation net-
works. In particular, the SIP transportation system is unique,
as it traverses numerous waterways, including lakes and
rivers. Suzhou Industrial Park is an important cooperation
project between the governments of China and Singapore. It
draws on the successful experience of advanced countries
and regions in its development and management. In the
functional land of the industrial park, the central business
district is developed around Jinji Lake as the center of the
SIP. Within the 80 square-kilometer boundaries of the
“China-Singapore Cooperation Zone,” four major functions
such as business, science and technology innovation,
tourism and vacation, high-end manufacturing, and inter-
national trade are included. The land use comprehensively
covers various types of land use and is relatively conducive to
the coordination with transportation compared to other
cities in China.

This research uses the SIP’s traffic accident data in 2016,
with a record of 58,315 traffic accidents, which has been
obtained from the SIP traffic police bureau. The spatial join
function in ArcMap 10.5 was used to calculate the accident
points in the TAZ unit to obtain the accident frequency
distribution map (see Figure 2). The accidents are catego-
rized into six levels based on the frequency of occurrence,
and the six levels are separated by the color gradient. The
map shows the following: (1) the degree of aggregation of the
same level is low; (2) each level including the normal peak
area of the accident presents a relatively discrete distribu-
tion; and (3) accidental peak areas are occurring in the dense
TAZ areas, which are distributed in the north and southwest,
respectively. In the two areas, the number of accidents in the
adjacent TAZs differed significantly.

The following data of SIP are used in this study: traffic
accident data, different types of land use data (e.g., resi-
dential land and educational land), points of interest (POI)
(e.g., shopping and leisure places and financial outlets), and
road facility data (e.g., traffic lights and intersections). Since
the accident data obtained occurred in 2016, the data for
land uses and road facilities are also selected for the same
period in order to maintain consistency of the study and to
explore the causes of accidents more accurately. Therefore,
the study period is fixed at 2016.

3.2. Two Scales of the Analysis Unit. The analysis in this
research involves two spatial units: the local level based on
TAZ data and the nearest neighborhood level based on
Thiessen polygons (see Figure 3).

Regarding the local level scales, TAZs within the SIP are
selected as a spatial unit of analysis, and the number or
density of various land use types within the TAZ regions is
calculated. The TAZs with smaller areas are deleted because
they create outliers and distort the data distribution in the
independent variable. In terms of the nearest neighborhood
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FIGURE 3: Two maps of spatial units at two-level scales: (a) local level TAZ area; (b) the nearest neighborhood level-Thiessen polygons.

scale, Thiessen polygons were created to avoid the potential
analytical errors caused by overlapping areas that often
occur in buffers. The TAZ’s centroid is used as the central
point to create Thiessen polygons within the SIP area. These
two scales have similarities concerning general spatial

location as they share the same center points and the
geographic structure of the analysis unit. However, while
TAZ has been used extensively in transportation-related
analysis, the neighborhood level was rarely tested because it
is not directly tied with regional spatial systems and



transportation networks. Therefore, in this research, the
nearest neighborhood scale with Thiessen polygons as an
analysis boundary is worth exploring. Table 1 shows the
basic descriptive statistics of the spatial units at both scales.

3.3. Variables. The variables used in this research are
structured and explained in Table 2. The number of traffic
accidents occurring at each of the two geographical levels
comprises the dependent variables. These variables in 12
categories include transportation facilities such as “Inter-
section,” “Trafficlight,” and “Busstation”; residential living
facilities such as “Edulnstitu,” “Financial,” “Healthcare,” and
“Government”; and land use mix “D1” and “D2.” With
particular reference to the work of Yue et al. [15], this re-
search uses neighborhood vibrancy to measure the degree of
land mix, using Hill numbers to refer to the multidimen-
sional POI mixed use. D1 and D2 calculate the exponential of
the Shannon entropy and Simpson index to measure the
diversity of residential, office, and commercial sites, re-
spectively. Moreover, in order to control the density level of
the POI points of the land type, the classification and re-
gression tree (CART) method is used to divide individual
land-type variable into segments representing different
density levels and convert them into dummy variables. After
integrating the data from both scales, all density dummy
variables are binary for high density and low density. Low-
density variables are used as references. The real variables
representing the land type and the dummy variables con-
trolling the density levels are included in the model of this
study.

3.4. Model Building. The GBM model needs to set several
parameters, including distribution, n.trees, inter-
action.depth, weights, n.minobsinnode, shrinkage, train.-
fraction, cv.folds, keep.data, class.stratify.cv, and n.cores, to
name a few. Some of these variables are set selectively, such
as weights, n.minobsinnode, and some use the default value
rather than setting purposely like n.trees (default is 100),
interaction.depth (default is 1), and bag.fraction (default is
0.5). The most important and most frequently trained pa-
rameters are shrinkage, N.trees, and cv.folds. Reducing the
rate requires more iterations, and it takes longer for larger
data [67]. The empirical results have shown that shrinkage
coefficients with smaller values (v<0.1) exhibit better
generalization errors. The n.trees is generally used with
parameter of shrinkage. Lowering the shrinkage and adding
more trees can improve the generalization ability of the
model and avoid overfitting [76]. Cv.folds is the judgment
method of the model. N-cv.folds go through a total of n
experiments and obtain the accuracy index of the mea-
surement algorithm after each test, which is used as an
indicator to judge the merits of the algorithm.

Prior to adjusting parameters, important parameters
are set to default values because initial default values help
determine other parameters. The steps of the adjustment
are as follows. Firstly, based on the accident distribution
data, the model of Poisson distribution is confirmed.
Subsequently, the learning rate is taken to be the original

Journal of Advanced Transportation

TaBLE 1: Comparison of spatial units at two scales.

Number Max of Min of Average Std
of spatial  area area  of area 4 )
wnit  (km?)  (km?)  (km®) 7
Local level 471 15.74054 0.00037 0.50185 0.95272
Nearest
neighborhood 480 11.10298 0.00352 0.50780 0.75309
level

default number of 0.1. There are some evidences to suggest
that a shrinkage rate of 0.001 will bring relatively low
deviation [12, 77], and this study sets the parameter for
shrinkage rate to 0.001. The CV method is used to detect
different parameters with Poisson deviance as the repre-
sentative of the loss. The CV number is set as 10, according
to the characteristics of the data in this case. Inter-
action.depth indicates the integer of the maximum depth of
each tree [67]. This parameter and n.minobsinnode are the
trade-offs that together determine the performance of the
model. If the two parameters are too large, it will easily lead
to overfitting, but it leads to underfitting when they are too
small. In the case where several other parameters are fixed,
the lowest Poisson deviance is adopted to decide the value
of interaction.depth is 15.

In summary, in order to verify the performance validity
and stability of the predictive model, following a series of
adjustments and experimental comparisons with other
similarity indicators, the final model parameters are as
follows in Table 3.

4. Results and Discussion

4.1. Relative Importance of Explanatory Variables.
Relative importance is the role of the indicated feature in
predicting the target response and can be used to visually
quantify the contribution of each explanatory variable to the
model. It is determined by the frequency of the features used
in the segmentation points of the tree. The higher the fre-
quency of use is, the higher the importance of the variable is
[67]. The response of the eigenvalues or independent var-
iables at the two scales is predicted according to the selected
model parameters. Figure 4 illustrates that the relationship
between Poisson deviance and iteration could be used to
estimate the effect of the model parameters: both test error
and train error decrease when the iteration increases. The
model does not appear to display the problem of overfitting.
If the data are underfit, signifying that the model learning
ability is insuflicient, it is also necessary to judge depending
on whether or not the deviation of the abnormal value
occurs. Figure 5 lists the contribution of all variables and
their ranking. Under the existing parameters of the model,
all variables have a nonzero contribution, and the tailing is
longer. This means that, under the identified model and
existing data, all land uses and POIs impact the distribution
of the final accident frequency. This lateral also proves that
the parameters of the model are valid.

A total value of 100 is allotted to each variable in both
models. The relative influence plots (see Figure 4) show that
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TABLE 2: List of variables and calculation.

Category Variable Description
Accident Accident Number of accidents within the study unit
Residential Number of residences/unit area (1/km?)

Residential (high)
Residential (low) (ref)

Residential land density

Two dummy variables used to measure density are, respectively, represented as low
density and high density of residential land use, where “Residential (low)” is set as a
reference variable

Healthcare Number of healthcare institutions/unit area (1/km?)
Healthcare institutions Healthcare (high) Two dummy variables used to measure density are, respectively, represented as low
density Healthcare (low) (ref) density and high density of lgn'd use by healthcare institutions, where “Healthcare
(low)” is set as a reference variable
Greenspace&Park Total number of greenspace and parks /unit area (1/km?)
Greenspace and park  Greenspace&Park (high) Two dummy variables used to measure density are, respectively, represented as low
density Greenspace&Park (low) density and high density of land use by greenspaces and parks, where
(ref) “Greenspace&Park (low)” is set as a reference variable
Government Number of governmental agencies/unit area (1/km?)
Governmental agencies Government (high) ~ Two dummy variables used to measure density are, respectively, represented as low
density Government (low) (ref) density and high density of la)r}d use by governmental agencies, where “Government
(low)” is set as a reference variable
Financial Number of financial services/unit area (1/km?)
Financial services Financial (high) Two dummy variables used to measure density are, respectively, represented as low
density Financial (low) (ref) density and high density of land use by financial services, where “Financial (low)” is
set as a reference variable
Edulnstitu Number of education institutions/unit area (1/km?)
Education institution Edulnstitu (high) Two dummy variables used to measure density are, respectively, represented as low
density density and high density of land use by education institutions, where “Edulnstitu

Edulnstitu (low) (ref)

(low)” is set as a reference variable

Intersection

. . Int ion (high
Intersection density ntersection (high)

Intersection (low) (ref)

Number of intersections/unit area (1/km?)
Two dummy variables used to measure density are, respectively, represented as low
density and high density of the land use by intersections, where “Intersection (low)” is
set as a reference variable

Trafficlight
Trafficlight (high)

Trafficlight (low) (ref)

Traffic light density

Number of traffic lights /unit area (1/km?)
Two dummy variables used to measure density are, respectively, represented as low
density and high density of land use by traffic lights, where “Trafficlight (low)” is set as
a reference variable

Busstation

Bus station density Busstation (high)

Busstation (low) (ref)

Number of bus stations/unit area (1/km?)
Two dummy variables used to measure density are, respectively, represented by low
density and high density of land use by bus stations, where “Busstation (low)” is set as
a reference variable

Servifacilities

Service facilities density Servifacilities (high)

Servifacilities (low) (ref)

Number of service facilities/unit area (1/km?)
Two dummy variables used to measure density are, respectively, represented as low
density and high density of land use by service facilities, where “Servifacilities (low)”
is set as a reference variable

Shopping&Leisure Total number of shopping stores and leisure outlets /unit area (1/km?)
Shopping and leisure ~ Shopping&Leisure (high) Two dummy variables used to measure density are, respectively, represented as low
density Shopping&Leisure (low) density and high density of land use by shopping and leisure places, where
(ref) “Shopping&Leisure (low)” is set as a reference variable.
Land use mix D1 Land use mix measurement [15]
D2 Land use mix measurement [15]
TABLE 3: Parameter setting in model building. the real variables representing different land uses and land
— - mixes are ranked higher, while the dummy variables con-
Distribution Poisson trolling density levels, which do not exceed 1%, are ranked
n.trees 100 (default)  Jower. This is the case for both models, which confirms that a
interaction.depth 15 high density of land use has little effect on the overall results
E‘}Ilrfg}l;zge 0‘1081 of the model. The density dummy variables help to reconcile

the completeness of the model and the persistence of the
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FIGURE 4: (a) Relative influence at local level. (b) Relative influence at the nearest neighborhood level.

variables, but since their importance values are too low
relative to the real variables, they are not analyzed more
extensively here.

The two-scale models (see Figure 4) have similarities and
differences in the order of relative importance. With the
relative contribution of 13.16% and 12.84%, “Green-
space.Park” and “Trafficlight” represent the most crucial
variables in two types of geographical scales. As is

demonstrated in other studies [6, 7], the factors most in-
fluential to the accident are road facilities such as traffic
lights, road width, and distance to intersections. However,
greenspace is less frequently identified as a decisive cause of
traffic accidents. Subsequent “Servifacilities” and “Eduln-
stitu” are also ranked as the second most important variables
of the two models at 10.14% and 10.96%, respectively. The
two models turn a very vital commonality up: the three
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variables of “Intersection,” “Shopping.Leisure,” and “Gov-
ernment” have a very steady order of importance in the two
models. This is a feasible locus as the data sources of the two
models are the same. This sort of alignment is consistent
with some initial results [78, 79] that several types of land use
are ranked higher in accident studies. The “Green-
space&Park” variable that appears afterward on the nearest
neighborhood level model is considered an aberration since
it contributes 13.16% in the local level model, which sorted
the first but ranks last in the neighborhood level model with
only 3.81%. The gap between the two is broad. Also,
identified as aberrations are the “Residential” and “D2”
variables. These two variables are ranked very differently at
either scale. The contribution disparity is about 169%.
“Greenspace&Park,” “Residential,” and “D2” are the three
variables identified as aberrations because they are different
in the rank order between the two scales, when compared to
the results of other studies that also analyze their relevant
importance (Ding et al. [12] and Saha et al. [79]), revealing
that “D1” and “Greenspace&Park” are in the middle and rear
positions, respectively, as the results in the nearest neighbor
level in this study. However, the importance of “residential”
variable is ranked lower than “D1” and “Greenspace&Park.”
This suggests that the model fits more accurately at the
nearest neighbor level for the nonpoint land types. The
variables “Servifacilities,” “Edulnstitu,” “Financial,” and
“Healthcare” are very close in value although disparate in
ranking at two scales. Their coeflicients differ by 2% in both
models.

In sum, the degree of explanation of the continuous
variables obtained by calculating the density is higher than
that of the dummy variables. Besides, under different
models, the order of importance of factors is not exactly the
same, and three aberrations appear. This shows that the
distinction in the locational levels allows the model to es-
tablish utterly different utility functions during the

11
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Relative influence at the nearest neighborhood level.

construction and fitting phases. However, there are also
some reasons that the autocorrelation leads to aberrations,
and the parameters are underfitting. Some of the nonpoint
land types in this study, such as “D1” and “Green-
space&Park” variables, ranked consistently with other
studies. The degree of interpretation of the two geographical
scale models is slightly inconsistent. “Servifacilities,”
“Edulnstitu,” “Financial,” and “Healthcare” contribute a
higher proportion of variables in the local-scale model than
their nearest neighborhood scale model, indicating that the
established parameters provide a more accurate description
of the local-scale model. These results suggest that the
performance of the variables at different scales and in
specific land-use types may be explored further. It is also
important to note that the dummy variables need to be
introduced with care when applying such approaches be-
cause of their low degree of interpretation.

4.2. Change in Influencing Factors of Real Variables due to
Increasing n.trees. As described in the previous section, the
number of trees has the same effect as the number of it-
erations. As a rule of thumb, the number of iterative re-
gression trees is generally set to a larger number because the
“gbm.perf” parameter in “gbm” package can estimate the
suitable number of iterations for prediction after the model
is trained [80]. An increase in tree complexity would help
improve the prediction bias and reduce the learning rate. In
this study, the parameters of n.trees are not set especially
when the model is determined, and the default number of
this parameter of 100 is employed. Nevertheless, when the
model is tested with a large tree value, the error of each
variable is large. In this circumstance, the results of the
setting of a number of trees by Ding et al. [12] are referenced.
In his experiment, when the tree complexity is low, the
explanatory degree of the variable is low, but the explanatory
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degree is stable as the tree complexity increases to eight.
Thus, this study tests the changes in the interpretation of
n.trees from 1 to 30 and compares the two levels (see
Figures 6 and 7). The following shows comparisons of all
variables representing land types and land mix between
variables and at different scales.

4.3. Comparison between Variables. After adjusting the
parameters, the line of the explanatory degree of the variable
at each point is compared with the default parameter of the
model. It is discernible that as the complexity of the tree
increases, the degree of interpretation of all variables rises
and falls around the default value of 100 in the range of trees
from 1 to 30. There is no complete detachment although no
variable goes steady after any number of trees 1 to 30. Variables
have different amplitudes. Using the variables’ sum of squares
for error (SSE) to measure the magnitude of the shock (see
Table 4), it is necessary to order the SSE numbers from small to
large: Government < Greenspace.Park < Shopping.Leisure
< Residential < D2<Busstation < Intersection < Financial < Traf
ficlight < D1<Servifacilities < Edulnstitu < Healthcare.

The statistical results of the SSE (Table 4) show that the
SSE of all variables is at a small value, which indicates that
the degree of interpretation of all variables does not
fluctuate much as the number of trees increases. The pa-
rameters of the model are then fit to the data of this study.
Except for “Servifacilities” and “Edulnstitu,” which reached
5%, the peaks and bottoms of most variables only differ by
about 3%. Therefore, the number of SSE necessarily rep-
resents the smoothness of the curve from the observation
(see Figure 6). However, the size ranking of SSE also shows
some irrational results, with the transit facility variables
“Busstation” and “Trafficlight” located in the moderate SSE
values; “Greenspace&Park,” “Shopping&Leisure,” “Resi-
dential,” “Servifacilities,” “Edulnstitu,” and “Healthcare,”
which all belong to the dense POI points, are distributed at
the larger and smaller ends of the SSE. In the urban area,
“Busstation” and “Trafficlight” are factors with a fixed
position and an accurate number and demonstrate high
stability. Even if the model parameters are changed, parallel
impacts on such variables are small. However, “Green-
space&Park,” “Shopping&Leisure,” “Residential,” “Servi-
facilities,” “Edulnstitu,” and “Healthcare”—factors which
are numerous, high in level, and widely distributed—are
similar facilities that reflect the daily life of residents. When
such factors are used to adjust the parameters involving the
complexity of the tree, the final fitting effects for the model
are unstable to generate two types of small and large
fluctuations.

In general, the complexity of the tree can identify and
detect the utility of various variables in the model to a certain
extent, which helps to improve the accuracy of the model
fitting. However, in this study, the fitting of the model is not
accurate enough as the number of iterations of the test is low.
Although the interpretation of each variable still fluctuates
within a reasonable range of the variable, the results of the
model do not reach a consistent state under a certain
number of iterations.
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4.4. Comparison of Two Geographical Levels. If the statistical
methods and models are identical, the partial dependence
plots show that the variables’ likelihood to occur is different
at two levels. Suppose the degree of explanatory variables is
adopted to represent the capacity of the locational scales. In
that case, the following three types of situations can be
divided into three categories shown in Figure 6:

(1) For the variables of “Residential” and “Green-
space&Park,” the blue curve representing the local
level is above the orange curve of the neighborhood
level, indicating that the capacity of the local level is
high for these five variables rather than that of the
nearest neighborhood level. It can be inferred that
these five variables are more responsive to the TAZ
region.

(2) Inversely, for “Trafficlight,” “Busstation,” “Health-
care,” and “D2,” the capacity of the nearest neigh-
borhood level is higher than that of the local level.
Notably, the neighborhood level is aggregated so that
these four variables exceed the others.

(3) When it comes to the wvariables of “Shop-
ping&Leisure,” “Financial,” “Government,” “Inter-
section,” “Servifacilities,” “D1,” and “Edulnstitu,” the
two lines are repeated or interlaced, so it is hard to
judge the suitability of either scale.

» «

The “cale effect” in this research highlights several critical
arguments. For instance, the research findings indicate a
severe scale dependence on the study of model evaluation of
traffic accidents. These analysis results of the local level
bounded by TAZ must be interpreted with caution because
there are only two variables “Residential” and “Green-
space&Park” that are available to demonstrate a higher
importance at the local level scale. The other variables either
show higher importance on the nearest neighborhood level
or are mixed between the two scales. “Residential” and
“Greenspace&Park” indicate the places where residents live
and spend the most time daily. The mobility of pedestrians
and vehicles is high at fixed times, such as during peak
commuting hours and weekends. In contrast, among the
variables with a high degree of explanation at the nearest
neighborhood level, “Trafficlight” and “Busstation” are more
about the infrastructure and public services invested and
managed by the government. The spatially homogeneous
character of the Thiessen polygon can be more evident in
such sites. “Financial” and “Shopping&Leisure” have more
attributes that are greatly affected by the surrounding en-
vironment. There may be dynamic changes in location.
Hence, they showed a kind of crosscomplication in the two
scales. The spatial heterogeneity and sensitivity in such sites
will be reduced. Indeed, the accident effects of the two
variables are not evidently different in both scales. Therefore,
the nearest neighborhood level is more powerful than the
local level due to its comprehensive description of variables
as a byproduct of its larger sample sizes.

4.5. Change in Influencing Factors of Density Dummy Vari-
ables due to Increasing n.trees. The variation in the density
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FIGURE 7: Variation in density dummy variables and interpretation/comparison of two scales as n.trees changing from 1 to 30.

dummy variables as the number of trees increases is shown
in Figure 7, wherein density dummy variables exhibit two
distinct characteristics. The first characteristic involves their
influencing factor lines tending to fluctuate more pointedly
relative to the real variables. A possible explanation for this
might be because their maximum degree of interpretation
does not exceed 1%, yet their minimum value often reaches 0
in individual trees. Therefore, the visualization displays
more dramatic fluctuations. The second characteristic is that
the influencing factor line of some variables coincides with
the x-axis and is constantly equal to 0. This means that the
variables do not show any explanatory power in the
model. “Greenspace&Park.High” and “Residential.High”
show this at the nearest neighborhood scale; this also
occurs in “Edulnstitu.High,” “Financial. High,” “Green-
space&Park.High,” and “Servifacilities.High” at the local
scale. In this case, even though some explanatory power
exists for these kinds of variables at the other scale, it is
impossible to compare the results of the two scales to obtain
real meaning. Relative to the real variables, the density
dummy variables offer lower explanatory power consistently
as the number of trees grows and varies irregularly, with
limited practical utility for the model.

4.6. Partial Dependence Effect of Variables. The partial de-
pendence plot is used below to describe the relationship
between land use, road variables, and accident frequency. The
partial dependence plot is a summary of the changes in all
variables under the same conditions. The partial dependence
plot cannot evaluate the statistical model directly, but it shows
how the variation in the independent variables affects the
process of model fitting [67]. Among all the variables, the
partial dependence plots represent real variables of road
structure facilities and land mixture (shown in Figure 8).
Road structure facilities in Figure 8 include three vari-
ables: “Trafficlight,” “Intersection,” and “Busstation.” As
discussed earlier, road structure facilities are usually defined
as influential factors correlated with traffic accidents. Two
variables fit the accident model to a stable stage when the
coeflicient value is small, even under different levels of scale:
when there are more than 25 traffic lights per square ki-
lometer, their influence on traffic accidents tends to be

stable; similarly, the degree of interpretation does not change
after over 15 bus stations per square kilometer. A particular
case was observed when the intersection coefficient reaches a
considerable value before the traffic accident stabilizes. The
data reported here appear to support that this case occurs
around the value of 400 at both levels.

However, as the density of transportation facilities in-
creases, specific differences arise in the development trend
per each level. Where traffic lights are sparse, the number of
traffic accidents tends to increase sharply. The number of
accidents declined briefly after 10 traffic lights per square
kilometer and then settled at a value after 20 traffic lights per
square kilometer, both at the local and the nearest neigh-
borhood levels. The “Busstation” variable fluctuated several
times at a density of less than 15 bus stops per square ki-
lometer and stabilizes after that. The “Intersection” variable,
on the other hand, fixed at the densities of around 400 after
initially jolting upward and falling immediately after that.
For both the “Busstation” and “Intersection” variables, the
local and nearest neighborhood levels revealed very similar
fluctuation ranges, but the fluctuation at the nearest
neighborhood level was somewhat more drastic. This in-
dicates that the nearest neighborhood scale is more suited
for capturing the subtle effects of urban transport facility
density on accident occurrences. A similar report on traffic
accidents in Seattle shows a rising trend in both the 3-way
and 4-way intersections [78], which is not evident in this
study’s findings. Taken together, these results suggest that
the impact of intersections on traffic safety varies according
to the complexity of their surrounding region. Nevertheless,
for the “Trafficlight” variable, the two scales selected in this
study produce similar effects of traffic lights essentially, while
the result at the nearest neighborhood level better dem-
onstrates the complex variation in bus stations and
intersections.

For the two variables of mixed land use shown in Fig-
ure 8, both “D1” and “D2” reach a stability of 4.5 on the Y-
axis after rising along the X-axis. However, from the curve,
“D2” reaches stability “D1” earlier than relatively. This is
because the D1 formula only measures the weight of each
land use type, which is the exponential of the Shannon
entropy. In the meanwhile, D2 considers the richness of the
land use and the relative abundances of the POI [15]. The
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FiGure 8: Partial dependence plots of road structure facilities on accidents.

data used in the study confirms the diversity between three
land use types containing residential, office, and commercial
land; therefore, the tendency of D2 is more secure than that
of D1. This result is consistent with the Chen and Zhou’s
work [78] on a crash frequency that shows a positive cor-
relation between land use mix and accident. It also aligns
with the increasingly stable trend of partial dependence in
the Ding et al.’s study [12] on traffic accidents in Seattle.
The other variables represent 8 land uses shown in
Figures 9 and 10. As a whole, all of these variables, except
“Residential” and “Edulnstitu,” show a significant positive
correlation with accidents. The partial dependence diagrams
of these variables show an overall increasing and then stable
trend after some fluctuations. The two variables of “Resi-
dential” and “Edulnstitu” are negatively correlated at the
local level although positively correlated at the nearest
neighborhood scale. This suggests that several land types,
“Healthcare,” “Greenspace&Park,” “Government,” “Finan-
cial,” “Servifacilities,” and “Shopping&Leisure,” may overall
lead to an increase in the number of accidents at lower

densities, while the number of accidents will not continue to
increase after reaching a certain density. Thus, variables will
likely function strategically at the turning point in the
graphs.

In Figures 9 and 10, other than “Residential” and
“Edulnstitu,” the six variables show consistent evolutionary
trends at both the local and nearest neighborhood levels. It
suggests that the partial dependency diagrams fully explain
the role of each variable in the model with consistent in-
fluence across the two scales. The differences between the
variables of “Healthcare,” “Shopping&Leisure,” and “Gov-
ernment” are highly uniform across the two scales. They
have a slight decrease in the local level scale compared to
their nearest neighborhood scale and reach stability after a
range of “0-20,” “0-60,” and “0-30,” respectively. For the
“Financial” and “Greenspace&Park” variables, the nearest
neighborhood scale is more revealing of their subtle changes
before a turning point. It is particularly evident for the
“Greenspace&Park” variable, as there is a rapid decrease in
traffic accidents when the density of “Greenspace&Park” is
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FiGure 10: Partial dependence plots of land use and POIs on accidents (b).

around 10 per square kilometers. Therefore, to control for
safer traffic conditions in the area, the land use of greenspace
and parks can complement the role of transport facilities.
It is worth noting that the “Financial” and “Government”
variables demonstrate opposite effects at the two different
levels in Figure 9. If their stationary points are similar and
their corresponding likelihoods also match, they show a
steep decline in the local level and an abrupt rise at the
neighborhood level. The partial dependence plot trend
shows a negative correlation at the local level scale and a
positive correlation at the nearest neighborhood level before
reaching sustained stability. It is likely that the variation in
the number of accidents is uncertain at both scales and may
increase or decrease with a sudden boom in residential and
educational institutions. However, the description of the
accident relation with residential and educational units
varies in the literature, and they sometimes conflict with

each other. It has commonly been assumed that a positive
correlation between the number of residential units (higher
population density) and pedestrian crashes [10]. Other
empirical cases, in contrast, demonstrate the direct opposite
[6]. Similarly, some studies suggest that students are more
likely to be at risk in areas with high school density due to
irregular traffic crossing behaviors and low safety awareness.
Despite this, Ukkusuri [4] presented contrasting experi-
mental results. Nevertheless, the trend turning point in this
study’s partial dependency diagrams reveals that the overall
number of accidents will no longer increase after the number
of educational institutions reaches 70 per square kilometer
and the number of residential areas reaches 50.

Concerning the partial dependence plot of the density
dummy variables, all the variables show the linearities, as
demonstrated in Figures 11-13. The three linear relation-
ships are explained as follows:
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FiGure 11: Partial dependence plots of density dummy variables of road structure facilities on accidents.
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FI1GURE 13: Partial dependence plots of density dummy variables of land use and POIs on accidents (b).

(1) The plots of “Busstation.High,” “Governmen-
t.High,” “Financial.High,” “Servifacilities.High,”
and “Edulnstitu.High” at the local level and
“Greenspace&Park.High,”  “Trafficlight.High,”
“Government.High,” and “Residential. High” at
the nearest neighborhood level are linear parallel
to the X-axis.

(2) However, “Healthcare.High” at the local level, as well
as “Busstation.High” and “Financial. High,” at the
nearest neighborhood level present parallel lines
with a high front and a low back, connected in the
middle by a plumb line.

(3) All the other dummy variables have a plot similar to the
previous one but are parallel lines with a low front and a
high back and connected by a vertical line in the middle.

However, these three linearities neither describe a
positive or negative correlation between high-density land

uses and accidents nor present fluctuating intervals and
meaningful turning points as the x-axis changes. The
practical guide can hardly represent in the partial depen-
dence lot of density dummy variables.

5. Conclusion

Road safety is critical to the health and wellbeing of
people. To this end, a large and growing body of literature
has investigated the leading causes and mechanisms of
traffic accidents. Most research on traffic accidents has
emphasized a complicated relationship between land use
and urban transportation. In this study of the Suzhou
Industrial Park (SIP), accident data provided by the SIP
traffic police bureau were used to build a GBM machine
learning model to identify the relationship between traffic
accidents and land use. The research process includes the
following:
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(1) Processing the traffic accident data as well as land use
and related facilities data.

(2) Establishing a GBM model on the frequency of traffic
accidents following by determining the model
parameters.

(3) Analyzing each land type variable’s contribution to
accident frequency and comparing these with the
explanatory degree of the variables, as the number of
iterations in the model grows.

(4) Discussing the estimated impacts of each variable on
the accident intuitively according to the partial de-
pendence plots at hand.

The study has highlighted factors affecting accidents,
geographical scale exploration, and model operation. The
GBM analysis was conducted at the local and neighborhood
scales to explore the overall validity of the geographical levels
and the model fitting. This also included the effect of var-
iables of transportation facilities, land use, land mix, and
density on the accident outcomes. The thirteen variables,
including road facilities, land types, and some POI facilities,
have been involved in two spatial scales that are bounded by
TAZ units (local) and Thiessen polygons (nearest neigh-
borhood). The results show that they all impacted accident
occurrence at both scales, among which the more critical
factors include categories of residential land, consumption
and leisure land, and green parks. However, the experi-
mental results at the two scales reflected vital differences and
similarities at various experiment points. Among the
rankings of relative importance, “Trafficlight,” “Edulnstitu,”
“Healthcare,” “Intersection,” and “Servifacilities” all have
shown a degree of interpretation from 7% to 13% and existed
in the crucial places of rankings on both scales. However,
“Greenspace&Park,” “Residential,” and “D2” differed sig-
nificantly and showed abnormality of the results. When
adjusting the complexity of the tree, some variables such as
“Residential” and “Greenspace&Park” appeared to be more
influential at the local level, while the nearest neighborhood
level showed more activity for the variables of “Trafficlight,”
“Busstation,” “Healthcare,” and “D2.” In the partial de-
pendence plots, the variables of “Residential” and “Eduln-
stitu” showed accident frequencies at both scales. These
results may be due to the fact that the spatial distribution of
traffic accidents is uneven in SIP. Accident rates varied
widely in each TAZ area. The large TAZ regions in the
northern part of the study area and the dense TAZ regions in
the southwest area showed the normal peak situation of the
accidents, and the location distribution was scattered.

The local level has been seen as more suitable for
measuring variables where pedestrians and vehicles have
fixed mobility periods and moderate flows, such as resi-
dential areas and green parks. One the one hand, the nearest
neighborhood level could be applied to a small number of
variables related to public service facilities at fixed locations,
such as traffic lights and bus stops. In other land uses such as
financial networks, shopping, and leisure, where the sample
size was extensive with a complexity of hierarchy, the scale
could be modified according to the overall land use
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requirements. Therefore, this research suggests that it will be
worth considering applying the nearest neighborhood scale
with the boundary of Thiessen polygons in addition to the
commonly used TAZ areas when examining traffic accidents
or even traffic safety research of municipal engineering
projects. When planning for a smaller geographical area,
these different scale ranges might help confirm the settings
and enrich the understanding of the study area’s spatial
structure to improve overall road safety.

Research on accident models has been developed using
an advanced technique. GBM is a machine learning model
that has been promoted to use rapidly in recent years. It
particularly allows to validate existing models by ranking the
importance of the coefficients and the variation in the model
fit. Based on the introduction of multiple variables in the
past studies, this research used the ordering of explanatory
variables, tested the fitting degree of each variable by
changing the parameter setting and partial dependence
graphs, and comprehensively built an application model
suitable for the current land use and road situation. Since a
growing number of studies extensively analyze traffic acci-
dents in different regions, the findings of this study could be
compared with some of them to confirm its consistency and
deviation. In this way, the analysis results of this study could
be validated against others of its kind. The results of GBM
included the coefficients of the variables under existing
parameter settings. GBM was useful for this traffic accident
study and positively contributed to understanding the re-
lationship between urban form and traffic accidents. It is
suggested that policymakers pay further attention to the
benefits of using advanced methods in accident research
than traditional means and understand the cause of this
discrepancy to find the most efficient method in practice.

This study has several limitations that one should take
into account for future studies. First, this study confirmed
that the GBM model is only useful when it applies to re-
gression and classification problems with the sufficient
number of parameters from existing studies. Similar to other
linear models, the coefficients of the variables were the only
representative of the importance and influence of the de-
pendent variable within one single model, and their values
could not be used as an absolute reference for some practical
applications. It is conceivable that if this model is applied to
an emerging research subject, and the reliability of the
GBM’s result could be somewhat limited because it would
not be able to produce absolute results. The application of
this technique depends heavily on previous results and
experience because determining variables (causality) and
selecting the most suitable model parameters would be
difficult. Therefore, this model might be beneficial for
judging the relative fit of the identified variables, the relative
importance between variables, and the internal interaction
of the model parameters. When adjusting the complexity of
the tree, the likelihood of variables fluctuated with the
change in the number of trees but did not reach a stable value
within the scope of the test. To ensure the integrity of the
variables and the overall stability of the model, dummy
variables that represent high density of land uses were
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introduced. However, the results of the density dummy
variables were not satisfactory. The relative importance
ranking was low. Also, the influence factors did not produce
effective changes with the increasing number of trees, and
they did not show meaningful fluctuation intervals and
turning points in the partial dependence plot. Overall, this
model could be best used for comparative purposes and
might produce a more accurate model by adjusting
parameters.

Second, the GBM occasionally presents accuracy and
overfitting issues. The GBM predicts less accuracy than
some regularization, polynomial regression, and partial
regression methods [66]. It is also easy to overfit due to
being relatively unconstrained in operation, causing a
single decision tree to retain branches (without pruning)
until it remembers the training data [62]. This needs to be
treated carefully based on the different sizes and charac-
teristics of the actual dataset when adjusting the parame-
ters. As mentioned in the first point, it is worthwhile to
explore varied applicable parameters to ensure the reli-
ability of the model.

Third, the relatively small study area makes this finding
less generalizable to other cities or regions of China, es-
pecially given the relatively unique layout of SIP although
the exploration of geographical scale level is one of the
important contributions of this study. In addition to the
commonly used local level TAZ area, this research high-
lights the significance and usefulness of the nearest
neighborhood level drawn from the Thiessen polygons
zone, which can be used as a scientific and reasonable level
scale. However, along with the results of this study, these
levels have only been verified to apply to the Suzhou In-
dustrial Park, and it might not be directly replicated to
other regions in China.
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